30 POINTS PLEASE HELP!!

30 POINTS PLEASE HELP!!

Answers

Answer 1

Answer:

㏑ [a² / y^4]

Step-by-step explanation:

2 ㏑a = ㏑ a²

4 ㏑ y = ㏑ y^4

so, 2 ㏑ a - 4 ㏑ y

= ㏑a² - ㏑y^4

= ㏑ [a² / y^4]


Related Questions

use interval notation to indicate where ()=−7(−1)( 5) f(x)=x−7(x−1)(x 5) is continuous.

Answers

The function f(x) = x - 7(x - 1)(x + 5) is continuous for all values of x except -5, 0, and 1. We can express this as (-∞, -5) ∪ (-5, 1) ∪ (1, ∞).

In interval notation, we express intervals using parentheses or brackets to indicate whether the endpoints are included or excluded. To determine where the function f(x) is continuous, we need to identify the values of x that would result in division by zero or undefined expressions.

The function f(x) contains factors of (x - 1) and (x + 5) in the denominator. In order for f(x) to be continuous, these factors cannot equal zero. Therefore, we exclude the values -5 and 1 from the domain of f(x) since they would make the function undefined.

Additionally, since there are no other terms in the function that could result in division by zero, we can conclude that f(x) is continuous for all other values of x. In interval notation, we can express this as (-∞, -5) ∪ (-5, 1) ∪ (1, ∞), indicating that f(x) is continuous for all x except -5, 0, and 1.

Learn more about domain here:

https://brainly.com/question/30133157

#SPJ11

a trapezoid has bases of lengths 8 and 21. Find the trapezoids height if its area is 261

Answers

Step-by-step explanation:

Area of trapezoid formula

Area = height + ( base1 + base2 ) / 2

sooo:

Area / (( base1 + base2)/ 2 ) = height

261 / (( 8+21)/2) = height

height = 18   units

Assume is opposite side a, is opposite side b, and is opposite side c. If possible, solve the triangle for the unknown side. Round to the nearest tenth. (If not possible, enter IMPOSSIBLE.)
= 57.3°,
a = 10.6,
c = 13.7

Answers

A triangle with angle A = 57.3°, side a = 10.6, and side c = 13.7, can be solved for the unknown side b using the Law of Sines.

To solve for the unknown side b, we can use the Law of Sines, which states that the ratio of the length of a side of a triangle to the sine of its opposite angle is constant for all sides and angles of the triangle.

Applying the Law of Sines, we have:

sin(A)/a = sin(B)/b

Substituting the known values, we get:

sin(57.3°)/10.6 = sin(B)/b

Solving for sin(B), we find:

sin(B) = (sin(57.3°) * b) / 10.6

To isolate b, we can rearrange the equation as:

b = (10.6 * sin(B)) / sin(57.3°)

Using a calculator, we can evaluate sin(B) by taking the inverse sine of (a/c) since sin(B) = (a/c) according to the Law of Sines. Once we have the value of sin(B), we can substitute it back into the equation to calculate the value of b.

In summary, by using the Law of Sines, we can solve for the unknown side b by substituting the known values and evaluating the equation. The value of side b can be rounded to the nearest tenth.

Learn more about law of sines here:

https://brainly.com/question/13098194

#SPJ11

what is \root(8)(6) in exponential form

Answers

The exponential form of the given expression ⁸√6 is

[tex]6^{1/8}[/tex]

How to write the expression in exponential

To express ⁸√6 in exponential form, we need to determine the exponent that raises a base to obtain the given value.

In this case  the base is 6 and the exponent is 8.

hence we  can be written as 6 raised to the power of [tex]6^{1/8}[/tex]

So, the exponential form of ⁸√6 is [tex]6^{1/8}[/tex]

Learn more about exponential form at

https://brainly.com/question/30127596

#SPJ1

The number of people (in hundreds) who have heard a rumor in a large company days after the rumor is started is approximated by
P(t) = (10ln(0.19t + 1)) / 0.19t+ 1
t greater than or equal to 0
When will the number of people hearing the rumor for the first time start to decline? Write your answer in a complete sentence.

Answers

The number of people hearing the rumor for the first time will start to decline when the derivative of the function P(t) changes from positive to negative.

To determine when the number of people hearing the rumor for the first time starts to decline, we need to find the critical points of the function P(t). The critical points occur where the derivative of P(t) changes sign.

First, we find the derivative of P(t) with respect to t:

P'(t) = [10(0.19t + 1)ln(0.19t + 1) - 10ln(0.19t + 1)(0.19)] / (0.19t + 1)^2.

To determine the critical points, we set P'(t) equal to zero and solve for t:

[10(0.19t + 1)ln(0.19t + 1) - 10ln(0.19t + 1)(0.19)] / (0.19t + 1)^2 = 0.

Simplifying, we have:

[0.19t + 1]ln(0.19t + 1) - ln(0.19t + 1)(0.19) = 0.

Factoring out ln(0.19t + 1), we get:

ln(0.19t + 1)[0.19t + 1 - 0.19] = 0.

The critical points occur when ln(0.19t + 1) = 0, which means 0.19t + 1 = 1. Taking t = 0 satisfies this equation.

To determine when the number of people hearing the rumor for the first time starts to decline, we need to examine the sign changes of P'(t) around the critical point t = 0. By evaluating the derivative at points near t = 0, we find that P'(t) is positive for t < 0 and negative for t > 0.

Learn more about derivative  here:

https://brainly.com/question/29144258

#SPJ11

Given points A(2; –3), B(3; -1), C(4; 1). Find the general equation of a straight line passing... 1. ...through the point A perpendicularly to vector AB 2. ...through the point B parallel to vector

Answers

The general equation of the straight line passing through point A perpendicularly to vector AB is y - (-3) = -1/2(x - 2), and the general equation of the straight line passing through point B parallel to vector AB is y - (-1) = 2(x - 3).

To find the equation of a straight line passing through point A perpendicular to vector AB, we first need to determine the slope of vector AB. The slope is given by (change in y)/(change in x). So, slope of AB = (-1 - (-3))/(3 - 2) = 2/1 = 2. The negative reciprocal of 2 is -1/2, which is the slope of a line perpendicular to AB. Using point-slope form, the equation of the line passing through A can be written as y - y₁ = m(x - x₁), where (x₁, y₁) is point A and m is the slope. Plugging in the values, we get the equation of the line passing through A perpendicular to AB as y - (-3) = -1/2(x - 2).

To find the equation of a straight line passing through point B parallel to vector AB, we can directly use point-slope form. The equation will have the same slope as AB, which is 2. Using point-slope form, the equation of the line passing through B can be written as y - y₁ = m(x - x₁), where (x₁, y₁) is point B and m is the slope. Plugging in the values, we get the equation of the line passing through B parallel to AB as y - (-1) = 2(x - 3).

Learn more about  point-slope form here: brainly.com/question/29503162

#SPJ11


values
A=3
B=9
C=2
D=1
E=6
F=8
please do this question hand written neatly
please and thank you :)
3. Draw a graph showing the first derivative of a function with the following information. [T, 6) i. Curve should be concave up ii. X-intercepts should be -E and +F iii. y-intercept should be -D Choos

Answers

Apologies for the limitations of a text-based interface. I'll describe the steps to answer your question instead.

To draw the graph of the first derivative of a function with the given information, follow these steps:

1. Mark a point at T on the x-axis, which represents the x-coordinate of the curve's vertex.

2. Draw a curve that starts at T and is concave up (opening upward).

3. Place x-intercepts at -E and +F on the x-axis, representing the points where the curve crosses the x-axis.

4. Locate the y-intercept at -D on the y-axis, which is the point where the curve intersects the y-axis.

To draw the graph of the first derivative, start with a vertex at T and sketch a curve that is concave up (cup-shaped). The curve should intersect the x-axis at -E and +F, representing the x-intercepts. Finally, locate the y-intercept at -D, indicating where the curve crosses the y-axis. These points provide the essential characteristics of the graph. Keep in mind that without a specific function, this description serves as a general guideline for drawing the graph based on the given information.

Learn more about x-coordinate here:

https://brainly.com/question/28913580

#SPJ11

19. DETAILS MY NOTES ASK YOUR TEACHER The population of foxes in a certain region is estimated to be Pi(t) = 300 + 60 sin (76) in month t, and the population of rabbits in the same region in month t i

Answers

The question is related to the estimation of the population of foxes and rabbits in a certain region. The population of foxes in a certain region is estimated to be Pi(t) = 300 + 60 sin (76) in month t, and the population of rabbits in the same region in month t.

The population of foxes in a certain region is estimated to be Pi(t) = 300 + 60 sin (76) in month t, and the population of rabbits in the same region in month t is Pj(t) = 200 + 75 sin (52). The population of foxes and rabbits has a sine wave relationship, as shown in their respective equations. The population of foxes has an average of 300, with a maximum of 360 and a minimum of 240, while the population of rabbits has an average of 200, with a maximum of 275 and a minimum of 125. The two populations' sine waves are out of phase, indicating that they do not reach their maximum and minimum values at the same time. As a result, the two populations are inversely related. When the fox population is at its maximum, the rabbit population is at its minimum. Conversely, when the rabbit population is at its maximum, the fox population is at its minimum.

Learn more about sine wave here:

https://brainly.com/question/13260681

#SPJ11

14. [-70.5 Points] DETAILS SCALCET9 3.6.018. MY NOTES ASK YOUR TEACHER Differentiate the function. t(t2 + 1) 8 g(t) = Inl V 2t - 1 g'(t) =

Answers

The derivative of [tex]g(t) = ln|√(2t - 1)| + t(t^2 + 1)/8 is g'(t) = (t^2 + 1)/8 + 1/(2t - 1).[/tex]

Start with the function [tex]g(t) = ln|√(2t - 1)| + t(t^2 + 1)/8.[/tex]

Apply the chain rule to differentiate the natural logarithm term: [tex]d/dt [ln|√(2t - 1)|] = 1/(√(2t - 1)) * (1/(2t - 1)) * (2).[/tex]

Simplify the expression: [tex]d/dt [ln|√(2t - 1)|] = 1/(2t - 1).[/tex]

Differentiate the second term using the power rule:[tex]d/dt [t(t^2 + 1)/8] = (t^2 + 1)/8.[/tex]

Add the derivatives of both terms to get the derivative of [tex]g(t): g'(t) = (t^2 + 1)/8 + 1/(2t - 1).[/tex]

learn more about:- derivatives here

https://brainly.com/question/29144258

#SPJ11

6. Locate and classify all the critical points of f(x, y) = 3x - x 3 - 3xy?.

Answers

The critical points of the function f(x, y) = 3x - x³ - 3xy is determined as (0, 1).

What are the critical points?

The critical points of the function f(x, y) = 3x - x³ - 3xy is calculated as follows;

The partial derivative with respect to x is determined as;

∂f/∂x = 3 - 3x² - 3y

The partial derivative with respect to y is determined as

∂f/∂y = -3x

The critical points is calculated as;

∂f/∂x = 3 - 3x² - 3y = 0  ----- (1)

∂f/∂y = -3x = 0 --------- (2)

From equation (2);

-3x = 0

x = 0

Substituting x = 0 into equation (1);

3 - 3(0)² - 3y = 0

3 - 0 - 3y = 0

3 - 3y = 0

-3y = -3

y = 1

The critical point is (x, y) = (0, 1).

Learn more about critical points here: https://brainly.com/question/30459381

#SPJ4

Express 800 - 600i in trigonometric form, rounding to 2 decimal places if necessary. Remember that we should always use r>0 and 0°

Answers

The expression 800 - 600i in trigonometric form is approximately 1000 ∠ -36.87°.

To express a complex number in trigonometric form, we need to convert it into polar form with the magnitude (r) and argument (θ). The magnitude (r) is calculated using the formula r = √[tex](a^2 + b^2)[/tex], where 'a' is the real part and 'b' is the imaginary part. In this case, a = 800 and b = -600.

r = √[tex](800^2 + (-600)^2)[/tex] ≈ √(640000 + 360000) ≈ √(1000000) ≈ 1000

The argument (θ) can be found using the formula θ = arctan(b/a). Since a = 800 and b = -600, we have:

θ = arctan((-600)/800) ≈ arctan(-0.75) ≈ -36.87°

Therefore, the expression 800 - 600i in trigonometric form is approximately 1000 ∠ -36.87°, where 1000 is the magnitude (r) and -36.87° is the argument (θ).

Learn more about trigonometric here:

https://brainly.com/question/29156330

#SPJ11

"The invoice amount is $885; terms 2/20 EOM; invoice date: Jan
5
a. What is the final discount date?
b. What is the net payment date?
c. What is the amount to be paid if the invoice is paid on Jan

Answers

a. The final discount date is 20 days after the end of the month. b. The net payment date is 30 days after the end of the month. c. If the invoice is paid on January 20th, the amount to be paid is $866.70.

a. The terms "2/20 EOM" mean that a 2% discount is offered if the invoice is paid within 20 days, and the EOM (End of Month) indicates that the 20-day period starts from the end of the month in which the invoice is issued. Therefore, the final discount date would be 20 days after the end of January.

b. The net payment date is the date by which the invoice must be paid in full without any discount. In this case, the terms state "EOM," which means that the net payment date is 30 days after the end of the month in which the invoice is issued.

c. If the invoice is paid on January 20th, it is within the 20-day discount period. The discount amount would be 2% of $885, which is $17.70. Therefore, the amount to be paid would be the invoice amount minus the discount, which is $885 - $17.70 = $866.70.

Learn more about minus here:

https://brainly.com/question/30727554

#SPJ11

Q.2 Ow Use an appropriate form of chain rule to find ди aw है| and at (u. v) = (1.-2) if w=x*y? -x +2y, x-vu, y=w X- [ 2 Marks ]

Answers

The value of the partial derivatives at the point (1,-2) are ∂w/∂u = (-3y² + 3) and ∂w/∂v = (-3y² + 3).

To find the partial derivatives of w with respect to u and v using the chain rule, we can proceed as follows:

w = x*y² - x + 2y

x = v*u

y = w*x - 2

We want to find ∂w/∂u and ∂w/∂v at the point (u,v) = (1,-2).

First, let's find ∂w/∂u:

Using the chain rule, we have:

∂w/∂u = (∂w/∂x) * (∂x/∂u) + (∂w/∂y) * (∂y/∂u)

∂w/∂x = y² - 1

∂x/∂u = v

∂w/∂y = 2xy + 2

∂y/∂u = (∂w/∂u) * (∂x/∂u) = (∂w/∂u) * v = v*(y² - 1)

Substituting these values, we get:

∂w/∂u = (y² - 1) * v + (2xy + 2) * v*(y² - 1)

Now, let's find ∂w/∂v:

Using the chain rule again, we have:

∂w/∂v = (∂w/∂x) * (∂x/∂v) + (∂w/∂y) * (∂y/∂v)

∂x/∂v = u

∂y/∂v = (∂w/∂v) * (∂x/∂v) = (∂w/∂v) * u = u*(y² - 1)

Substituting these values, we get:

∂w/∂v = (y² - 1) * u + (2xy + 2) * u*(y² - 1)

Finally, we can evaluate ∂w/∂u and ∂w/∂v at the given point (u,v) = (1,-2) by substituting the values of u and v into the respective expressions.

So, ∂w/∂u = (-3y² + 3) and

∂w/∂v = (-3y² + 3).

The complete question is:

"Use an appropriate form of chain rule to find ∂w/∂u and ∂w/∂v at the point (u,v) = (1,-2) if w = x*y² - x + 2y, x = v*u, y = w*x - 2."

Learn more about partial derivatives:

https://brainly.com/question/31399205

#SPJ11

use the chain rule to find ∂z ∂s and ∂z ∂t . z = ln(5x 3y), x = s sin(t), y = t cos(s)

Answers

∂z/∂s = 3cos(t)/y, ∂z/∂t = 3s*cos(t)/y - sin(s)/x (using the chain rule to differentiate each term and substituting the given expressions for x and y)

To find ∂z/∂s and ∂z/∂t using the chain rule, we start by finding the partial derivatives of z with respect to x and y, and then apply the chain rule.

First, let's find ∂z/∂x and ∂z/∂y.

∂z/∂x = ∂/∂x [ln(5x^3y)]

= (1/5x^3y)  ∂/∂x [5x^3y]

= (1/5x^3y) 15x^2y

= 3/y

∂z/∂y = ∂/∂y [ln(5x^3y)]

= (1/5x^3y) ∂/∂y [5x^3y]

= (1/5x^3y)  5x^3

= 1/x

Now, using the chain rule, we can find ∂z/∂s and ∂z/∂t.

∂z/∂s = (∂z/∂x)  (∂x/∂s) + (∂z/∂y)  (∂y/∂s)

= (3/y)  (cos(t)) + (1/x)  (0)

= 3cos(t)/y

∂z/∂t = (∂z/∂x)  (∂x/∂t) + (∂z/∂y)  (∂y/∂t)

= (3/y) * (scos(t)) + (1/x)  (-sin(s))

= 3scos(t)/y - sin(s)/x

Therefore, ∂z/∂s = 3cos(t)/y and ∂z/∂t = 3s*cos(t)/y - sin(s)/x.

Learn more about chain rule here:

https://brainly.com/question/31585086

#SPJ11




Write the equation of the sphere in standard form. x2 + y2 + z2 + 8x – 8y + 6z + 37 = 0 + Find its center and radius. center (x, y, z) = radius

Answers

After considering the given data we conclude that the center (x, y, z) is (-4, 4, -3), and the radius is 4, under the condition that sphere is in standard form.

To present the condition of the circle in standard shape(sphere ), we have to apply summation of the square in terms of including x, y, and z.

The given condition of the sphere is:

[tex]x^2 + y^2 + z^2 + 8x - 8y + 6z + 37 = 0[/tex]

To sum of the square for x, we include the square of half the coefficient of x:

[tex]x^2 + y^2 + z^2 + 8x -8y + 6z + 37 = 0( x^2 = 8x + 16 ) + y^2 +z^2- 8y + 6z+ 37 = 16(x + 4)^2 + y^2 +z ^2 + z^2 - 8y + 6z + 37 - 16 = 16(x + 4)^2 + ( y^2 -8y) + (z^2 + 6z) + 21 = 16 ( x+ 4)^2 + (y^2 - 8y +16) + ( z^2 + 6z +9) = 16( x+ 4)^2+(y -4)^2 +(z=3)^2 =16[/tex]

Hence, the condition is in standard shape:

[tex](x - h)^2 + ( y - k)^2 + ( z - l)^2 = r^2[/tex]

Here,

(h, k, l) = center of the circle,

r = the span.

Comparing the standard frame with the given condition, we are able to see that the center of the sphere is (-4, 4, -3), and the sweep is the square root of 16, which is 4.

Therefore, the center (x, y, z) is (-4, 4, -3), and the sweep is 4.

To know more about radius

https://brainly.com/question/29614115

#SPJ4

solve this pls 6+8n+2n=4n+30

Answers

The answer will be n = 4

Answer:

[tex]\huge\boxed{\sf n = 4}[/tex]

Step-by-step explanation:

Given equation:

6 + 8n + 2n = 4n + 30

Combine like terms

6 + 10n = 4n + 30

Subtract 4n from both sides

6 + 10n - 4n = 30

6 + 6n = 30

Subtract 6 from both sides

6n = 30 - 6

6n = 24

Divide both sides by 6

n = 24 / 6

n = 4

[tex]\rule[225]{225}{2}[/tex]

Test the series for convergence or divergence. 00 Σ (-1)– 113e1/h n n = 1 O converges O diverges

Answers

The series [tex]$\sum_{n=1}^{\infty} (-1)^{n-1}\frac{1}{13e^{1/hn}}$[/tex] converges. The given series can be written as [tex]$\sum_{n=1}^{\infty} (-1)^{n-1}\frac{1}{13}\cdot\frac{1}{e^{1/hn}}$[/tex].

Notice that the series involves alternating signs with a decreasing magnitude. When we consider the term [tex]$\frac{1}{e^{1/hn}}$[/tex], as n approaches infinity, the exponential term will tend to 1. Therefore, the series can be simplified to [tex]$\sum_{n=1}^{\infty} (-1)^{n-1}\frac{1}{13}$[/tex]. This is an alternating series with a constant magnitude, which allows us to apply the Alternating Series Test. According to this test, if the magnitude of the terms approaches zero and the terms alternate in sign, then the series converges. In our case, the magnitude of the terms is [tex]$\frac{1}{13}$[/tex], which approaches zero, and the terms alternate in sign. Hence, the given series converges.

In conclusion, the series [tex]$\sum_{n=1}^{\infty} (-1)^{n-1}\frac{1}{13e^{1/hn}}$[/tex] converges.

To learn more about converges refer:

https://brainly.com/question/31318310

#SPJ11

The Test for Divergence applies to the series: Σ 52 n=1 Select one: O True False The series 2-1(-1)n-1 is 3/Vn+1 conditionally convergent, but not absolutely convergent. Select one: True False

Answers

The statement "The Test for Divergence applies to the series Σ 52 n=1" is true. The series 2-1(-1)n-1 is conditionally convergent but not absolutely convergent.

The Test for Divergence is a criterion used to determine if an infinite series converges or diverges. According to the test, if the limit of the n-th term of a series does not equal zero, then the series diverges. In this case, the series Σ 52 n=1 does not have a specific term defined, so the limit of the n-th term cannot be calculated. Hence, the Test for Divergence applies.

The series 2-1(-1)n-1 is an alternating series, where the terms alternate in sign. For an alternating series, the absolute value of the terms should approach zero in order for the series to be absolutely convergent. In this case, as n approaches infinity, the denominator, represented by Vn+1, will grow without bound, making the absolute value of the terms approach infinity. Therefore, the series 2-1(-1)n-1 is not absolutely convergent. However, it can be conditionally convergent, meaning that it converges when both the positive and negative terms are combined.

Learn more about series here: https://brainly.com/question/32516508

#SPJ11

5. (a) Let : =(-a + ai)(6 +bV3i) where a and b are positive real numbers. Without using a calculator, determine arg 2. (4 marks) (b) Determine the cube roots of 32V3+32i and sketch them together in the complex plane. (5 marks)

Answers

(a) The argument, arg(ζ) = arctan(imaginary part / real part)

= arctan[b(√3 - a) / (6a(√3 - 1) - b(a√3 + b))]

(b) The cube roots, z^(1/3) = 64^(1/3)[cos((π/6)/3) + isin((π/6)/3)]

= 4[cos(π/18) + isin(π/18)]

(a) To find the argument of the complex number ζ = (-a + ai)(6 + b√3i), we can expand the expression and simplify:

ζ = (-a + ai)(6 + b√3i)

= -6a - ab√3i + 6ai - b√3a + 6a√3 + b√3i²

= (-6a + 6a√3) + (-ab√3 + b√3i) + (6ai - b√3a - b√3)

= 6a(√3 - 1) + b(√3i - a√3 - b)

Now, let's separate the real and imaginary parts:

Real part: 6a(√3 - 1) - b(a√3 + b)

Imaginary part: b(√3 - a)

To find the argument, we need to find the ratio of the imaginary part to the real part:

arg(ζ) = arctan(imaginary part / real part)

= arctan[b(√3 - a) / (6a(√3 - 1) - b(a√3 + b))]

(b) Let's find the cube roots of the complex number z = 32√3 + 32i. We'll use the polar form of a complex number to simplify the calculation.

First, let's find the modulus (magnitude) and argument (angle) of z:

Modulus: |z| = √[(32√3)² + 32²] = √[3072 + 1024] = √4096 = 64

Argument: arg(z) = arctan(imaginary part / real part) = arctan(32 / (32√3)) = arctan(1 / √3) = π/6

Now, let's express z in polar form: z = 64(cos(π/6) + isin(π/6))

To find the cube roots, we can use De Moivre's theorem, which states that raising a complex number in polar form to the power of n will result in its modulus raised to the power of n and its argument multiplied by n:

z^(1/3) = 64^(1/3)[cos((π/6)/3) + isin((π/6)/3)]

= 4[cos(π/18) + isin(π/18)]

Since we want to find all three cube roots, we need to consider all three cube roots of unity, which are 1, e^(2πi/3), and e^(4πi/3):

Root 1: z^(1/3) = 4[cos(π/18) + isin(π/18)]

Root 2: z^(1/3) = 4[cos((π/18) + (2π/3)) + isin((π/18) + (2π/3))]

= 4[cos(7π/18) + isin(7π/18)]

Root 3: z^(1/3) = 4[cos((π/18) + (4π/3)) + isin((π/18) + (4π/3))]

= 4[cos((13π/18) + isin(13π/18)]

Now, let's sketch these cube roots in the complex plane:

Root 1: Located at 4(cos(π/18), sin(π/18))

Root 2: Located at 4(cos(7π/18), sin(7π/18))

Root 3: Located at 4(cos(13π/18), sin(13π/18))

The sketch will show three points on the complex plane representing these cube roots.

To know more about complex numbers, visit the link : https://brainly.com/question/10662770

#SPJ11

Identify a reduced fraction that has the decimal expansion 0.202222222222 ... (Give an exact answer. Use symbolic notation and fractions as needed.) 0.202222222222 ... = 0.20222 Incorrect

Answers

The reduced fraction for 0.202222... is 1/5.

To express the repeating decimal 0.20222222... as a reduced fraction, follow these steps:

1. Let x = 0.202222...
2. Multiply both sides by 100: 100x = 20.2222...
3. Multiply both sides by 10: 10x = 2.02222...
4. Subtract the second equation from the first: 90x = 18
5. Solve for x: x = 18/90

Now, let's reduce the fraction:
18/90 can be simplified by dividing both the numerator and denominator by their greatest common divisor (GCD), which is 18. So, 18 ÷ 18 = 1 and 90 ÷ 18 = 5.

Therefore, the reduced fraction for 0.202222... is 1/5.

To learn more about repeating decimals visit : https://brainly.com/question/22063097

#SPJ11

Can someone help me with this?

Answers

C it’s cccccccccc okay Brainly stop it’s c I did that before school

For the function g(x) graphed here, find the following limits or explain why they do not exist. a. lim g(x) X--5 b. lim g(x) X--4 c. lim g(x) X-0 d. Q lim g(x) X-3.4 -B -6, # -2 NO 2 20 -4 -6 -8-

Answers

The limits for the function g(x) are as follows: a) The limit as x approaches 5 exists and is equal to -2. b) The limit as x approaches 4 does not exist. c) The limit as x approaches 0 exists and is equal to -6. d) The limit as x approaches 3.4 exists and is equal to -6.

a) To find the limit as x approaches 5, we examine the behavior of the function as x gets arbitrarily close to 5. From the graph, we can see that as x approaches 5 from both sides, the function approaches a y-value of -2. Therefore, the limit as x approaches 5 is -2.

b) The limit as x approaches 4 does not exist because as x gets closer to 4 from the left side, the function approaches a y-value of -8, while from the right side, it approaches a y-value of -6. Since the function does not approach a single value from both sides, the limit does not exist.

c) The limit as x approaches 0 exists and is equal to -6. As x approaches 0 from both sides, the function approaches a y-value of -6. Therefore, the limit as x approaches 0 is -6.

d) The limit as x approaches 3.4 exists and is equal to -6. From the graph, we can see that as x approaches 3.4 from both sides, the function approaches a y-value of -6. Thus, the limit as x approaches 3.4 is -6.

Learn more about limits of a function :

https://brainly.com/question/7446469

#SPJ11

What kind of geometric transformation is shown in the line of music?
reflection
glide reflection
translation

Answers

The geometric transformation shown in the line of music is given as follows:

Glide reflection.

What is a glide reflection?

The glide reflection is a geometric transformation that is defined as a combination of a reflection with a translation.

On the line of music for this problem, we have that:

There is a reflection, as the orientation of the shape is changed.There is a translation, as the position of the shape keeps moving right.

As there was both a reflection and a translation, the geometric transformation shown in the line of music is given as follows:

Glide reflection.

More can be learned about glide reflections at brainly.com/question/5612016

#SPJ1

Please write your own linear equation of any form.

Answers

Answer:

The standard form for linear equations in two variables is Ax+By=C. For example, 2x+3y=5 is a linear equation in standard form. When an equation is given in this form, it's pretty easy to find both intercepts (x and y).

2x² +10x=

10x
Problem 3: Identify the GCF
Identify the factor pairs of the terms 22+ 10x that
share the greatest common factor.
Enter the factor pairs in the table.
Expression
Common Factor
x
X
Check Answers
Other Factor
3

Answers

As per the given data, the greatest common factor of 22 + 10x is 2.

To find the greatest common factor (GCF) of the terms in the expression 22 + 10x, we need to factorize each term and identify the common factors.

Let's start with 22. The prime factorization of 22 is 2 * 11.

Now let's factorize 10x. The GCF of 10x is 10, which can be further factored as 2 * 5. Since there is an 'x' attached to 10, we include 'x' as a factor as well.

Now, let's identify the factor pairs that share the greatest common factor:

Factor pairs of 22:

1 * 22

2 * 11

Factor pairs of 10x:

1 * 10x

2 * 5x

From the factor pairs, we can see that the common factor between the two terms is 2.

Therefore, the GCF of 22 + 10x is 2.

For more details regarding GCF, visit:

https://brainly.com/question/26526506

#SPJ1

can
someone answer this immediately with the work
Let f (x) be equal to -x + 1 for x < 0, equal to 1 for 0≤x≤ 1, equal to -*+2 for 1

Answers

The function f(x) is defined differently for different values of x.
For x less than 0, f(x) is equal to -x + 1.

For values of x between 0 and 1 (inclusive), f(x) is equal to 1.
For values of x greater than 1, f(x) is equal to -*+2
So overall, the function f(x) is a piecewise function with different definitions for different intervals of x.
Let f(x) be a piecewise function defined as follows:
1. f(x) = -x + 1 for x < 0
2. f(x) = 1 for 0 ≤ x ≤ 1
3. f(x) = -x + 2 for x > 1
This function behaves differently depending on the input value (x). For x values less than 0, the function follows the equation -x + 1. For x values between 0 and 1 inclusive, the function equals 1. And for x values greater than 1, the function follows the equation -x + 2.

To learn more about function, visit:

https://brainly.com/question/31349499

#SPJ11

Need solution for 7,9,11
7. RS for points R(5, 6, 12) and S(8, 13,6) 8. PQ for points P6, 8, 14) and Q(10, 16,9) 9. BA for points A(9, 13, -4) and B(3, 6, -10) 10. DC for points C(2,9, 0) and D(1, 4, 8) 11. Tree House Problem

Answers

(7) the distance RS is approximately 9.695.

(8) the distance PQ is approximately 10.247.

(9) the distance BA is 11.

What is the distance?

Distance refers to the amount of space between two objects or points. It is a measure of the length of the path traveled by an object or a person from one point to another. The most common units of distance are meters, kilometers, feet, miles, and yards.

7. To find the distance RS between points R(5, 6, 12) and S(8, 13, 6), we can use the distance formula in three-dimensional space:

RS = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)

  = √((8 - 5)² + (13 - 6)² + (6 - 12)²)

  = √(3² + 7² + (-6)²)

  = √(9 + 49 + 36)

  = √94

  ≈ 9.695

Therefore, the distance RS is approximately 9.695.

8. To find the distance PQ between points P(6, 8, 14) and Q(10, 16, 9), we use the distance formula:

PQ = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)

  = √((10 - 6)² + (16 - 8)² + (9 - 14)²)

  = √(4² + 8² + (-5)²)

  = √(16 + 64 + 25)

  = √105

  ≈ 10.247

Therefore, the distance PQ is approximately 10.247.

9. To find the distance BA between points A(9, 13, -4) and B(3, 6, -10), we use the distance formula:

BA = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)

  = √((3 - 9)² + (6 - 13)² + (-10 - (-4))²)

  = √((-6)² + (-7)² + (-6)²)

  = √(36 + 49 + 36)

  = √121

  = 11

Therefore, the distance BA is 11.

Hence, (7) the distance RS is approximately 9.695.

(8) the distance PQ is approximately 10.247.

(9) the distance BA is 11.

To learn more about the distance visit:

https://brainly.com/question/26550516

#SPJ4

Find the area between y = 5 and y = (x − 1)² + 1 with x ≥ 0. The area between the curves is square units.

Answers

Area between the curves is -43/3 square units, which is approximately -14.333 square units. To find the area between the curves y = 5 and y = (x - 1)² + 1 with x ≥ 0, we need to calculate the definite integral of the difference between the upper and lower curves with respect to x.

First, let's find the x-values at which the curves intersect:

For y = 5:

5 = (x - 1)² + 1

4 = (x - 1)²

±2 = x - 1

x = 1 ± 2

The lower curve is y = 5, and the upper curve is y = (x - 1)² + 1.

To find the area between the curves, we integrate the difference between the upper and lower curves: A = ∫[1-2 to 1+2] ((x - 1)² + 1 - 5) dx

Simplifying the integrand:

A = ∫[1-2 to 1+2] (x² - 2x + 1 - 4) dx

A = ∫[1-2 to 1+2] (x² - 2x - 3) dx

Integrating:

A = [x³/3 - x² - 3x] evaluated from 1-2 to 1+2

A = [(1+2)³/3 - (1+2)² - 3(1+2)] - [(1-2)³/3 - (1-2)² - 3(1-2)]

Simplifying further:

A = [(27/3) - 9 - 9] - [(-1/3) - 1 + 3]

A = [9 - 9 - 9] - [-1/3 - 1 + 3]

A = -9 - 7/3

A = -36/3 - 7/3

A = -43/3

The area between the curves is -43/3 square units, which is approximately -14.333 square units. Note that the negative sign indicates that the area is below the x-axis

Learn more about area between curves: https://brainly.com/question/31202331

#SPJ11








19) f(x)= X + 3 X-5 19) A) (-., -3) (5, *) C) (-,-3) (5, 1) B) (-*, -3] + [5,-) D) (-3,5) 20) 20) g(z) = V1 - 22 A) (0) B) (-*, ) C) (-1,1) D) (-1, 1)

Answers

The domain of the function f(x) = x + 3 is (-∞, ∞), while the domain of the function g(z) = √(1 - 2z) is (-∞, 1].

For the function f(x) = x + 3, the domain is all real numbers since there are no restrictions or limitations on the values of x. Therefore, the domain of f(x) is (-∞, ∞), which means that x can take any real value.

On the other hand, for the function g(z) = √(1 - 2z), the domain is determined by the square root term. Since the square root of a negative number is not defined in the real number system, we need to find the values of z that make the expression inside the square root non-negative.

The expression inside the square root, 1 - 2z, must be greater than or equal to zero. Solving this inequality, we have 1 - 2z ≥ 0, which gives us z ≤ 1/2.

However, we also need to consider that the function g(z) includes the square root of the expression. To ensure that the square root is defined, we need 1 - 2z to be non-negative, which means z ≤ 1/2.

Therefore, the domain of g(z) is (-∞, 1], indicating that z can take any real value less than or equal to 1/2.

Learn more about real numbers here: brainly.com/question/31715634

#SPJ11

Select the values that make the inequality-2 true. Then write an equivalent
inequality, in terms of s.
(Numbers written in order from least to greatest going across.)
00
07
011
04
08
12
Equivalent Inequality: 828
05
D9
16

Answers

The solution to the given Inequality expression is: s ≥ -8

How to solve the Inequality problem?

Inequalities could be in the form of greater than, less than, greater than or equal to and less than or equal to.

We are given the inequality expression as:

s/-2 ≤ 4

Divide both sides by -1/2 and this changes the inequality sign to give us:

s ≥ 4 * -2

s ≥ -8

Thus, all values greater than or equal to -8 are possible values of s in the inequality.

Read more about Inequalities at: https://brainly.com/question/25275758

#SPJ1

Complete question is:

Select the values that make the inequality s/-2 ≤ 4 true. Then write an equivalent inequality, in terms of s.

Other Questions
you are looking down at the ocean surface. four current meters at points a, b, c, d are measuring the velocity in a gulf stream ring. the center of the ring is point e. the current velocities at the various points are: a) 2 . 5 m/s due east c) 1 . 364 m/s 38 degrees east of due north. b) 1 . 2 m/s due west d) 0 . 8714 m/s 30 degrees west of due south points a Information for questions 13-18: An insurance company determines that a linear relationship exists between the cost of fire damage in major residential fires and the distance from the house to the nearest fire station. A sample of 20 recent fires in a large suburb of a major city was selected. For each fire, the following variables were recorded: x= the distance between the fire and the nearest fire station (in miles) y= cost of damage (in dollars) The distances between the fire and the nearest fire station ranged between 0.6 miles and 6.2 miles The warning tag on a lawn mower states that it produces noise at a level of 88dB. What is this in watts per meter squared? The common stock of Kansas City Power and Light has a beta of 0.80. The Treasury bill rate is 4 percent and the market risk premium is 8 percent. What is their cost of equity capital?Multiple Choice12.0 percent10.4 percent7.20 percent6.4 percent True/false: commodities are products or services that vary across multiple vendors. The limit represents the derivative of some function f at some number a. State such an f and a. cos(0) lim 2 8 A. f(x) = cos(x), a = B. f(x) = cos(x), a = ,C. f(x) = sin(x), a = D . f(x) = cos(x), a = E. f(x) = sin(x), a = F. f(x) = sin(x), a = n 3 n 4 3 6 E|+ 4 After 2 years of continuous compounding at 11.8% the amount in an account is $11,800. What was the amount of the initial deposit? A) $14,940.85 B) $8139.41 C) $13,760.85 D) $9319.41 What are the steps of Meiosis in order starting with DNA being replicated?1 New Cells are Diploid2 New Cells are Haploid3. 4 unidentical gametes are created4. 2 identical daughter cells are created5. DNA condenses and the nucleus dissolves6. Sister chromatids line up on either side of the metaphase plate7. Homologous chromosomes are split and move to opposite sides of the cell8. Sister chromatids are split and move to opposite sides of the cell9. Homologous chromosomes line up on either side of the metaphase plate10. The nucleus reforms, chromosomes decondense, and cytokinesis splits the cells apartSteps of Meitosis:1. DNA is replicated2.3.4.5.6.7.8.9.10.11.Thanks so much! True/false: technology has made writing less important in today's workplace Which vitamin has the best known role in cell differentiation?Select one:a. Kb. Ac. no answer is correctd. D Sharon has high blood pressure and hypernatremia (excess blood sodium ion concentration). This is likely caused y a hypersecretion of: a.GLUCAGON b.ALDOSTERONE c.INSULIN d.CALCITONIN Who was the first person in the world to use watercolors? potassium (k, atomic radius 280 pm) forms a body-centered cubic structure. what is the volume (in cm3) occupied by potassium in a unit cell? 1) An 18-wheeler is pulling a cylindrical tank that carries 48,000 liters of gasoline. If thetank is 12 meters in length, what is its radius?V = 48.000V=BH171.27m 1.13M 48m=B12m124m=B124m =tr1.13m=rHELP-2) While barreling down the freeway, the driver approaches an overpass bridge that is 5meters off the ground. If the tank sits on top of a trailer that is 2.5 meters tall, will thetruck be able to fit under the bridge? Explain your answer. Determine the voltage dropped on R3, given:ET = 1325 V, R1 = 76 , R2 = 61 , R3 = 30 , and R4 = 30 which letters were excluded from the anglo saxon runic alphabet use spherical coordinates to evaluate the triple integral where e is the region bounded by the spheres x^2 y^2 z^2=1 and x^2 y^2 z^2=9 Explain why the spectra belongs with benzaldehyde. Did the spectra you picked match your initial description? please answer quicklyFind the point, P, at which the line intersects the plane. x=2+9ty=5+2t z=9+10t; -5x+8y-3z=0 The point, P. at which the line intersects the plane is 0. (Simplify your answer. Type an ordered triple.) PLEASE HELP!! ASAPCreate a recursive function f(n) that models this situation in terms of n weeks that have passed, for n 2.Enter the correct answer in the box. Steam Workshop Downloader