Answer:
We can use the simple interest formula to find the rate of interest that the town savings bank pays:
Simple Interest = Principal x Rate x Time
where Principal is the initial deposit, Rate is the interest rate, and Time is the time period.
We know that the Principal is $5000, the Simple Interest earned over the first 10 years is $2950, and the Time is 10 years. Substituting these values into the formula, we get:
$2950 = $5000 x Rate x 10
Simplifying the equation, we get:
Rate = $2950 / ($5000 x 10)
Rate = 0.059 or 5.9%
Therefore, the town savings bank pays an interest rate of 5.9% on its savings accounts.
Which of the following equations is the best model for a line of fit for the data?
ŷ = −1.34x + 21.5
ŷ = 1.34x + 21.5
ŷ = −0.75x + 17
ŷ = 0.75x + 17
The correct option is (a) ŷ = -1.34x+21.5 , that is the best model to fit the scatter plot.
What is Scatter plot?A scatter plot (or scatter chart, scatter graph) uses dots to represent values for two(2) different numeric variables. The position of each dot on horizontal and vertical axis indicates values for an individual data point.
The model of the equation best for the plot is,
ŷ = -1.34x+21.5
At point (1,20),
ŷ = -1.34x+21.5
20 = (-1.34 × 1) + 21.5
20 ≈ 20.15
At point (3,19),
ŷ = -1.34x+21.5
19 = (-1.34 × 3) + 21.5
19 ≈17.45
At point (5,15),
ŷ = -1.34x+21.5
15 = (-1.34 × 5) + 21.5
15 ≈ 14.75
The model ŷ = -1.34x+21.5 is giving the best estimation.
To learn more about Scatter plot, visit:
brainly.com/question/29231735
#SPJ1
9 + 6g + 1 = 100 please I need help these are difficult
Answer:
So g would be 15.
In a science experiment the temperature of a liquid is first read at 11.15am. If the temperature is read every 12 hours, at what time will the eight temperature reading be taken?
If the temperature is read every 12 hours, then the eighth temperature reading will be taken at 11.15 pm three days after the first reading.
What is temperature?Temperature is a measure of the degree of hotness or coldness of a substance or object, typically measured using a thermometer in degrees Celsius or Fahrenheit.
If the temperature is read every 12 hours, then the time interval between two consecutive temperature readings is 12 hours.
To find the time of the eighth temperature reading, we need to add 12 hours for each of the previous seven temperature readings:
First reading: 11.15 am
Second reading: 11.15 am + 12 hours = 11.15 pm
Third reading: 11.15 pm + 12 hours = 11.15 am (next day)
Fourth reading: 11.15 am (next day) + 12 hours = 11.15 pm (next day)
Fifth reading: 11.15 pm (next day) + 12 hours = 11.15 am (two days after the first reading)
Sixth reading: 11.15 am (two days after the first reading) + 12 hours = 11.15 pm (two days after the first reading)
Seventh reading: 11.15 pm (two days after the first reading) + 12 hours = 11.15 am (three days after the first reading)
Eighth reading: 11.15 am (three days after the first reading) + 12 hours =
11.15 pm (three days after the first reading)
To know more about Celsius visit:
https://brainly.com/question/827047
#SPJ9
algebra 1
what is the written formula for standard form
Answer: Ax+By=C This is the formula
i need the answer for this question
The value of the functions are;
f(3) = - 3
g(5) = -77
What is a function?A function can be defined as an equation or expression hat shows the relationship between two variables.
These variables are termed;
The dependent variableThe independent variableFrom the information given, we have that;
f(x) = -5x + 2
g(x) = -3x²- 2
To determine the function, f(3), and g(5), we have to substitute the value of x as 3 in the function f(x) and the value of x as 5 in the function g(x).
We have;
f(3) = -5(3) + 2
expand the bracket
f(3) = - 13
For the second function;
g(5) = - 3(5)² -2
g(5) = -77
Learn about functions at: https://brainly.com/question/25638609
#SPJ1
Find the ordered pair solutions for the system of equations. ([?], f(x) = x² + 1 f(x) = -x + 3 ) and ( Enter the smallest x first.
The ordered pair solutions for the system of equations are (-2, 5) and (1, 2).
How to determine ordered pair?To determine if an ordered pair is a solution to two systems of equations, substitute the values of the variables into each equation. If an ordered pair makes both equations true, it is the solution of the system.
To find the ordered pair solutions for the system of equations, we need to solve the two equations simultaneously.
f(x) = x² + 1 ...(1)
f(x) = -x + 3 ...(2)
Setting the two equations equal to each other, we get:
x² + 1 = -x + 3
Rearranging this equation, we get:
x² + x - 2 = 0
Factoring this quadratic equation, we get:
(x + 2)(x - 1) = 0
Therefore, the solutions for x are x = -2 and x = 1.
Substituting these values of x into either equation (1) or (2), we get:
For x = -2: f(-2) = (-2)² + 1 = 5, and f(-2) = -(-2) + 3 = 5.
For x = 1: f(1) = 1² + 1 = 2, and f(1) = -1 + 3 = 2.
Therefore, the ordered pair solutions for the system of equations are (-2, 5) and (1, 2).
To know more about ordered pair visit:
https://brainly.com/question/30805001
#SPJ1
What is the result of subtracting 1 and 1/2 from the sum of 4 and 2/3 and 5 and 2/5
Answer:
the result of subtracting 1 and 1/2 from the sum of 4 and 2/3 and 5 and 2/5 is 257/30 = 8 and 39/40.
Step-by-step explanation:
To find the result of subtracting 1 and 1/2 from the sum of 4 and 2/3 and 5 and 2/5, we need to first add the two summands:
4 and 2/3 + 5 and 2/5
To add these mixed numbers, we first need to find a common denominator. The least common multiple of 3 and 5 is 15.
4 and 2/3 can be written as an improper fraction with denominator 3:
4 and 2/3 = 4 x 3/3 + 2/3 = 12/3 + 2/3 = 14/3
5 and 2/5 can be written as an improper fraction with denominator 5:
5 and 2/5 = 5 x 5/5 + 2/5 = 25/5 + 2/5 = 27/5
Now we can add the two fractions with a common denominator of 15:
14/3 + 27/5 = (14 x 5)/(3 x 5) + (27 x 3)/(5 x 3) = 70/15 + 81/15 = 151/15
So, the sum of 4 and 2/3 and 5 and 2/5 is 151/15.
Now we can subtract 1 and 1/2 from this sum:
151/15 - 1 1/2
To subtract mixed numbers, we first need to convert 1 and 1/2 to an improper fraction:
1 and 1/2 = 1 x 2/2 + 1/2 = 2/2 + 1/2 = 3/2
Now we can subtract the fractions with a common denominator of 15:
151/15 - 3/2 = (151 x 2)/(15 x 2) - (3 x 15)/(2 x 15) = 302/30 - 45/30 = 257/30
Therefore, the result of subtracting 1 and 1/2 from the sum of 4 and 2/3 and 5 and 2/5 is 257/30.
I will mark you brainiest!
Which quadrilateral has exactly one pair of parallel sides?
A) rhombus
B) Kite
C) trapezoid
D) parallelogram
I will mark you brainiest!
What is the area of a triangle with a base of 23 feet and a height of 6 feet?
A) 26 ft2
B) 58 ft2
C) 69 ft2
D) 138 ft2
Answer:
C) 69
Step-by-step explanation:
23 x 6 ÷ 2 =69feet2
ok!
The graph of f ( x ) = − 1 /2 ( 1 /2 ) ^x − 3 + 5 is shifted downwards 5 units, and then shifted left 3 units, stretched vertically by a factor of 4 , and then reflected about the x -axis. a . What is the equation of the new function, g ( x ) ? g ( x ) = b . What is the y -intercept? ( , ) c . What is the domain? d . What is the range?
Answer: a. To shift the graph of f(x) downward 5 units, we subtract 5 from the function: f(x) - 5. To shift it left 3 units, we replace x with x + 3: f(x + 3) - 5. To stretch it vertically by a factor of 4, we multiply the entire function by 4: 4[f(x + 3) - 5]. Finally, to reflect it about the x-axis, we take the negative of the function: -4[f(x + 3) - 5]. Therefore, the equation of the new function g(x) is:
g(x) = -4[1/2^(x+3) - 5]
b. To find the y-intercept, we set x = 0 in the equation of g(x):
g(0) = -4[1/2^(0+3) - 5] = -4[1/8 - 5] = -4[-39/8] = 195/2
Therefore, the y-intercept is (0, 195/2).
c. The domain of g(x) is all real numbers, since there are no restrictions on x.
d. To find the range of g(x), we first observe that the function is decreasing and asymptotic to y = -5 as x approaches infinity. This means that the range of g(x) is all real numbers less than or equal to -5.
Step-by-step explanation:
CAN SOMEONE HELP WITH THIS QUESTION?
Answers:
[tex]\text{Derivative: } \ \ \frac{dy}{dx} = \frac{-260x^{9} - 156x^{25}y}{6x^{26}+7y^6}\\\\ \text{Tangent line at (1,1) is: } \ y = -32x + 33\\\\[/tex]
==========================================================
Work Shown:
Let's determine the derivative dy/dx.
Part 1
[tex]26x^{10} + 6x^{26}y+y^7 = 33\\\\ \frac{d}{dx}(26x^{10} + 6x^{26}y+y^7) = \frac{d}{dx}(33)\\\\ \frac{d}{dx}(26x^{10}) + \frac{d}{dx}(6x^{26}y)+\frac{d}{dx}(y^7) = 0\\\\ 10*26x^{10-1} + \frac{d}{dx}(6x^{26})y+(6x^{26})*\frac{dy}{dx}+7y^6\frac{dy}{dx} = 0\\\\[/tex]
Part 2
[tex]260x^{9} + 26*6x^{26-1}y+6x^{26}*\frac{dy}{dx}+7y^6\frac{dy}{dx} = 0\\\\ 260x^{9} + 156x^{25}y+6x^{26}*\frac{dy}{dx}+7y^6\frac{dy}{dx} = 0\\\\ 260x^{9} + 156x^{25}y+(6x^{26}+7y^6)\frac{dy}{dx} = 0\\\\ (6x^{26}+7y^6)\frac{dy}{dx} = -260x^{9} - 156x^{25}y\\\\ \frac{dy}{dx} = \frac{-260x^{9} - 156x^{25}y}{6x^{26}+7y^6}\\\\[/tex]
There are many other possible ways to express the dy/dx expression.
GeoGebra and WolframAlpha are two useful tools to help verify the answer. Make sure you use the CAS mode in GeoGebra.
-------------------------------------------
Part 3
Now that we know dy/dx, we can determine the slope of the tangent at any point (x,y) on the implicit function curve.
Plug in x = 1 and y = 1.
[tex]\frac{dy}{dx} = \frac{-260x^{9} - 156x^{25}y}{6x^{26}+7y^6}\\\\ \frac{dy}{dx} = \frac{-260(1)^{9} - 156(1)^{25}(1)}{6(1)^{26}+7(1)^6}\\\\ \frac{dy}{dx} = \frac{-260(1) - 156(1)(1)}{6(1)+7(1)}\\\\ \frac{dy}{dx} = \frac{-260 - 156}{6+7}\\\\ \frac{dy}{dx} = \frac{-416}{13}\\\\ \frac{dy}{dx} = -32\\\\[/tex]
The slope of the tangent line at (1,1) is m = -32.
-------------------------------------------
Part 4
Apply the point-slope formula to determine the tangent line.
[tex]m = -32 = \text{ slope}\\(x_1,y_1) = (1,1) = \text{the point the tangent line goes through}[/tex]
So,
[tex]y - y_1 = m(x - x_1)\\\\y - 1 = -32(x - 1)\\\\y - 1 = -32x + 32\\\\y = -32x + 32 + 1\\\\y = -32x + 33\\\\[/tex]
Determine the equation of the hyperbola with foci (3, 11) and (3, -9), and co-
vertices (11, 1) and (-5,1).
The equation of the hyperbola with the given foci and vertices is (x - 3)² - (y - 1)² = 64
What is hyperbola?Hyperbola is a type of conic section, which is a curve formed by the intersection of a cone with a plane. It is similar to a circle, but with two separate halves that are mirror images of each other. These two halves are called branches, and the point where they intersect is the vertex. The hyperbola is characterized by its two foci, which are points that lie on the inside of the structure.
The equation of a hyperbola with foci (h, k) and (h, l) and vertices (m, n) and (p, n) is given by:
((x - h)² / (m - h)²) - ((y - n)² / (k - n)²) = 1
In this case, h = 3, k = 11, l = -9, m = 11, and n = 1. Plugging these values into the equation, we get:
((x - 3)² / (11 - 3)²) - ((y - 1)² / (11 - 1)²) = 1
Simplifying, we get:
(x - 3)² - (y - 1)² = 8²
Therefore, the equation of the hyperbola with the given foci and vertices is: (x - 3)² - (y - 1)² = 64.
To learn more about hyperbola
https://brainly.com/question/26250569
#SPJ1
Roberto bought a $340,000 house, paying 20% down, and financing the rest at 5% interest for 30 years. Her
monthly payments are $1460.15. How much will he really pay for her $340,000 house?
Roberto will pay a total of $
for the house.
Answer:
Roberto will pay a total of $525,654 for the house.
The box plots display measures from data collected when 20 people were asked about their wait time at a drive-thru restaurant window.
A horizontal line starting at 0, with tick marks every one-half unit up to 32. The line is labeled Wait Time In Minutes. The box extends from 10 to 14.5 on the number line. A line in the box is at 12.5. The lines outside the box end at 5 and 20. The graph is titled Fast Chicken.
A horizontal line starting at 0, with tick marks every one-half unit up to 32. The line is labeled Wait Time In Minutes. The box extends from 8.5 to 15.5 on the number line. A line in the box is at 12. The lines outside the box end at 3 and 27. The graph is titled Super Fast Food.
Which drive-thru is able to estimate their wait time more consistently, and why?
Fast Chicken, because it has a smaller IQR
Fast Chicken, because it has a smaller range
Super Fast Food, because it has a smaller IQR
Super Fast Food, because it has a smaller range
The range, which is the distance between the smallest and greatest linear equation values in the data, does not take into account the distribution of the data within that range.
What is a linear equation?In algebra, a linear equation refers to one with its form y=mx+b. B is the gradient, and m is the esta. The preceding clause is commonly referred to as a "linear function with two variables" so even though y and x are variables. Bivariate linear equations are linear equations with two variables. There are several linear equations: 2x - 3 = 0, 2y = 8, m + 1 = 0, x/2 = 3, x + y = 2, and 3x - y + z = 3. When an equation seems to have the structure y=mx+b, where m is the slope and b is the y-intercept, it is said to be linear. When a measurement seems to have the formula y=mx+b, both with m identifying its slope and b denoting the y-intercept, it is said to be linear.
Because it has a lower IQR, Fast Chicken can more consistently estimate their wait time (Interquartile Range). In this case, the IQR is the range of the middle 50% of the data, which is the distance between the first and third quartiles.
Super Fast Food, on the other hand, has a higher IQR, indicating that the data is more dispersed. This means that customers report a wider range of wait times, making it more difficult to estimate a consistent wait time. The range, which is the distance between the smallest and greatest values in the data, is not as useful for measuring consistency in this case because it does not take into account the distribution of the data within that range.
To know more about linear equation visit:
https://brainly.com/question/11897796
#SPJ1
A certain virus infects one in every 300 people. A test used to detect the virus in a person is positive
90% of the time if the person has the virus and 5% of the time if the person does not have the virus.
(This 5% result is called a false positive.) Let A be the event "the person is infected" and B be the
event "the person tests positive",
a) Find the probability that a person has the virus given that they have tested positive, i.e. find
P(A|B). Round your answer to the nearest tenth of a percent and do not include a percent sign.
P(A|B)=
%
b) Find the probability that a person does not have the virus given that they test negative, i.e. find
P(A'|B'). Round your answer to the nearest tenth of a percent and do not include a percent sign.
P(A'|B')=
Answer:
b i think let me know if im right
Step-by-step explanation:
Megan flies a drone in a circular path around an object that is 180 feet west and 180 feet north of her position. The drone's path takes it over a point that is 220 feet east and 230 feet south of her.
Find an equation for the drone's path. (Assume Megan is located at the origin, with the horizontal axis running east-west and the vertical axis running north-south)
The drone's path follows the equation __________
When the drone passes due north of Megan's position, it will be ___________ feet north of her (round your answer to three decimal places).
To find the equation of the drone's path, we can first find the coordinates of the center of the circle that the drone is flying around. We can do this by finding the midpoint between the two points the drone passes over:
Midpoint in the x-direction: (220 ft - 180 ft)/2 = 20 ft to the right of the origin.
Midpoint in the y-direction: (230 ft - 180 ft)/2 = 25 ft above the origin.
Therefore, the center of the circle is located at (20, 25) ft.
The radius of the circle can be found by calculating the distance between the center of the circle and either of the two points the drone passes over:
Radius: sqrt((20-(-180))^2 + (25-180)^2) = sqrt(40000 + 15625) = 205 ft (rounded to the nearest whole number)
So the equation for the drone's path is:
(x - 20)^2 + (y - 25)^2 = 205^2
To find how far north of Megan's position the drone is when it passes due north, we can substitute x = 0 into the equation:
(0 - 20)^2 + (y - 25)^2 = 205^2
400 + (y - 25)^2 = 42025
(y - 25)^2 = 41625
y - 25 = +/-sqrt(41625)
y = 25 +/- 204.06
So the drone is either 229.06 ft north or 22.94 ft south of Megan's position when it passes due north. Rounded to three decimal places, the answer is 229.06 ft north.
Given f(x) = 2x2 + 9x − 1 and g(x) = −x − 4, identify g(f(−3)).
Answer:
g(f(-3)) = 6.
Step-by-step explanation:
To obtain the value of f(-3), we must first determine g(f(-3)), which requires changing x in the expression for f(x) to -3:
f(x) = 2x^2 + 9x - 1
f(-3) = 2(-3)^2 + 9(-3) (-3) - 1\s= 2(9) (9) - 27 - 1\s= 18 - 27 - 1\s= -10
Knowing that f(-3) = -10 allows us to replace it in the expression for g(x):
g(x) = -x - 4
g(f(-3)) = g(-10) (-10)
Now, if we replace x in g(x) with -10, we obtain:
g(f(-3)) = g(-10) = -(-10) (-10) - 4 = 10 - 4 = 6
Hence, g(f(-3)) = 6.
Answer:
g(f(-3))=6
Step-by-step explanation:
To calculate g(f(-3)), we must first determine the value of f(-3), and then we must insert that value into g(x) to obtain the result.
By adding x = -3 to the formula for f(x), we may obtain f(-3).
f(-3) = 2(-3)
² + 9(-3) - 1
f(-3) = 2(9) - 27 - 1
f(-3) = 18 - 28
f(-3) = -10
Knowing that f(-3) = -10 allows us to replace it in the formula for g(x):
g(f(-3)) = g(-10) = -(-10) (-10) - 4 = 10 - 4 = 6
Hence, g(f(-3)) = 6.
A town's population is currently 20,000. If the population doubles every 34 years, what will
the population be 68 years from now?
Answer:
Here, given
present population = 20000
according to question,
population gets double every 34 years
i.e P = 20000 × 2
= 40000
now,
P = 40000
T = 68-34 = 34
ie, again p is double
so, P = 40000×2
= 80000
Hence, the population after 68 years from now is 80000
I will mark you brainiest!
The probability that it is Friday and that a student is absent is 0.03. Since there are 5 school days in a week, the probability that it is Friday is 0.2. What is the probability that a student is absent given that today is Friday? This is an example of:
A) conditional probability.
B) supplemental probability.
C) complementary probability.
D) standard deviation probability.
This problem involves finding the probability of an event (a student being absent) given that another event has already occurred (today is Friday). This is an example of conditional probability.
Therefore, the correct answer is A) conditional probability.
Answer:
A.
Step-by-step explanation:
This is a conditional probability. None of the other choices make sense, but the most distinct word is "given". This is a sure sign of a conditional probability, or Bayes Theorem. The condition A is that it is Friday. Event B is that a student is absent. P (A|B)
Please help me with this math problem!!
will the product of 2 numbers increase or decraese and by what percent if one of them is increased by 50% and the other one is decraesed by 50%
Answer: Let's assume the two original numbers to be x and y.
If one of them is increased by 50%, then the new value will be 1.5x, and if the other one is decreased by 50%, the new value will be 0.5y.
The product of the two new numbers will be:
1.5x * 0.5y = 0.75xy
So, the new product is 0.75 times the original product. This means the product of the two numbers has decreased by 25%.
To summarize:
If one number is increased by 50% and the other number is decreased by 50%, the product of the two numbers will decrease by 25%.
The new product is 0.75 times the original product.
Brainiest is appreciated (:
Multiply.
4 1/3 x 2 3/4
7 1/12
8 1/4
11 11/12
i dont know
Answer:
11 11/12
Step-by-step explanation:
You can change these "mixed numbers" (a big whole numbers and also a fraction) to "improper fractions" (a single fraction with a bigger number on top and a smaller number on the bottom)
4 1/3 × 2 3/4
see image
13/3 × 11/4
Multiply straight across, top×top and bottom×bottom.
see image.
Change back to a mixed number by dividing.
The multiplication of 4 1/3 x 2 3/4 is 11 11/12.
The correct option is C.
What is an improper fraction?A fraction that has the numerator higher than or equal to the denominator is said to be an improper fraction.
To multiply 4 1/3 and 2 3/4, we can first convert them to improper fractions:
4 1/3 = 13/3
2 3/4 = 11/4
Then we can multiply the fractions by multiplying the numerators and denominators separately:
(13/3) x (11/4) = (143/12)
Finally, we can convert the improper fraction back to a mixed number if desired:
143/12 = 11 11/12
Therefore, the answer is 11 11/12.
To learn more about the improper fraction;
brainly.com/question/21449807
#SPJ2
A deli has two platters of sandwiches. The first platter costs $29 and you get 2 ham sandwiches and 3 turkey sandwiches. The other platter costs $31 and you get 3 ham sandwiches and 2 turkey sandwiches. Let x represent the cost of each ham sandwich and y represent the cost of each turkey sandwich. What is the system of linear equations for the given scenario? What is the cost of each sandwich?
Solution is in da attachment mate!! :D
Step-by-step explanation:
that is a college question ?
x = cost of a ham sandwich
y = cost of a turkey sandwich
2x + 3y = 29
3x + 2y = 31
let's multiply the first equation by 3, abd the second equating by -2, and then we add them :
6x + 9y = 87
-6x - 4y = -62
------------------------
0 5y = 25
y = 25/5 = $5
let's use the original first equation to get x (but we could use also the second equation, it does not matter).
2x + 3×5 = 29
2x + 15 = 29
2x = 14
x = $7
each ham sandwich costs $7.
each turkey sandwich costs $5.
8.
A right triangle shaped sail has an area of 150 square
meters. The base of the sail is 10 less than twice the
ight. Find the base and the height.
Answer:
Base=20m height= 15m
Step-by-step explanation:
The area of a triangle is given by:
[tex]A=\frac{bh}{2}[/tex]
since base is 10 less than twice the height b=2h-10
plugin in those values and knowing area is 150
[tex]150=[/tex][tex]\frac{h(2h-10)}{2}[/tex]
then solve for h
[tex]300=2h^2-10h[/tex] this is quadratic equation
[tex]h^2-5h-150=0[/tex]
factorizing (notice you can also use quadratic equation)
[tex](h-15)(h+10)=0[/tex]
which positive solution (height cant be negative) is h=15
then the base is b=2(15)-10=20
Answer:
The height is 15 meters and the base is 20 meters.
Step-by-step explanation:
Let's use the formula for the area of a right triangle:
A = (1/2)bh
Where A is the area, b is the base, and h is the height.
We're given that the area is 150 square meters, so we can substitute that in:
150 = (1/2)bh
Next, we're told that the base is 10 less than twice the height. In other words,
b = 2h - 10
We can substitute this expression for b into the equation for the area:
150 = (1/2)(2h - 10)h
Simplifying:
300 = (2h - 10)h
300 = 2h^2 - 10h
2h^2 - 10h - 300 = 0
Dividing both sides by 2:
h^2 - 5h - 150 = 0
Now we can solve for h using the quadratic formula:
h = (-(-5) ± sqrt((-5)^2 - 4(1)(-150))) / 2(1)
h = (5 ± sqrt(625)) / 2
h = (5 ± 25) / 2
We can ignore the negative root (which gives us a negative height), so:
h = 15
Now we can use the expression for b in terms of h to find the base:
b = 2h - 10
b = 2(15) - 10
b = 20
Therefore, the height is 15 meters and the base is 20 meters.
2 ^3 • 2 ^4 is equal to _____.
Answer:
2^7 or 128
Step-by-step explanation:
When we multiply two powers with the same base, we add their exponents. In this case, the base is 2 and the exponents are 3 and 4.
So, 2^3 • 2^4 can be simplified as:
2^3 • 2^4 = 2^(3+4) = 2^7
Therefore, 2^3 • 2^4 is equal to 128.
Answer:128
Step-by-step explanation:
i assume that by ^ you meant power,
2^3=2*2*2=8
2^4=2*2*2*2=16
8*16=128
A driver was fined for speeding in 100km/h zone driving 14km in 7m
Calculate the average speed of the car
Answer:
120km/h
Step-by-step explanation:
Distance=14km
Time =7m
A driver was fined for speeding in 100km/h
∴ we convert time into hours
Time =(7/60)h
Average speed of the car = total distance ÷total time
=14km×60/7h=120km/h which is greater than
100km/h
In ΔQRS, q = 3.9 cm, � m∠S=10° and � m∠Q=74°. Find the length of s, to the nearest 10th of a centimeter.
S thus measures around 2.77 centimetres in length.
What is the purpose of law of sines?The law of sines is frequently used to find the elusive side or angle of a triangle. This law can be used if precise triangle measurement combinations are given. ASA The objective is to identify the unknown side given two angles and an included side.
The Law of Sines can be used to determine the length of side s: s/sin(mS) = q/sin(mQ).
replacing the specified values:
s/sin(10°) = 3.9/sin(74°)
s ≈ sin(10°) × 3.9 ÷ sin(74°)
s ≈ 0.684 × 3.9 ÷ 0.961
s ≈ 2.77 cm (rounded to the nearest 10th)
S thus measures around 2.77 centimetres in length.
To know more about Law of Sines visit:-
https://brainly.com/question/17289163
#SPJ1
1. Each letter in PENNSYLVANIA is written on a separate piece of paper and put into a
bag. You randomly choose a piece of paper from the bag.
a. What is the probability that you choose an N?
b. What is the probability that you choose an A?
c. What is the probability that you choose an E?
Answer:
A maybe
Step-by-step explanation: sorry if wrong
a. There are three N's in PENNSYLVANIA. The probability of choosing an N can be calculated as follows:
Probability of choosing an N = (Number of N's in the word) / (Total number of letters in the word)
Probability of choosing an N = 3 / 12
Probability of choosing an N = 1 / 4
Therefore, the probability of choosing an N is 1/4.
b. There are two A's in PENNSYLVANIA. The probability of choosing an A can be calculated as follows:
Probability of choosing an A = (Number of A's in the word) / (Total number of letters in the word)
Probability of choosing an A = 2 / 12
Probability of choosing an A = 1 / 6
Therefore, the probability of choosing an A is 1/6.
c. There is only one E in PENNSYLVANIA. The probability of choosing an E can be calculated as follows:
Probability of choosing an E = (Number of E's in the word) / (Total number of letters in the word)
Probability of choosing an E = 1 / 12
Therefore, the probability of choosing an E is 1/12.
What is In 5 + ln 7 + 2ln 6
Answer: The answer to this equation is In (252) + 5.
Step-by-step explanation:
To solve this equation, you will need to first apply the logarithm power identity.
Now evaluate the exponent.
5 + In (7) + In (6^2)
5 + In (7) + In (36)
Apply the logarithm power identity again to the rest of this equation.
5 + In (7) + In (36)
5 + In (7 x 36)
After that, simplify the expression.
-Multiply the numbers & rearrange the terms
5 + In(7 x 36)
In(252) + 5
Therefore, your answer for this equation would be In(252) + 5.
Hope this helps Tekayla!Alyssa Wagner
Middle School Srudent
Without using tables Find the value of 0.45*0.91÷0.0117
the value of 0.45 × 0.91 ÷ 0.0117 is 35.
Why it is and what is PEMDAS?
To find the value of 0.45 * 0.91 ÷ 0.0117, we can use the order of operations, which is also known as PEMDAS (Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction).
First, we need to perform the multiplication of 0.45 and 0.91:
0.45 ×0.91 = 0.4095
Then, we need to divide the result by 0.0117:
0.4095 ÷ 0.0117 = 35
Therefore, the value of 0.45 * 0.91 ÷ 0.0117 is 35.
PEMDAS is a mnemonic used to remember the order of operations in arithmetic and algebraic expressions. It stands for Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction.
The order of operations is as follows:
Parentheses: Perform operations within parentheses first, working from the innermost set of parentheses to the outermost.
Exponents: Perform any calculations involving exponents, such as raising a number to a power or taking the square root.
Multiplication and Division: Perform multiplication and division in the order that they appear from left to right.
Addition and Subtraction: Perform addition and subtraction in the order that they appear from left to right.
To know more about PEMDAS visit:
https://brainly.com/question/29172059
#SPJ9