2. The following segment of carotid artery has an inlet velocity of 50 cm/s (diameter of 15 mm). The outlet has a diameter of 11mm. The pressure at inlet is 110 mm of Hg and pressure at outlet is 95 mm of Hg. Determine the forces required to keep the artery in place (consider steady state, ignore the mass of blood in the vessel and the mass of blood vessel; blood density is 1050 kg/m3)

Answers

Answer 1

This question is incomplete, the missing diagram is uploaded along this answer below.

Answer:

the forces required to keep the artery in place is 1.65 N

Explanation:

Given the data in the question;

Inlet velocity V₁ = 50 cm/s = 0.5 m/s

diameter d₁ = 15 mm = 0.015 m

radius r₁ = 0.0075 m

diameter d₂ = 11 mm = 0.011 m

radius r₂ = 0.0055 m

A₁ = πr² = 3.14( 0.0075 )² =  1.76625 × 10⁻⁴ m²

A₂ = πr² = 3.14( 0.0055 )² =  9.4985 × 10⁻⁵ m²

pressure at inlet P₁ = 110 mm of Hg = 14665.5 pascal

pressure at outlet P₂ = 95 mm of Hg = 12665.6 pascal

Inlet volumetric flowrate = A₁V₁ = 1.76625 × 10⁻⁴ × 0.5 = 8.83125 × 10⁻⁵ m³/s

given that; blood density is 1050 kg/m³

mass going in m' = 8.83125 × 10⁻⁵ m³/s × 1050 kg/m³ = 0.092728 kg/s

Now, using continuity equation

A₁V₁ = A₂V₂

V₂ = A₁V₁ / A₂ = (d₁/d₂)² × V₁

we substitute

V₂ =  (0.015 / 0.011 )² × 0.5

V₂ = 0.92975 m/s

from the diagram, force balance in x-direction;

0 - P₂A₂ × cos(60°) + Rₓ = m'( V₂cos(60°) - 0 )    

so we substitute in our values

0 - (12665.6 × 9.4985 × 10⁻⁵)  × cos(60°) + Rₓ = 0.092728( 0.92975 cos(60°) - 0 )    

0 - 0.6014925 + Rₓ =  0.043106929 - 0

Rₓ = 0.043106929 + 0.6014925

Rₓ = 0.6446 N

Also, we do the same force balance in y-direction;

P₁A₁ - P₂A₂ × sin(60°) + R[tex]_y[/tex] = m'( V₂sin(60°) - 0.5 )  

we substitute

⇒ (14665.5 × 1.76625 × 10⁻⁴) - (12665.6 × 9.4985 × 10⁻⁵) × sin(60°) + R[tex]_y[/tex] = 0.092728( 0.92975sin(60°) - 0.5 )

⇒ 1.5484 + R[tex]_y[/tex] = 0.092728( 0.305187 )

⇒ 1.5484 + R[tex]_y[/tex] = 0.028299    

R[tex]_y[/tex] = 0.028299 - 1.5484

R[tex]_y[/tex] = -1.52 N

Hence reaction force required will be;

R = √( Rₓ² + R[tex]_y[/tex]² )

we substitute

R = √( (0.6446)² + (-1.52)² )

R = √( 0.41550916 + 2.3104 )

R = √( 2.72590916 )

R = 1.65 N

Therefore, the forces required to keep the artery in place is 1.65 N

 

2. The Following Segment Of Carotid Artery Has An Inlet Velocity Of 50 Cm/s (diameter Of 15 Mm). The

Related Questions

An interest rate of norminal 12% per year , compounded weekly is

Answers

Answer: It is  a nominal rate per year

A long cylindrical black surface fuel rod of diameter 25 mm is shielded by a surface concentric to the rod. The shield has diameter of 50 mm, and its outer surface is exposed to surrounding air at 300 K with a convection heat transfer coefficient of 15 W/m2.K. Inner and outer surfaces of the shield have an emissivity of 0.05, and the gap between the fuel rod and the shield is a vacuum. If the shield maintains a uniform temperature of 335 K, determine the surface temperature of the fuel rod

Answers

Answer:

surface temp of fuel rod = 678.85 K

Explanation:

Given data :

D1 = 25 mm

D2 = 50 mm

T2 = 335 k

T∞ = 300 k

hconv = 0.15 w/m^2.k

ε2 = 0.05

ε1 = 1

Determine energy at Q23

Q23 = Qconv + Qrad

attached below is the detailed solution

Insert given values into equation 1 attached below to obtain the surface temperature of the fuel rod ( T1 )

During peak systole, the heart delivers to the aorta a blood flow that has a velocity of 100cm/sec at a pressure of 120mmHg. The aortic root has a mean diameter of 25mm. Determine the force (Rz)acting on the aortic arch if the conditions at the outlet are a pressure of 110mmHg and a diameter of 21mm. The density of blood is 1050 kg/m3. Assume that aorta is rigid non-deformable and blood is incompressible and steady state. Ignore the weight of blood vessel and the weight of blood inside the blood vessel (i.e. body force is zero).

Answers

Solution :

Given :

Velocity, [tex]$V_1 =100$[/tex] cm/sec

Pressure,  [tex]$P_1 = 120 $[/tex] mm Hg

Then, [tex]$P_1 = \rho_1 g h$[/tex]

[tex]$P_1 = 0.120 \times 13.6 \times 1000 \times 9.81$[/tex]

    = 16.0092 kPa

[tex]$P_2 = 110 $[/tex] mm Hg

[tex]$P_2 = \rho_2 g h$[/tex]

    [tex]$= 0.110 \times 13.6 \times 1000 \times 9.81$[/tex]

    = 14.675 kPa

Then blood is incompressible,

[tex]$A_1v_1=A_2v_2$[/tex]

[tex]$\frac{\pi}{4}(25)^2\times 100=\frac{\pi}{4}(21)^2\times v_2$[/tex]

[tex]$v_2=141.72 \ cm/s$[/tex]

Then the linear momentum conservation fluid :

(Blood ) in y - direction

[tex]$P_1A_1+ P_2A_2-F_g = m_2v_2-m_1v_1$[/tex]

[tex]$m_1=m_2=P_1A_1v_1$[/tex]

              [tex]$=1.50 \times \frac{\pi}{4}\times (0.025)^2 \times 1.00$[/tex]

              = 0.515 kg/ sec

Then the linear conservation of momentum of blood in y direction.

[tex]$P_1A_1+ P_2A_2-F_g = m_2v_2-m_1v_1$[/tex]

[tex]$16.0092 \times 1000 \times \frac{\pi}{4} \times (0.025)^2+14.675 \times 1000\times \frac{\pi}{4}\times (0.021)^2$[/tex]

[tex]$-F_y=0.515(-1.4172-1)$[/tex]

7.858+5.0828- Fy = 0.515(-2.4172)

Fy = 14.1856 N

A hypothetical metal alloy has a grain diameter of 1.7 102 mm. After a heat treatment at 450C for 250 min, the grain diameter has increased to 4.5 102 mm. Compute the time required for a specimen of this same material (i.e., d 0 1.7 102 mm) to achieve a grain diameter of 8.7 102 mm while being heated at 450C. Assume the n grain diameter exponent has a value of 2.1.

Answers

Answer:

the required time for the specimen is  1109.4 min

Explanation:

Given that;

diameter of metal alloy d₀ = 1.7 × 10² mm

Temperature of heat treatment T = 450°C = 450 + 273 = 723 K

Time period of heat treatment t = 250 min

Increased grain diameter 4.5 × 10² mm

grain diameter exponent n = 2.1

First we calculate the time independent constant K

dⁿ - d₀ⁿ = Kt

K = (dⁿ - d₀ⁿ) / t

we substitute

K = (( 4.5 × 10² )²'¹ - ( 1.7 × 10² )²'¹) / 250

K = (373032.163378 - 48299.511117) / 250

K = 1298.9306 mm²/min

Now, we calculate the time required for the specimen to achieve the given grain diameter ( 8.7 × 10² mm )

dⁿ - d₀ⁿ = Kt

t = (dⁿ - d₀ⁿ) / K

t = (( 8.7 × 10² )²'¹ - ( 1.7 × 10² )²'¹) / 1298.9306

t = ( 1489328.26061158 - 48299.511117) / 1298.9306

t = 1441028.74949458 / 1298.9306

t = 1109.4 min

Therefore, the required time for the specimen is  1109.4 min

Ammonia enters the expansion valve of a refrigeration system at a pressure of 10 bar and a temperature of 20oC and exits at 3.0 bar. The refrigerant undergoes a throttling process. Determine the temperature, in oC, and the quality of the refrigerant at the exit of the expansion valve. Step 1 Determine the temperature of the refrigerant at the exit, in oC.

Answers

Answer:

[tex]T_{2}[/tex] = -9.24 °C

x = 0.1057

Explanation:

The tables used in this answer and explanation come from Fundamentals of Engineering Thermodynamics 9th Edition.

Using Table A-14: Properties of Saturated Ammonia (Liquid-Vapor): Pressure Table and the given [tex]P_{2}[/tex], [tex]T_{2}[/tex] can be determined by finding the temperature that corresponds with [tex]P_{2}[/tex] on the table. In this case, [tex]T_{2}[/tex] = -9.24 °C.

The quality of the refrigerant can be determined by using data from the same table and [tex]h_{2} =274.26[/tex] kJ/kg.

Necessary data (P=3bar):

[tex]h_{f}=137.42[/tex] kJ/kg

[tex]h_{g}=1431.47[/tex] kJ/kg

The formula to calculate quality is [tex]h_{2} =h_{f}+x(h_{g}-h_{f})[/tex].

Rearranging for x:

[tex]x=\frac{h_{2}-h_{f} }{h_{g}-h_{f} }= \frac{274.26-137.42}{1431.47-137.42}=0.1057[/tex]

Question 5
Not yet answered
Marked out of 1.00
P Flag question
Which one of the following torque is produced by the spring in PMMC instrument?
O a. Damping
O b. Forcing
OC. Deflection
O d. Controlling

Answers

Answer:

A

Explanation:

Actually I don't know anything about American history, I chose it because South Africa is not in the least

It has to be c my good chap

A high-voltage discharge tube is often used to study atomic spectra. The tubes require a large voltage across their terminals to operate. To get the large voltage, a step-up transformer is connected to a line voltage (120 V rms) and is designed to provide 5000 V rms to the discharge tube and to dissipate 75.0 W. (a) What is the ratio of the number of turns in the secondary to the number of turns in the primary

Answers

Answer:

a. 41

b. i. 15 mA ii. 625 mA

c. 192 Ω

Explanation:

Here is the complete question

A high-voltage discharge tube is often used to study atomic spectra. The tubes require a large voltage across their terminals to operate. To get the large voltage, a step-up transformer is connected to a line voltage (120 V rms) and is designed to provide 5000 V (rms) to the discharge tube and to dissipate 75.0 W. (a) What is the ratio of the number of turns in the secondary to the number of turns in the primary? (b) What are the rms currents in the primary and secondary coils of the transformer? (c) What is the effective resistance that the 120-V source is subjected to?

Solution

(a) What is the ratio of the number of turns in the secondary to the number of turns in the primary?

For a transformer N₂/N₁ = V₂/V₁

where N₁ = number of turns of primary coil, N₂ =number of coil of secondary, V₁ = voltage of primary coil = 120 V and V₂ = voltage of secondary coil = 5000 V

So,  N₂/N₁ = V₂/V₁

N₂/N₁ = 5000 V/120 V = 41.6 ≅ 41 (rounded down because we cannot have a decimal number of turns)

(b) What are the rms currents in the primary and secondary coils of the transformer?

i. The rms current in the secondary

We need to find the current in the secondary from

P = IV where P = power dissipated in secondary coil = 75.0 W, I =rms current in secondary coil and V = rms voltage in secondary coil = 5000 V

P = IV

I = P/V = 75.0 W/5000 V = 15 × 10⁻³ A = 15 mA

ii. The rms current in the primary

Since N₂/N₁ = V₂/V₁ = I₁/I₂

where N₁ = number of turns of primary coil, N₂ =number of coil of secondary, V₁ = voltage of primary coil = 120 V, V₂ = voltage of secondary coil = 5000 V, I₁ = current in primary coil and I₂ = current in secondary coil = 15 mA

So, V₂/V₁ = I₁/I₂

V₂I₂/V₁ = I₁

I₁ = V₂I₂/V₁

= P/V₁

= 75.0 W/120 V

= 0.625 A

= 625 mA

(c) What is the effective resistance that the 120-V source is subjected to?

Using V = IR where V =  voltage = 120 V, I = current in primary = 0.625 A and R = resistance of primary coil

R = V/I

= 120 V/0.625 A

= 192 V/A

= 192 Ω

When framing a wall, temporary bracing is
used to support, plumb, and straighten the wall.
used to support, level, and straighten the wall.
used to square the wall before it is erected.
removed before the next level is constructed.

Answers

Yes! That is true!
When framing a wall, temporary bracing is
used to support, plumb, and straighten the wall.
used to support, level, and straighten the wall.
used to square the wall before it is erected.
removed before the next level is constructed.

what technology has been used for building super structures​

Answers

Answer: Advanced technologixal machines

Explanation: such as big cranes, multiple workers helping creat said structure, and big bull dozers

Explain the process of energy conversion by describing how energy was converted from the windmill design brief. Discuss the different forms of energy and what technology was used to convert the energy from one form to another.

Answers

Answer:

Wind energy is converted to Mechanical energy  which is then converted in to  electrical energy

Explanation:

In a wind mill the following energy conversions take place

a) Wind energy is converted into Mechanical energy (rotation of rotor blades)

b) Mechanical energy is converted into electrical energy (by using electric motor)

This electrical energy is then used for transmission through electric lines.

A 03-series cylindrical roller bearing with inner ring rotating is required for an application in which the life requirement is 40 kh at 520 rev/min. The application factor is 1.4. The radial load is 2600 lbf. The reliability goal is 0.90.

Required:
Determine the C10 value in kN for this application and design factor.

Answers

Answer:

[tex]\mathbf{C_{10} = 137.611 \ kN}[/tex]

Explanation:

From the information given:

Life requirement = 40 kh = 40 [tex]40 \times 10^{3} \ h[/tex]

Speed (N) = 520 rev/min

Reliability goal [tex](R_D)[/tex] = 0.9

Radial load [tex](F_D)[/tex] = 2600 lbf

To find C10 value by using the formula:

[tex]C_{10}=F_D\times \pmatrix \dfrac{x_D}{x_o +(\theta-x_o) \bigg(In(\dfrac{1}{R_o}) \bigg)^{\dfrac{1}{b}}} \end {pmatrix} ^{^{^{\dfrac{1}{a}}[/tex]

where;

[tex]x_D = \text{bearing life in million revolution} \\ \\ x_D = \dfrac{60 \times L_h \times N}{10^6} \\ \\ x_D = \dfrac{60 \times 40 \times 10^3 \times 520}{10^6}\\ \\ x_D = 1248 \text{ million revolutions}[/tex]

[tex]\text{The cyclindrical roller bearing (a)}= \dfrac{10}{3}[/tex]

The Weibull parameters include:

[tex]x_o = 0.02[/tex]

[tex](\theta - x_o) = 4.439[/tex]

[tex]b= 1.483[/tex]

Using the above formula:

[tex]C_{10}=1.4\times 2600 \times \pmatrix \dfrac{1248}{0.02+(4.439) \bigg(In(\dfrac{1}{0.9}) \bigg)^{\dfrac{1}{1.483}}} \end {pmatrix} ^{^{^{\dfrac{1}{\dfrac{10}{3}}}[/tex]

[tex]C_{10}=3640 \times \pmatrix \dfrac{1248}{0.02+(4.439) \bigg(In(\dfrac{1}{0.9}) \bigg)^{\dfrac{1}{1.483}}} \end {pmatrix} ^{^{^{\dfrac{3}{10}}[/tex]

[tex]C_{10} = 3640 \times \bigg[\dfrac{1248}{0.9933481582}\bigg]^{\dfrac{3}{10}}[/tex]

[tex]C_{10} = 30962.449 \ lbf[/tex]

Recall that:

1 kN = 225 lbf

[tex]C_{10} = \dfrac{30962.449}{225}[/tex]

[tex]\mathbf{C_{10} = 137.611 \ kN}[/tex]

Diseña un mecanismo multiplicador con un engranaje motriz cuya relación de transmisión sea de 0.5 y que transmita el movimiento entre ejes distantes. Inserta una captura de pantalla indicando la relación entre los diámetros y la velocidad de giro del engranaje motriz.

Answers

ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH, ENGLISH,.

A non-cold-worked 1040 steel cylindrical rod has an initial length of 100 mm and initial diameter of 7.50 mm. is to be deformed using a tensile load of 18,000 N. It must not experience either plastic deformation or a diameter reduction of more than 1.5 x 10-2 mm. Would the 1040 steel be a possible candidate for this application

Answers

Answer:

1040 steel will be a possible candidate for this application since : Yield strength > stress

Explanation:

The 1040 steel would  be a possible candidate for this application because the stress experienced by the load is Lesser than its Yield strength

Given that 1040 steel has the following parameter values

Modulus of elasticity ( GPa )  = 205

Yield strength ( Mpa ) =  450

Poisson's ratio = 0.27

limitation of = 1.5 x 10^-2 mm.

stress = Tensile load / area of steel

          = 18,000 N / 4.418 * 10^-5 m^2

          = 407 .424 Mpa

Consider a mixing tank with a volume of 4 m3. Glycerinflows into a mixing tank through pipe A with an average velocity of 6 m/s, and oil flow into the tank through pipe B at 3 m/s. Determine the average density of the mixture that flows out through the pipe at C. Assumeuniform mixing of the fluids occurs within the 4 m3 tank.

Answers

This question is incomplete, the complete question as well as the missing diagram is uploaded below;

Consider a mixing tank with a volume of 4 m³. Glycerin flows into a mixing tank through pipe A with an average velocity of 6 m/s, and oil flow into the tank through pipe B at 3 m/s. Determine the average density of the mixture that flows out through the pipe at C. Assume uniform mixing of the fluids occurs within the 4 m³ tank.

Take [tex]p_o[/tex] = 880 kg/m³ and [tex]p_{glycerol[/tex] = 1260 kg/m³    

 

Answer:

the average density of the mixture that flows out through the pipe at C is 1167.8 kg/m³  

Explanation:

Given that;

Inlet velocity of Glycerin, [tex]V_A[/tex] = 6 m/s

Inlet velocity of oil, [tex]V_B[/tex] = 3 m/s  

Density velocity of glycerin, [tex]p_{glycerol[/tex] = 1260 kg/m³

Density velocity of glycerin, Take [tex]p_o[/tex] = 880 kg/m³

Volume of tank V = 4 m

from the diagram;

Diameter of glycerin pipe, [tex]d_A[/tex] = 100 mm = 0.1 m

Diameter of oil pipe, [tex]d_B[/tex] = 80 mm = 0.08 m

Diameter of outlet pipe [tex]d_C[/tex] = 120 mm = 0.12 m

Now, Appling the discharge flow equation;

[tex]Q_A + Q_B = Q_C[/tex]

[tex]A_Av_A + A_Bv_B = A_Cv_C[/tex]

π/4 × ([tex]d_A[/tex])²[tex]v_A[/tex] + π/4 × ([tex]d_B[/tex] )²[tex]v_B[/tex] = π/4 × ([tex]d_C[/tex])²[tex]v_C[/tex]

we substitute

π/4 × (0.1 )² × 6 + π/4 × (0.08 )² × 3 = π/4 × (0.12)²[tex]v_C[/tex]

0.04712 + 0.0150796 = 0.0113097[tex]v_C[/tex]

0.0621996 = 0.0113097[tex]v_C[/tex]

[tex]v_C[/tex] = 0.0621996 / 0.0113097

[tex]v_C[/tex]  = 5.5 m/s

Now we apply the mass flow rate condition

[tex]m_A + m_B = m_C[/tex]

[tex]p_{glycerin}A_Av_A + p_0A_Bv_B = pA_Cv_C[/tex]  

so we substitute

1260 × π/4 × (0.1 )² × 6 + 880 × π/4 × (0.08 )² × 3 = p × π/4 × (0.12)² × 5.5

1260 × 0.04712 + 880 × 0.0150796 = p × 0.06220335

59.3712 + 13.27 = 0.06220335p  

72.6412 = 0.06220335p    

p = 72.6412 / 0.06220335

p =  1167.8 kg/m³  

Therefore, the average density of the mixture that flows out through the pipe at C is 1167.8 kg/m³  

A 20 mm diameter rod made of ductile material with a yield strength of 350 MN/m2 is subjected to a torque of 100 N.m, and a bending moment of 150 N.m. An axial tensile force is then gradually applied. What is the value of the axial force when yielding of the rod occurs using: a. The maximum-shear-stress theory b. The maximum-distortional-energy theory.

Answers

Answer:

a) 42.422 KN

b) 44.356 KN

Explanation:

Given data :

Diameter = 20 mm

yield strength = 350 MN/m^2

Torque ( T )  = 100 N.m

Bending moment = 150 N.m

Determine the value of the applied axial tensile force when yielding of rod occurs

first we will calculate the shear stress and normal stress

shear stress ( г ) = Tr / J = [( 100 * 10^3)  * 10 ]  /  [tex]\pi /32[/tex] * ( 20)^4  

                                       = 63.662 MPa

Normal stress(  Гb + Гa )  = MY/ I  +  P/A

= [( 150 * 10^3)  * 10 ]  /  [tex]\pi /32[/tex] * ( 20)^4   + 4P / [tex]\pi * 20^2[/tex]

= 190.9859 + 4P / [tex]\pi * 20^2[/tex]  MPa

a) Using MSS theory

value of axial force = 42.422 KN

solution attached below

b) Using MDE  theory

value of axial force = 44.356 KN

solution attached below

Two technicians are explaining what exhaust gas emissions tell you about engine operation. Technician A says that the higher the level of CO2 in the exhaust stream, the more efficiently the engine is operating. Technician B says that CO2 levels of 20 to 25 percent are considered acceptable. Who is correct?
A. Both Technicians A and B
B. Neither Technicians A and B
C. Technician A
D. Technician B

Answers

B.neither technicians A and B

Technicians A is correct in the given scenario. The correct option is C.

What is exhaust gas?

Exhaust gas is a byproduct of combustion that exits the tailpipe of an internal combustion engine.

It consists of a gas mixture that includes carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC), and particulate matter (PM).

Technician B is mistaken. CO2 levels in the exhaust should be less than 15%, preferably between 13% and 14.5% for petrol engines and 11% to 13% for diesel engines.

High CO2 levels can actually indicate inefficient engine operation, as it means that not all of the fuel in the engine is being burned and is being wasted as exhaust.

Thus, C is the correct answer. A technician is correct.

For more details regarding exhaust gas, visit:

https://brainly.com/question/11779787

#SPJ2

An electromagnet is formed when a coil of wire wrapped around an iron core is hooked up to a dry cell battery. The current traveling through the wire sets up a magnetic field around the wire. TRUE or FALSE

Answers

Answer:

true

Explanation:

true An electromagnet is formed when a coil of wire wrapped around an iron core is hooked up to a dry cell battery. The current traveling through the wire sets up a magnetic field around the wire. TRUE or FALSE

What is being shown in the above Figure?
A. Camshaft is being aligned
B. Engine is being timed
C. Camshaft is being removed
D. Camshaft gear backlash is being checked

Answers

The answer is d.Camshaft gear backlash is being checked

23 PM Sat Apr 10
42%
AA
A f2.app.edmentum.com
+
Previous
5
Next
Post Test: Manufacturing Busii
Submit Test
Reader Tools
0 Info
+ Save & Exit
Garth is a recruitment executive in a firm and knows the eight stages of recruitment. What activity or incident should Garth carry out or
expect to occur at each stage of the process?
place an advertisement in a job portal
vacancyWhat activity should Garth

Answers

Uhm I’m not understanding the question

Here are the eight stages of the recruitment process and what Garth might expect to occur or carry out at each stage in the explanation part.

What is recruitment?

The process of identifying, attracting, and selecting qualified candidates for a job opening in an organisation is known as recruitment.

Here are the eight stages of the recruitment process, as well as what Garth might expect to happen or do at each stage:

Identifying the Need for the Position: Garth should review the company's staffing needs and determine if a position needs to be filled. Once a decision has been made, he should create a job description and identify the position's requirements.

Garth should create a recruitment plan that includes a timeline for the recruitment process, a list of recruitment sources, and an advertising strategy.

Garth should actively seek qualified candidates through various recruitment channels such as job boards, social media, referrals, and recruiting events.

Screening Candidates: Garth should go over resumes, cover letters, and other application materials to see if candidates meet the job requirements.

Garth should conduct interviews with the most qualified candidates to assess their skills, experience, and fit for the position.

Garth should review all of the information gathered during the recruitment process and choose the best candidate for the position.

Garth should ensure that the new hire has all of the necessary information and resources to succeed in their new role.

Evaluating the Recruitment Process: Garth should go over the recruitment process to see where he can improve.

Thus, these are the stages of recruitment.

For more details regarding recruitment, visit:

https://brainly.com/question/30086296

#SPJ7

a) The initial moisture content of a food product is 77% (wet basis), and the critical moisture content is 30% (wet basis). If the constant drying rate in a fluidized bed dryer is 0.1 kg water removed/m2-s, determine the time required for the product to begin the falling-rate drying period. The product has a cube shape with 5-cm sides; the initial product density is 950 kg/m3.

Answers

Answer:

≈ 53 seconds

Explanation:

calculate Time required for the product to begin the falling-rate drying period

Initial moisture content =  0.77 kg water /kg of product

                                               = 3.35 kg water /kg solids

Critical moisture content = 0.3 kg water / kg product

                                         = 0.43 kg water / kg solids

∴ amount of water to be removed = 3.35 - 0.43 = 2.95kg water /kg solids

next: calculate surface are a of product during drying

= (0.05 * 0.05 ) * 6

= 0.015 m^3

Drying rate = 0.1 kg water m^2.s^-1 * 0.015 m^3 = 1.5 * 10^-3 kg water s^-1

applying product density

initial product mass = 0.11875 * 0.23 = 0.0273kg solid

hence total amount of water to removed = 2.92 * 0.0273 = 0.07972 kg

therefore : Time required for the product to begin the falling-rate drying period

= 0.07972 / 1.5 * 10^-3

= 53 seconds

A pump draws water from a reservoir through a 150 mm diameter suction pipe and delivers it to a 75 mm diameter discharge pipe.
a. The end of the pipe is 2 m below the free surface of the reservoir.
b. The pressure gage on the discharge pipe (located 2 m above the reservoir surface) reads 170 kPa.
c. The average velocity in the discharge pipe is 3 m/s.
Assume no head loss in the suction or discharge pipe. Determine the power added to the fluid by the pump.

Answers

Answer:

3.42 kW

Explanation:

calculate the mass flow rate of the water = density * velocity * area

= 13.3 kg/s

where Area of pipe  =  π/4 * d^2 =  π/4 * 0.075^2 m  =  0.0044 m^2

given that : 1 Kg = 1 N s^2 / m,      1 Watt = 1 N m /s

calculate : power produced by discharge pipe

Discharge Pressure x Volume flow =

Pressure  * Area * velocity

P  * 0.0044 * 3  = 2253 N m /s

calculate: power due the mass of water  

mass of water * 2  = 258 N m/s

where:  mass of water = density * volume

Calculate power produced due the velocity of exiting water

= m * V2/2 = 59.4 N m/s

hence The  power added to fluid = 2253 watts

power added to the fluid by pump = 2253 / 0.75 = 3.42 kW

Calculate the rms value.

Answers

Answer:

  (√6)/3 ≈ 0.8165

Explanation:

The RMS value is the square root of the mean of the square of the waveform over one period. It will be ...

  [tex]\displaystyle\sqrt{\frac{1}{T}\left(\int_{\frac{T}{4}}^{\frac{3T}{4}}{1^2}\,dt+\int_{\frac{3t}{4}}^{\frac{5t}{4}}{(\frac{-4}{T}}(t-T))^2\,dt\right)}=\sqrt{\frac{1}{T}\left(\frac{T}{2}+\left.\frac{16}{T^2}\cdot\frac{1}{3}(t-T)^3\right|_{\frac{3t}{4}}^{\frac{5t}{4}}\right)}\\\\=\sqrt{\frac{1}{T}\left(\frac{T}{2}+\frac{T}{6}\right)}=\sqrt{\frac{2}{3}}=\boxed{\frac{\sqrt{6}}{3}\approx0.8165}[/tex]

wadadadadwadawdawd;ougaow7dtgwo8qa7gtydao8gdailydgw8dfaoufgsuytd

Answers

Answer:

what?????

Explanation:

Other Questions
Discuss what you would do if you were told that a family member was brain dead and that there was no hope forrecovery of brain function. Would you continue or discontinue life support? What if your family member had a livingwill that specified that life support be discontinued in these circumstances? Would you honor their wishes? 2. PART A: What does the word "diverged mean as it is used inparagraph 2?O A DifferedOB ImaginedOC Spread outOD Linked together The ratio of cats to dogs at the Palm Valley Animal Shelter right now is 5 to 3. There are 45dogs currently at the shelter. What is the total number of cats and dogs at the shelter rightnow? if 3 potatoes cost $22.00, how much would 5 potatoes cost? Find an equation of the line that bisects the acute angle formed by the graphs of negative 5X plus 7Y +4 equals zero and 7X minus 5Y +6 equals zero As you look out of your dorm window, a flower pot suddenly falls past. The pot is visible for a time t, and the vertical length of your window is Lw. Take down to be the positive direction, so that downward velocities are positive and the acceleration due to gravity is the positive quantity g. Assume that the flower pot was dropped by someone on the floor above you (rather than thrown downward). If the bottom of your window is a height hb above the ground, what is the velocity vground of the pot as it hits the ground? You may introduce the new variable vb, the speed at the bottom of the window, defined by vb = Lwt + gt2. what kind of things should you focus on when reading your peers paper Find the surface area of the prism.The surface area is_______ square meters. -QUESTION 5-Many tall trees grow in a forest. Only a few small plants grow underneath the trees. Why is this so?A.The tall trees use all the soilB.The tall trees use all of the oxygenC.The tall trees block much of the sunD.The tall trees give off too much carbon dioxide I am a little kid useing my brothers account Select the correct answer.Wanda owns a dog. She takes the dog for a routine examination to her veterinarian. The veterinarian tells her that her dog's kneecap is notproperly centered over the knee. Which disorder does this indicate?OA.osteoarthritisOB. cruciate ligament diseaseOC. patellar luxationOD. hip dysplasia 3.At time t = 0 years, a forest preserve has a population of 1500deer. If the rate of growth of the population is modeled byR(t) = 2000e0.231 deer per year, what is the population at timet=3. 8) Choose another bird. Compare and contrast this bird to the American crow. If you do not knowenough information about a bird, you can imagine that you have discovered a new species ofbirdand make up facts about it. 4) Divide x^4 14x^2 + 45 by (x - 3) Carolyn owes $9,620 on her Electronics Boutique credit card with a 16.4% interest rate. She owes $3,970 on her Miscellaneous Goods credit cards which has a 24.6% interest rate. What is the total monthly payment needed to pay off both cards in three years, assuming she makes fixed payments and does not charge any more purchases with the card Refer to Michelle Obama: First Lady, Going Higher for a complete version of this text. In her last speech as First Lady, what is Michelle Obama's message for young people? Which expression is equivalent to `7+10x+x-3?` How were the lives of free African Americans similar to those of enslaved African Americans in the 1700s?Neither group was allowed to legally marry.They both could live wherever they wanted.Neither group had true equality with whites.They both could receive an education. What does the villagers' preference of the name "GrandmaCobb" to "Madam Cobb" MOST imply about them?A. their interest in outsidersB. their respect for the elderlyoffC. their disdain for pretensionaD. their lack of formal educationg Question 2 (1.6 points) Which of the following is correct? a) I studied for the quiz therefore I will do well. b) I studied for the quiz, therefore, I will do well. Oc) I studied for the quiz; therefore I will do well. d) I studied for the quiz; therefore, I will do well. Steam Workshop Downloader