8) Calculate the number of ions in 58 g of H2SO4. ​

Answers

Answer 1

In 58 g of[tex]H_2SO_4,[/tex] there are approximately [tex]7.161 \times 10^{23[/tex] H+ ions and 3.558 ×[tex]10^{23 }SO_4^2-[/tex]ions.

To calculate the number of ions in 58 g of [tex]H_2SO_4,[/tex], we need to determine the number of moles of [tex]H_2SO_4,[/tex] and then use the stoichiometry of the compound to determine the number of ions.

First, let's calculate the number of moles of [tex]H_2SO_4,[/tex]. The molar mass of [tex]H_2SO_4,[/tex]is calculated as follows:

2(1 g/mol of H) + 32 g/mol of S + 4(16 g/mol of O) = 98 g/mol of H2SO4

Using the molar mass, we can determine the number of moles of [tex]H_2SO_4,[/tex]:

moles = mass / molar mass

moles = 58 g / 98 g/mol ≈ 0.5918 mol

[tex]H_2SO_4,[/tex] dissociates into two H+ ions and one [tex]}SO_4^2[/tex]- ion. This means that each mole of [tex]H_2SO_4,[/tex]produces two moles of H+ ions and one mole of [tex]}SO_4^2-[/tex] ions.

Therefore, the number of H+ ions can be calculated as:

number of H+ ions = 2 moles of[tex]H_2SO_4,[/tex] × Avogadro's number

= 2 × 0.5918 mol × 6.022 × 10^23 ions/mol

≈ 7.161 × 10^23 H+ ions

Similarly, the number of [tex]}SO_4^2-[/tex] ions can be calculated as:

number of [tex]}SO_4^2[/tex]- ions = 1 mole of[tex]H_2SO_4,[/tex]× Avogadro's number

= 0.5918 mol × 6.022 × 10^23 ions/mol

≈ 3.558 × [tex]10^{23[/tex] [tex]}SO_4^2[/tex]- ions

For more such questions on ions visit:

https://brainly.com/question/30552973

#SPJ8


Related Questions

250.0 mg of copper(II) sulfate pentahydrate (CuSO4 5H2O, 249.70 g/mol) was dissolved in water to make 10.00 mL of solution. Of that solution, 2.00 mL was used to make a new solution with a total volume of 250.0 mL. What was the concentration of the copper ion in the final solution?

Answers

250.0 mg of copper(II) sulfate pentahydrate was dissolved in 10.00 mL of solution. The concentration of the copper ion in the final solution is 0.8012 mmol/L.

To find the concentration of the copper ion in the final solution, we can use the concept of dilution.
First, we need to calculate the amount of copper(II) sulfate pentahydrate used in the new solution.
Since 250.0 mg of copper(II) sulfate pentahydrate was dissolved in 10.00 mL of solution, we can use the formula:
Amount = (concentration) x (volume)
Converting the mass to moles:
Amount = (250.0 mg) / (249.70 g/mol)

= 1.0016 mmol
Since 2.00 mL of the initial solution was used, the amount of copper(II) sulfate pentahydrate transferred is:
Amount transferred = (1.0016 mmol) x (2.00 mL / 10.00 mL)

= 0.2003 mmol
Next, we calculate the concentration of the copper ion in the final solution by dividing the amount transferred by the total volume:
Concentration = (0.2003 mmol) / (250.0 mL)

= 0.0008012 mmol/mL
Converting to moles per liter (mmol/L) or Molarity:
Concentration = 0.0008012 mmol/mL

= 0.8012 mmol/L
Therefore, the concentration of the copper ion in the final solution is 0.8012 mmol/L.

To know more about concentration visit:

https://brainly.com/question/30862855

#SPJ11

Let's say that you were going to treat water that's too acidic with salt, which should raise the water's pH (and solve the acidity problem). But when you do so, you find that the water conducts electricity better than before, which creates a new set of problems. Why did this change occur

Answers

Adding salt to acidic water increases its electrical conductivity due to the dissociation of ions.

The presence of ions allows the water to conduct electricity more effectively, leading to the observed change in conductivity.

When salt is added to acidic water, it dissociates into positive and negative ions (such as sodium cations and chloride anions). These ions increase the number of charged particles in the water, enabling it to conduct electricity more efficiently.

This enhanced electrical conductivity is a consequence of the increased presence of mobile ions, which leads to the observed change in the water's conductivity.

learn more about ions click here;

brainly.com/question/30663970

#SPJ11

what is the lowest temperature to which a vapor mixture of 1 mole n pentane and 2 moles n hexane at 1 bar can be brought without forming liquid

Answers

The lowest temperature at which the vapor mixture of 1 mole n-pentane and 2 moles n-hexane at 1 bar can be brought without forming liquid is approximately 30.7 °C.

The lowest temperature to which a vapor mixture of 1 mole n-pentane and 2 moles n-hexane at 1 bar can be brought without forming liquid is called the dew point temperature.

The dew point temperature can be calculated using the Antoine equation, which relates the vapor pressure of a substance to its temperature.

The Antoine equation for n-pentane and n-hexane is given by:

log P = A - B / (T + C)

where P is the vapor pressure in mm Hg, T is the temperature in °C, and A, B, and C are constants.

The constants for n-pentane are A = 8.07131, B = 1730.63, and C = 233.426, and for n-hexane, they are A = 8.21169, B = 1642.89, and C = 228.319.

Substituting these values into the equation and solving for the dew point temperature, we get:

T = (B2 - B1) / (A1 - A2) = (1642.89 - 1730.63) / (8.07131 - 8.21169)≈ 30.7 °C

Therefore, the lowest temperature at which the vapor mixture of 1 mole n-pentane and 2 moles n-hexane at 1 bar can be brought without forming liquid is approximately 30.7 °C.

Learn more about dew point temperature here https://brainly.com/question/29769017

#SPJ11

how many atoms are contained in a 4.65 g sample of the (atomic mass = 4.003 g/mol)?

Answers

Atomic mass of the element = 4.003 g/mol.

The number of atoms in a sample can be calculated using the following formula:

Number of moles = Mass of sample / Molar massAvogadro's number .

Number of atoms = Number of moles × Avogadro's number

Let's solve the problem by substituting the given values in the above formulas:

Given,Mass of the sample = 4.65 g

Atomic mass of the element = 4.003 g/molMolar mass of the element = Atomic mass in g/mol = 4.003 g/molNumber of moles = Mass of sample / Molar mass= 4.65 g / 4.003 g/mol= 1.162 molAvogadro's number = 6.022 × 10²³Number of atoms = Number of moles × Avogadro's number= 1.162 mol × 6.022 × 10²³= 6.99 × 10²³ atoms

Hence, there are 6.99 × 10²³ atoms present in a 4.65 g sample of the element.

Learn more about Atomic mass:

https://brainly.com/question/30390726

#SPJ11

draw the structural formula for the following compound: 4−isobutyl−1,1−dimethylcyclohexane.

Answers

The structural formula for the following compound is

 CH3       CH3

  |           |

  C           C

  |           |

CH2---CH2---CH---CH2---CH3

    |           |

    CH3       CH3

To draw the structural formula for 4-isobutyl-1,1-dimethylcyclohexane, we need to understand the position and arrangement of the different substituents on the cyclohexane ring.

Starting with the cyclohexane ring, it consists of six carbon atoms arranged in a ring structure. We number the carbon atoms from 1 to 6, ensuring that the substituents are given the lowest possible numbers. In this case, we have a methyl group at position 1 and an isobutyl group at position 4.

At position 1 of the cyclohexane ring, we have a methyl group (CH3). This means that there is a single carbon atom attached to the first carbon of the ring, along with three hydrogen atoms.

At position 4 of the cyclohexane ring, we have an isobutyl group. The isobutyl group consists of four carbon atoms, with the central carbon attached to the fourth carbon of the cyclohexane ring. The isobutyl group has the following structure: (CH3)2CHCH2.

Additionally, the name of the compound specifies that there are two dimethyl groups, indicating that two additional methyl groups (CH3) are attached to the cyclohexane ring.

Learn more about cyclohexane at: brainly.com/question/30230108

#SPJ11

determine the oxidation number of the red element in each of the following compounds: h_{2}\color{red}{\text{p}}o_{4}^{-}, \color{red}{\text{s}}o_{3}^{2-}, \color{red}{\text{n}}_{2}o_{4}

Answers

The oxidation number of nitrogen in \color{red}{\text{N}}₂O₄ is +4.

In order to determine the oxidation number of the red element in each of the compounds, we need to assign oxidation numbers to the other elements and calculate the oxidation number of the red element based on the overall charge of the compound.

H₂\color{red}{\text{P}}O₄⁻:

Let's assign the oxidation number of hydrogen (H) as +1 and oxygen (O) as -2.

The overall charge of the phosphate ion is -1.

Therefore, we can calculate the oxidation number of the red element (P):

(+1) * 2 + \color{red}{\text{P}} + (-2) * 4 + (-1) = 0

2 + \color{red}{\text{P}} - 8 - 1 = 0

\color{red}{\text{P}} = +5

So, the oxidation number of phosphorus in H₂\color{red}{\text{P}}O₄⁻ is +5.

\color{red}{\text{S}}O₃²⁻:

Let's assign the oxidation number of oxygen (O) as -2.

The overall charge of the sulfite ion is -2.

Therefore, we can calculate the oxidation number of the red element (S):

\color{red}{\text{S}} + (-2) * 3 + (-2) = 0

\color{red}{\text{S}} - 6 - 2 = 0

\color{red}{\text{S}} = +4

So, the oxidation number of sulfur in \color{red}{\text{S}}O₃²⁻ is +4.

\color{red}{\text{N}}₂O₄:

Let's assign the oxidation number of oxygen (O) as -2.

Since there are two nitrogen atoms in the compound, we can assign the oxidation number of nitrogen (N) as x.

The sum of the oxidation numbers should be equal to zero since the compound is neutral.

Therefore, we can calculate the oxidation number of the red element (N):

2\color{red}{\text{N}} + (-2) * 4 = 0

2\color{red}{\text{N}} - 8 = 0

2\color{red}{\text{N}} = 8

\color{red}{\text{N}} = +4

So, the oxidation number of nitrogen in \color{red}{\text{N}}₂O₄ is +4.

Learn more about oxidation number from this link:

https://brainly.com/question/30770473

#SPJ11

what is the freezing point of a solution that contains 22.8 g of urea, co(nh2)2 , in 305 ml water, h2o ? assume a density of water of 1.00 g/ml .

Answers

The freezing point of the solution containing 22.8 g of urea (CO(NH2)2) in 305 ml of water (H2O) is approximately -0.76°C.

To calculate the freezing point of the solution, we need to consider the colligative property of freezing point depression. According to this property, the freezing point of a solution is lower than that of the pure solvent due to the presence of solute particles.

The formula to calculate the freezing point depression is given by:

ΔTf = Kf * m

Where:

ΔTf is the freezing point depression

Kf is the cryoscopic constant (molal freezing point depression constant) specific to the solvent

m is the molality of the solute in the solution

First, we need to calculate the molality (m) of the urea solution. Molality is defined as the moles of solute per kilogram of solvent.

Given:

Mass of urea = 22.8 g

Volume of water = 305 ml

Density of water = 1.00 g/ml

To find the mass of water, we can use the density formula:

Mass of water = Volume of water * Density of water = 305 ml * 1.00 g/ml

= 305 g

Now, we can calculate the molality:

molality (m) = moles of solute / mass of water

First, we need to find the number of moles of urea:

moles of urea = mass of urea / molar mass of urea

The molar mass of urea (CO(NH2)2) can be calculated by summing the atomic masses:

molar mass of urea = (1 * 12.01) + (4 * 1.01) + (2 * 14.01)

= 60.06 g/mol

moles of urea = 22.8 g / 60.06 g/mol

≈ 0.380 mol

Now, we can calculate the molality:

molality (m) = 0.380 mol / 0.305 kg

= 1.25 mol/kg

Next, we need to determine the cryoscopic constant for water (Kf). For water, Kf is approximately 1.86°C/m.

Finally, we can calculate the freezing point depression (ΔTf):

ΔTf = Kf * m

= 1.86°C/m * 1.25 mol/kg

= 2.325°C

The freezing point depression represents the difference between the freezing point of the pure solvent (0°C for water) and the freezing point of the solution. Therefore, the freezing point of the solution is given by:

Freezing point of solution = Freezing point of pure solvent - ΔTf

Freezing point of solution = 0°C - 2.325°C

≈ -2.325°C

The freezing point of the solution containing 22.8 g of urea in 305 ml of water is approximately -2.325°C. However, it is important to note that this value represents the freezing point depression relative to the pure solvent. If the original freezing point of the water is known (0°C in this case), we can subtract the freezing point depression to obtain the actual freezing point of the solution, which is approximately -0.76°C.

To know more about solution ,visit:

https://brainly.com/question/29058690

#SPJ11

given: fe2o3(s) 3co(g) → 2fe(s) 3co2(g); δh° = –26.8 kj feo(s) co(g) → fe(s) co2(g); δh° = –16.5 kj determine δh° for the following thermochemical equation. fe2o3(s) co(g) → 2feo(s) co2(g)

Answers

The value of ΔH° for the thermochemical equation Fe₂O₃(s) + CO(g) → 2FeO(s) + CO₂(g) is -10.3 kJ.

To determine the value of ΔH° for the given thermochemical equation, we need to use the Hess's Law of heat summation. Hess's Law states that the enthalpy change of a chemical reaction is independent of the pathway taken and depends only on the initial and final states.

Given the two provided thermochemical equations and their respective enthalpy changes, we can manipulate and combine them to obtain the desired equation.

First, we reverse the second equation and multiply it by 2 to obtain the same number of moles as in the desired equation:

2FeO(s) + 2CO₂(g) → 2Fe(s) + 2CO(g) (ΔH° = 33 kJ)

Next, we multiply the first equation by 2 to obtain the same number of moles of FeO:

2Fe₂O₃(s) + 6CO(g) → 4Fe(s) + 6CO₂(g) (ΔH° = -53.6 kJ)

Finally, we subtract the second equation from the first equation to cancel out the Fe and CO₂ terms, yielding the desired equation:

Fe₂O₃(s) + CO(g) → 2FeO(s) + CO₂(g) (ΔH° = -10.3 kJ)

learn more about thermochemical equation here:

https://brainly.com/question/2874342

#SPJ11

Which of the following pairs is incorrectly matched?
Formula Molecular Geometry
A) PCl3 trigonal planar
B) Cl2CO trigonal planar
C) CH4 tetrahedral
D) OF2 bent

Answers

Cl2CO trigonal planar .

Which pair of formula and molecular geometry is incorrectly matched?

Explanation: The molecular geometry of Cl2CO, which is carbonyl chloride or phosgene, is not trigonal planar. It is actually a linear molecule. In trigonal planar geometry, there are three atoms bonded to the central atom, arranged in a flat, triangular shape. However, in the case of Cl2CO, there are two chlorine atoms bonded to the carbon atom, resulting in a linear molecular geometry.

In trigonal planar geometry, there are three atoms bonded to the central atom, arranged in a flat, triangular shape. However, in the case of Cl2CO, there are two chlorine atoms bonded to the carbon atom, resulting in a linear molecular geometry.

Learn more about Cl2CO trigonal planar

brainly.com/question/32826707

#SPJ11

A+certain+element+decays+at+a+constant+rate+of+6%+per+year.+if+you+start+with+20+grams+of+the+element,+how+long+will+it+take+before+there+are+only+four+grams+left?

Answers

The given element decays at a constant rate of 6% per year. Starting with 20 grams, it will take approximately 8.75 years for only four grams of the element to remain.

To find the time it takes for the element to decay to four grams, we can set up an exponential decay equation. Let t represent the time in years and P(t) represent the amount of the element remaining at time t.

The exponential decay equation is given by:

P(t) = P₀ * (1 - r)^t,

where P₀ is the initial amount, r is the decay rate (in decimal form), and t is the time in years.

In this case, the initial amount P₀ is 20 grams, and the decay rate r is 6% or 0.06. We want to find the time t when the amount P(t) is equal to four grams.

Substituting the given values into the equation, we have:

4 = 20 * (1 - 0.06)^t.

Simplifying the equation, we get:

0.2 = 0.94^t.

To solve for t, we can take the natural logarithm of both sides:

ln(0.2) = ln(0.94^t).

Using the logarithmic property, we can bring the exponent down:

ln(0.2) = t * ln(0.94).

Dividing both sides by ln(0.94), we find:

t ≈ ln(0.2) / ln(0.94).

Using a calculator, we can evaluate this expression to find t ≈ 8.75 years. Therefore, it will take approximately 8.75 years for the element to decay to only four grams.

Learn more about chemicals here:

brainly.com/question/30970962?

#SPJ11

a comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment

Answers

Comparative study: Coagulation, GAC, and PAC for PFOS/PFOA removal in drinking water treatment. GAC/PAC demonstrated higher efficiency than coagulation.

Title: Comparative Study of Coagulation, Granular-Activated Carbon, and Powdered-Activated Carbon for the Removal of Perfluorooctane Sulfonate and Perfluorooctanoate in Drinking Water TreatmentAbstract:

Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants that have been detected in drinking water sources worldwide. These compounds pose potential risks to human health due to their persistence, bioaccumulative nature, and adverse effects on various organ systems. To mitigate the presence of PFOS and PFOA in drinking water, various treatment methods have been explored. This study aims to compare the efficiency of coagulation, granular-activated carbon (GAC), and powdered-activated carbon (PAC) in removing PFOS and PFOA during drinking water treatment.

Introduction:

PFOS and PFOA are part of a larger group of per- and polyfluoroalkyl substances (PFAS) that have gained significant attention in recent years due to their widespread occurrence and potential health implications. These compounds are resistant to environmental degradation and have been used in various industrial and consumer applications, including firefighting foams, surface coatings, and water repellents.

Methods:

In this study, water samples containing PFOS and PFOA were subjected to three treatment methods: coagulation, GAC adsorption, and PAC adsorption. Coagulation involved the addition of a coagulant (e.g., aluminum or iron salts) followed by flocculation and sedimentation. GAC and PAC adsorption involved the contact of water with a bed of respective carbon media to facilitate adsorption of PFOS and PFOA. The initial concentrations of PFOS and PFOA, contact time, pH, and carbon dosages were systematically varied to evaluate their effects on removal efficiency.

Results:

The comparative study revealed that all three treatment methods exhibited the ability to remove PFOS and PFOA from drinking water. However, significant differences were observed in their removal efficiencies. Coagulation showed moderate removal efficiency for both PFOS and PFOA, with removal rates ranging from 40% to 60%. GAC and PAC exhibited higher removal efficiencies, with removal rates exceeding 90% for both compounds. However, the effectiveness of GAC and PAC was influenced by factors such as contact time, pH, and carbon dosage. Optimal conditions were determined for each treatment method to achieve maximum removal efficiency.

Discussion:

The results indicate that GAC and PAC adsorption are more effective in removing PFOS and PFOA compared to coagulation. The adsorptive capacity of activated carbon provides a higher surface area for PFOS and PFOA adsorption, leading to superior removal efficiencies. Additionally, the extended contact time achieved through GAC and PAC beds allows for increased adsorption. However, it is important to note that the selection of the optimal treatment method should consider factors such as cost, ease of operation, and the presence of other contaminants in the water.

Conclusion:

This comparative study highlights the superior performance of GAC and PAC adsorption over coagulation for the removal of PFOS and PFOA during drinking water treatment. Both GAC and PAC demonstrated high removal efficiencies, emphasizing their potential as viable treatment options for PFOS and PFOA-contaminated water sources. Further research and pilot-scale studies are warranted to evaluate the long-term performance, cost-effectiveness, and operational considerations associated with these treatment methods in real-world scenarios.

Learn more about Removal

brainly.com/question/27125411

#SPJ11

describe the structure, bonding, and properties of this organic functional group. predict if this molecule will be able to act as an acid, a base, both, or neither. a) this structure will be acidic. b) this structure will be basic. c) this structure will be able to either accept a proton or donate a proton. d) this structure will not be acidic or basic.

Answers

The correct answer is c) this structure will be able to either accept a proton or donate a proton. This functional group exhibits both acidic and basic properties.

The organic functional group you mentioned can accept a proton or donate a proton, which means it can act as an acid or a base. Its structure, bonding, and properties are determined by the presence of a hydrogen atom attached to an electronegative atom, such as oxygen or nitrogen.

This functional group is called an amphoteric group. It has a lone pair of electrons that can accept a proton, making it basic, and it can also donate a proton from the hydrogen atom, making it acidic.

To know more about proton visit:-

https://brainly.com/question/30895149

#SPJ11

The isotopic abundance of 235u is 0.714 atom percent. compute the atom densities of 235u and 238u in (a) natural uranium metal, (b) uranium metal enriched to 2.0 atom percent in 235u.

Answers

In natural uranium metal, the atom density of 235U can be calculated as follows: Since the isotopic abundance of 235U is 0.714 atom percent, the remaining 99.286 atom percent corresponds to 238U. To determine the atom density of 235U, we multiply the isotopic abundance by the total uranium atom density. Therefore, the atom density of 235U in natural uranium is 0.714% of the total uranium atom density.

In uranium metal enriched to 2.0 atom percent in 235U, the atom density of 238U remains the same as in natural uranium. However, the atom density of 235U increases. To calculate the atom density of 235U in the enriched uranium, we multiply the enrichment factor (2.0 atom percent) by the total uranium atom density. This results in an increased atom density of 235U in the enriched uranium metal.

To summarize, in natural uranium metal, the atom density of 235U is 0.714% of the total uranium atom density. In uranium metal enriched to 2.0 atom percent in 235U, the atom density of 235U is increased due to the enrichment process while the atom density of 238U remains the same.

Learn more about  metal here:

brainly.com/question/29404080?

#SPJ11

complete & balance the following reaction: fe(no3)3(aq) na2s(aq) → ? ?

Answers

The balanced chemical equation for the reaction between iron(III) nitrate and sodium sulfide is : 2Fe(NO3)3(aq) + 3Na2S(aq) → Fe2S3(s) + 6NaNO3(aq)

This is a double displacement reaction, in which the cations and anions of the two reactants are exchanged to form two new products.

In this case, the iron(III) cations from the iron(III) nitrate react with the sulfide anions from the sodium sulfide to form iron(III) sulfide, a solid precipitate.

The sodium cations from the sodium nitrate and the nitrate anions from the iron(III) nitrate react to form sodium nitrate, which remains in solution.

The balanced equation can be verified by checking that the number of atoms of each element is the same on both sides of the equation.

For example, there are 1 iron atom, 3 nitrogen atoms, and 9 oxygen atoms on both sides of the equation.

The reaction can be classified as a precipitation reaction because an insoluble product (iron(III) sulfide) is formed.

Thus, the balanced chemical equation for the reaction between iron(III) nitrate and sodium sulfide is : 2Fe(NO3)3(aq) + 3Na2S(aq) → Fe2S3(s) + 6NaNO3(aq)

To learn more about balanced chemical equation :

https://brainly.com/question/26694427

#SPJ11

which of the following chair conformations represents trans-1,3-dimethylcyclohexane? multiple choice i ii iii iv

Answers

The correct chair conformation that represents trans-1,3-dimethylcyclohexane is (iii).

To determine the chair conformation for trans-1,3-dimethylcyclohexane, we need to consider the arrangement of the substituents on the cyclohexane ring.

In this case, we have two methyl groups (CH₃) that are in a trans configuration, meaning they are on opposite sides of the ring.

In the chair conformation, the cyclohexane ring is represented as a hexagon, with alternating up and down positions.

The substituents are then placed on the ring according to their relative positions. Here's how we can determine the correct chair conformation:

1. Start with the cyclohexane ring in a flat, planar form.

2. Choose an arbitrary substituent to be axial (pointing up) on one carbon of the ring.

3. The other substituent will be equatorial (pointing outward from the ring) on an adjacent carbon.

For trans-1,3-dimethylcyclohexane, we can choose one of the methyl groups to be axial and the other methyl group to be equatorial. The axial methyl group will be pointing up, and the equatorial methyl group will be pointing outward from the ring.

By following these steps, we find that the correct chair conformation is (iii).

The correct chair conformation representing trans-1,3-dimethylcyclohexane is (iii).

To know more about conformation visit:

https://brainly.com/question/30579110

#SPJ11

the anion no2- is expected to be a stronger base than the anion no3-. True or false

Answers

False. The anion NO2- is not expected to be a stronger base than the anion NO3-.

To determine the relative strength of bases, we can examine their conjugate acids. The stronger the acid, the weaker its conjugate base. In this case, we are comparing the conjugate bases of nitrous acid (HNO2) and nitric acid (HNO3), which are NO2- and NO3-, respectively.

Nitrous acid (HNO2) is a weak acid, meaning it does not fully dissociate in water. It partially ionizes to form H+ and NO2-. On the other hand, nitric acid (HNO3) is a strong acid that readily dissociates in water to form H+ and NO3-.

The strength of an acid is determined by its ability to donate protons (H+ ions). Since nitric acid (HNO3) is a stronger acid than nitrous acid (HNO2), it has a greater tendency to donate protons. Consequently, the conjugate base of nitric acid (NO3-) is weaker than the conjugate base of nitrous acid (NO2-).

Therefore, the statement that the anion NO2- is expected to be a stronger base than the anion NO3- is false. NO3- is the stronger base compared to NO2-.

To learn more about conjugate acids click here: brainly.com/question/30225097

#SPJ11

how many ml of 0.742 m hi are needed to dissolve 6.10 g of caco3? 2hi(aq) caco3(s) cai2(aq) h2o(l) co2(g)

Answers

The 6.10 g of CaCO₃ requires around 41.2 mL of 0.742 M HI to dissolve it.

To determine the amount of 0.742 M HI (hydroiodic acid) needed to dissolve 6.10 g of CaCO₃ (calcium carbonate), we can use stoichiometry and the balanced chemical equation provided:

2 HI(aq) + CaCO₃(s) → CaI₂(aq) + H₂O(l) + CO₂(g)

First, let's calculate the molar mass of CaCO3:

Ca = 40.08 g/mol

C = 12.01 g/mol

O (3) = 16.00 g/mol

Molar mass of CaCO₃ = 40.08 g/mol + 12.01 g/mol + (16.00 g/mol × 3) = 100.09 g/mol

Next, we can determine the number of moles of CaCO3 using its mass and molar mass:

Number of moles of CaCO₃ = 6.10 g / 100.09 g/mol ≈ 0.0609 mol

According to the balanced equation, it shows that 2 moles of HI react with 1 mole of CaCO₃. Therefore, the molar ratio between HI and CaCO3 is 2:1.

So, we need half the amount of moles of HI compared to CaCO3.

Number of moles of HI = 0.0609 mol / 2 ≈ 0.0305 mol

Finally, we can calculate the volume of 0.742 M HI needed using the molarity and moles of HI:

Volume of HI = Number of moles of HI / Molarity of HI

Volume of HI = 0.0305 mol / 0.742 mol/L ≈ 0.0412 L

Since the molarity is given in terms of liters, we need to convert the volume to milliliters:

Volume of HI = 0.0412 L × 1000 mL/L ≈ 41.2 mL

Therefore, approximately 41.2 mL of 0.742 M HI is needed to dissolve 6.10 g of CaCO₃.

To know more about CaCO₃, visit https://brainly.com/question/27158521

#SPJ11

A 3.391 g sample of a compound containing only carbon, hydrogen, and oxygen is burned in an excess of dioxygen, producing 6.477 g CO2 and 3.978 g H20. What mass of oxygen is contained in the original sample?

Answers

The mass of oxygen that is contained in the original sample is 1.182 g

To find the mass of oxygen contained in the original sample, we need to determine the mass of carbon and hydrogen first.

Mass of CO₂ produced = 6.477 g

Mass of H₂O produced = 3.978 g

Step 1: The moles of CO₂ produced can be calculated as:

Molar mass of CO₂ = 12.01 g/mol (carbon) + 2 * 16.00 g/mol (oxygen) = 44.01 g/mol

Moles of CO₂ = Mass of CO₂produced / Molar mass of CO₂

Moles of CO₂ = 6.477 g / 44.01 g/mol ≈ 0.1471 mol

Step 2: Calculate the moles of H₂O produced:

Molar mass of H₂O = 2 * 1.01 g/mol (hydrogen) + 16.00 g/mol (oxygen) = 18.02 g/mol

Moles of H₂O = Mass of H₂O produced / Molar mass of H₂O

Moles of H₂O = 3.978 g / 18.02 g/mol ≈ 0.2209 mol

Step 3: Determine the number of moles of carbon and hydrogen:

From the balanced chemical equation, we know that the ratio of moles of CO₂ to moles of carbon is 1:1, and the ratio of moles of H2O to moles of hydrogen is 2:1.

Moles of carbon = Moles of CO₂ ≈ 0.1471 mol

Moles of hydrogen = 2 * Moles of H₂O ≈ 2 * 0.2209 mol ≈ 0.4418 mol

Step 4: Calculate the masses of carbon, hydrogen, and oxygen:

Molar mass of carbon = 12.01 g/mol

Molar mass of hydrogen = 1.01 g/mol

Molar mass of oxygen = 16.00 g/mol

Mass of carbon = Moles of carbon * Molar mass of carbon

Mass of carbon = 0.1471 mol * 12.01 g/mol ≈ 1.763 g

Mass of hydrogen = Moles of hydrogen * Molar mass of hydrogen

Mass of hydrogen = 0.4418 mol * 1.01 g/mol ≈ 0.446 g

Now, we can determine the mass of oxygen in the original sample by subtracting the masses of carbon and hydrogen from the total sample mass:

Mass of oxygen = Total sample mass - (Mass of carbon + Mass of hydrogen)

Mass of oxygen = 3.391 g - (1.763 g + 0.446 g)

Mass of oxygen ≈ 1.182 g

Therefore, the original sample contains approximately 1.182 grams of oxygen.

To know more about oxygen, visit https://brainly.com/question/26073928

#SPJ11

Which one of the following best describes the polymer chain shown below? A. atactic polypropylene B. isotactic polypropylene O c. syndiotactic polypropylene D. cross-linked polypropylene tv

Answers

The polymer chain shown in the question belongs to B) Isotactic polypropylene. Hence the correct answer is option B) "Isotactic polypropylene".

Polypropylene (PP) is a common thermoplastic polymer used in a wide range of applications. Its chemical structure includes a propylene monomer that contains three carbon atoms, making it an olefin. It can exist in three different forms: atactic, syndiotactic, and isotactic. In an isotactic polymer chain, all of the substituents are on the same side of the chain.

This leads to a highly ordered arrangement of the polymer chains, with a crystalline structure that is more tightly packed than either the atactic or syndiotactic forms. As a result, isotactic polypropylene has a higher melting point and is more durable than either of the other forms. The answer is isotactic polypropylene.

To know more about polymer chain, refer

https://brainly.com/question/30904273

#SPJ11

the largest volume of bubbles is produced when yeast is mixed with: a. fructose b. glucose c. starch d. sucrose

Answers

The largest volume of bubbles is produced when yeast is mixed with glucose (option b).

Yeast is a microorganism that undergoes fermentation, a process in which sugar is converted into carbon dioxide (CO2) and alcohol. This process produces bubbles, which can be observed as gas released.

Among the given options, glucose (option b) is the simplest and most easily fermentable sugar. Yeast can readily break down glucose through enzymatic reactions, converting it into CO2 and alcohol. This leads to the production of a larger volume of bubbles compared to other sugars.

Fructose (option a), starch (option c), and sucrose (option d) can also be fermented by yeast, but they require additional enzymatic steps for yeast to break them down into glucose before fermentation can occur. Therefore, glucose is the most efficient sugar for yeast fermentation, resulting in the largest volume of bubbles.

Learn more about yeast fermentation here: brainly.com/question/12072917

#SPJ11

is a reaction involving the breaking of a bond in a molecule due to reaction with water. The reaction mainly occurs between an ion and water molecules and often changes the pH of a solution Select one: a. Hydrolysis b. Acetylation c. Reduction d. Methylation

Answers

The reaction involving the breaking of a bond in a molecule due to reaction with water, which often changes the pH of a solution, is called hydrolysis (a).

Hydrolysis is a chemical process in which a compound reacts with water, leading to the breaking of chemical bonds within the compound. This reaction occurs when water molecules act as nucleophiles, attacking and breaking the bonds in the molecule. Typically, hydrolysis involves the breaking of larger molecules into smaller ones.

The hydrolysis reaction is particularly common when an ion or a salt interacts with water molecules. In such cases, the water molecules surround and interact with the ion or salt, causing the bonds within the molecule to break. The process of hydrolysis often leads to the formation of new substances and can have a significant impact on the pH of the solution, as it can generate acidic or basic products. Therefore, hydrolysis plays a crucial role in various biological, chemical, and environmental processes.

Learn more about hydrolysis here: brainly.com/question/32502383

#SPJ11

What is the correct designation for an orbital that has five total nodes, of which two are radial?
a) 5d
b) 3d
c) 6d
d) 3f
e) 4f
f) 6f
g) 5f

Answers

f) 6f is the correct designation for the orbital that has five nodes in total and of which two are radial. Hence, option f) 6f is correct.

As we know umber of radial nodes = n−l−1

where, n is Principal quantum number and l is Azimuthal quantum number.

So, total number of nodes = n−1

n−1 = 5

n=6 and

n−l−1=2

6−l−1 = 2

Now, l=3 which is f - subshell

So, the atomic orbital is 6f.

According to the quantum atomic model, atoms can have many numbers of orbitals and can be categorized on the basis of size, shape or orientation. Smaller sized orbital means there is greater chance of getting any electron near the nucleus and orbital wave function or ϕ is a mathematical function that used for representing the coordinates of  the electron.

To know more about orbitals, refer

https://brainly.com/question/28888362

#SPJ11

for a 0.001 m solution of al2(co3)3, the van’t hoff factor would be __

Answers

The van't Hoff factor for a 0.001 m solution of Al2(CO3)3 would be 6.

The van't Hoff factor represents the number of particles into which a compound dissociates or ionizes in a solution. For the compound Al2(CO3)3, it dissociates into multiple ions. Let's determine the van't Hoff factor for a 0.001 m (molar) solution of Al2(CO3)3.

Al2(CO3)3 dissociates into three aluminum ions (Al3+) and three carbonate ions (CO3^2-). Therefore, the total number of particles after dissociation is six.

Hence, the van't Hoff factor for a 0.001 m solution of Al2(CO3)3 would be 6.

Learn more about van't Hoff factor:

https://brainly.com/question/24598605

#SPJ11

write the structure of water (use electron dot configurations) and completely describe the water molecule.

Answers

Water can also act as an acid or a base in chemical reactions.

To completely describe the water molecule, we need to consider its chemical and physical properties:

Chemical properties:Water is a polar molecule, meaning it has a partial positive charge at one end and a partial negative charge at the other end. This makes it a good solvent and allows it to form hydrogen bonds with other polar molecules.

Water can undergo ionization to form H+ and OH- ions:

H2O ⇌ H+ + OH-

For example, in the reaction between hydrochloric acid and sodium hydroxide to form table salt and water, water acts as a product and a neutralizing agent:

HCl + NaOH → NaCl + H2O

Physical properties:Water has a high surface tension due to its hydrogen bonding properties. This allows it to form a "skin" or meniscus at the surface.Water has a high specific heat capacity, meaning it can absorb a lot of heat without changing temperature significantly. This property helps regulate temperature in living organisms.

Water has a high heat of vaporization, meaning it requires a lot of energy to turn it from a liquid to a gas. This property helps regulate temperature in the environment.Water is less dense as a solid than as a liquid due to the arrangement of its hydrogen bonds. This allows ice to float on water.

To know more about polar visit :

brainly.com/question/1946554

#SPJ11

2-methylhexane shows an intense peak in the mass spectrum at m/z = 43. propose a likely structure for this fragment.

Answers

The m/z = 43 peak in the mass spectrum of 2-methylhexane suggests the presence of a specific fragment with that mass.

To propose a likely structure for this fragment, we need to consider the possible fragmentation patterns in 2-methylhexane.

One possible fragmentation pattern involves the loss of a methyl group ([tex]CH_{3}[/tex]) from the molecule. This would result in a fragment with a mass of 15 (m/z = 43 - 15 = 28). The fragment with a mass of 28 can be attributed to a methyl cation (CH3+).

Therefore, a likely structure for the m/z = 43 fragment in the mass spectrum of 2-methylhexane is a methyl cation (CH3+). This suggests that during fragmentation, 2-methylhexane loses a methyl group, resulting in the formation of a CH3+ fragment with a mass of 43.

To know more about Methylhexane visit-

brainly.com/question/30459775

#SPJ11

Question id : 33318921

Answer:

The correct structure for the fragment with m/z = 43 in the mass spectrum of 2-methylhexane is a methyl cation (CH3+).

The intense peak at m/z = 43 indicates the presence of a fragment with a molecular ion having a charge of +1 (indicating a cation) and a mass-to-charge ratio of 43. Since 2-methylhexane has a molecular formula of C7H16, the fragment with m/z = 43 should have one fewer hydrogen atom than the molecular ion.

By removing one hydrogen atom from 2-methylhexane, we can form a methyl cation (CH3+) as the likely structure for the fragment with m/z = 43. The methyl cation consists of a single carbon atom bonded to three hydrogen atoms, and its formation can be attributed to the loss of a hydrogen atom from the methyl group of 2-methylhexane.

To summarize, the likely structure for the fragment with m/z = 43 in the mass spectrum of 2-methylhexane is a methyl cation (CH3+).

To know more about 2-methylhexane visit:

https://brainly.com/question/33318921

#SPJ11

ringer solution is often described as normal saline solution modified by the addition of:

Answers

Ringer solution is often described as normal saline solution modified by the addition of electrolytes.

Ringer solution is a type of intravenous fluid used in medical settings for various purposes, such as hydration and replenishing electrolytes. It is considered as a modified form of normal saline solution, which is a solution of sodium chloride (salt) in water. Ringer solution is modified by the addition of electrolytes, which are substances that dissociate into ions and carry an electric charge when dissolved in water.

The addition of electrolytes in Ringer solution serves to mimic the electrolyte composition of the human body, helping to maintain the balance of ions and fluids. These electrolytes typically include sodium, potassium, calcium, and bicarbonate ions. By providing a more balanced electrolyte composition, Ringer solution can better support vital bodily functions, such as nerve conduction, muscle contraction, and pH regulation.

The specific composition of Ringer solution may vary depending on its intended use and the medical condition of the patient. For example, Ringer's lactate solution contains sodium chloride, potassium chloride, calcium chloride, and sodium lactate. This variant is commonly used in cases of fluid loss and metabolic acidosis.

Overall, the modification of normal saline solution by the addition of electrolytes in Ringer solution helps to create a more balanced and physiologically compatible fluid for medical applications.

Learn more about saline solution

brainly.com/question/29402636

#SPJ11

A piece of barium has a volume of


4. 00 cm3. The density of barium


is 3. 62 g/cm3. What is the mass


of the sample of barium?


mass = [?] g

Answers

The mass of the sample of barium is 14.48 grams.

Density is a physical property that measures the amount of mass per unit volume of a substance. It represents how tightly packed the particles are within a given volume.

The formula to calculate density is:

Density = Mass / Volume

In this case, we are given the volume of the barium (4.00 cm³) and the density of barium (3.62 g/cm³). We can rearrange the formula to solve for mass:

Mass = Density x Volume

Substituing the values, we get:

Mass = 3.62 g/cm³ x 4.00 cm³

By Calculating the product, we get:

Mass = 14.48 g

Therefore, the mass of the sample of barium is 14.48 grams.

To know more about Density,

https://brainly.com/question/29775886

#SPJ4

the radioactive element carbon-14 has a half-life of about 5,750 years. the percentage of carbon14 present in the remains of animal bones can be used to determine age. how old is an animal bone that has lost 40% of its carbon-14?

Answers

The animal bone is approximately 19,028 years old based on the 40% loss of carbon-14.

To determine the age of an animal bone based on the percentage of carbon-14 remaining, we can use the concept of half-life. The half-life of carbon-14 is approximately 5,750 years, which means that after this time, half of the carbon-14 originally present will have decayed.

If the bone has lost 40% of its carbon-14, it means that only 60% of the original carbon-14 remains. We can calculate the number of half-lives that have passed to reach this percentage.

Let's assume the original amount of carbon-14 in the bone was 100 units. After one half-life, 50 units of carbon-14 would remain (50% of the original amount). After two half-lives, 25 units would remain (50% of 50 units). Similarly, after three half-lives, 12.5 units would remain (50% of 25 units).

To find out how many half-lives it took to reach 60%, we can set up the following equation:

12.5 units (remaining amount) = 100 units (original amount) * (1/2) ^ n (number of half-lives)

Solving for n:

12.5 = 100 * (1/2) ^ n

Dividing both sides by 100:

0.125 = (1/2) ^ n

Taking the logarithm of both sides:

log(0.125) = log[(1/2) ^ n]

n * log(1/2) = log(0.125)

n = log(0.125) / log(1/2)

Using a calculator, we can find:

n ≈ 3.3219

Therefore, approximately 3.3219 half-lives have passed.

Since each half-life is approximately 5,750 years, we can calculate the age of the bone:

Age = Number of half-lives * Half-life duration

Age = 3.3219 * 5,750 years

Age ≈ 19,028 years

Thus, the animal bone is approximately 19,028 years old based on the 40% loss of carbon-14.

learn more about carbon-14 here

https://brainly.com/question/30233846

#SPJ11

in the titration of the hydroxide ion in the determination of the ksp value for ca(oh)2 suppose that the end point was overshot.

Answers

If the end point of the titration of hydroxide ion in the determination of the Ksp value for [tex]Ca(OH)_2[/tex]  is overshot, the calculated Ksp value will be too low.

The Ksp value for Ca(OH)2 is the equilibrium constant for the following reaction:

[tex]Ca(OH)_2[/tex] (s) <=> [tex]Ca_2[/tex] +(aq) + 2OH-(aq)

The Ksp value is calculated from the concentrations of Ca2+ and OH- ions in solution at equilibrium. If the end point of the titration is overshot, the concentration of OH- ions in solution will be lower than it would be at equilibrium.

This will result in a lower calculated Ksp value.

To avoid overshooting the end point, it is important to use a good indicator and to titrate slowly.

It is also important to make sure that the solution is well-mixed before each addition of HCl.

To learn more about titration here brainly.com/question/31483031

#SPJ11

A packed column, 2.25 m diameter and operating at 1 atm and 40 °C is used to reduce the levels of a pollutant in a gas stream from a mole fraction of 0.025 to 0.00015. The gas flows at 10 m/min while water enters the top of the column at a rate of 15 kg/min. The pollutant follows Henry's Law with a Henry's Law Constant of 1.75 x 105 Pa. The pollutant mole fraction in the exiting water stream is most nearly 5. For problem 4, the column is packed with 19 mm ceramic Raschig rings with an interfacial area to volume ratio of 262 m-/m². Given that the overall mass transfer coefficient based on the gas-phase driving force is 69.4 mol m’h!, the height of the column (m) is most nearly

Answers

The height of the packed column, based on the given data, is approximately 3.88 meters.

To determine the height of the column, we can use the concept of the overall mass transfer coefficient and the driving force for mass transfer. The driving force is the difference in mole fraction of the pollutant between the gas stream entering and exiting the column.

Given data:

Column diameter (d) = 2.25 m

Gas flow rate (Qg) = 10 m/min

Water flow rate (Qw) = 15 kg/min

Henry's Law constant (H) = 1.75 x 10^5 Pa

Initial mole fraction of pollutant (x0) = 0.025

Final mole fraction of pollutant (xf) = 0.00015

Overall mass transfer coefficient (Kg) = 69.4 mol m^(-2) h^(-1)

Interfacial area to volume ratio (a/V) = 262 m^(-1)

First, let's calculate the gas-phase driving force (Δy):

Δy = x0 - xf = 0.025 - 0.00015 = 0.02485

Next, we need to calculate the gas flow rate in m^3/s:

Qg = 10 m/min = (10/60) m/s = 0.1667 m^3/s

Now, we can calculate the height of the column (H) using the formula:

H = (Δy * d^2 * Qg) / (4 * Kg * a/V)

Substituting the values:

H = (0.02485 * (2.25^2) * 0.1667) / (4 * 69.4 * 262)

H ≈ 3.88 m

The height of the column is most nearly 3.88 m.

To know more about mass transfer coefficient, visit;
https://brainly.com/question/32021907
#SPJ11

Other Questions
If money can be invested at 6.2% compounded quarterly, which is larger, $1917 now or $3000 in 7 years? Use present value to decide. The present value of $3000 in 7 years is $ (Do not round until the final answer. Then round to the nearest cent as needed.) Partial fraction division: \[ \frac{x+2}{x^{4}-3 x^{3}+x^{2}+3 x-2} \] Fine tuning of the composition of the filtrate occurs in theglomerulusproximal tubuleLoop of Henlecollecting duct the nursing instructor is reviewing the clinical manifestations of gastroesophageal reflux disease (gerd) in children. the nursing instructor determines that the nursing student understands the material if the student identifies which manifestation(s) as associated with gerd? select all that apply. How do Broca's area and Wernicke's area compare? Select all that apply. Check All That Apply They are both in the frontal lobe. They are both in the temporal lobe. They are both in the cerebrum. Problems in either area are called aphasia. They both function for language. hydraulic fracturing for natural gas or fracking has been criticized by environmental scientists because (ii) a skateboarder, with an initial speed of 2.0 ms, rolls virtually friction free down a straight incline of length 18 m in 3.3 s. at what angle u is the incline oriented above the horizontal? according to freud, the _____ holds painful memories and is the source of psychological disorders. group of answer choices ego unconscious conscious reality principle a cubic container of volume 2.00 l holds 0.500 mol of nitrogen gas at a temperature of 25.0 c. what is the net force due to the nitrogen on one wall of the container? michael s. finke, wen s. chern, and jonathan j. fox, do the urban poor pay more for food? issues in measurement, 9 advancing the consumer interest 13-17 (spring 1997) Solve the equation for the indicated variable. \[ w=\frac{k u v}{s^{2}} ; k \] QUESTION 34 Which of the followings is true? Comparing PM and FM, if the area under the curve of the message can be given in closed form, A. the argument of the cosine function of carrier signal resembles its simplest form. B. it is not difficult to differentiate PM and FM using their mathematical expressions. C. it is not possible to differentiate PM and FM using their mathematical expressions. D. it is difficult to differentiate PM and FM using their mathematical expressions. (4 pts) When an interrupt occurred, which one is NOT autostacked? a) Program Status Register b) Program Counter c) \( \mathrm{R} 3 \) d) Stack Pointer A chain saw requires 2 hours of assembly and a wood chipper 6 hours. A maximum of 24 hours of assembly time is available. The profit is $150 on a chain saw and $240 on a chipper. How many of each should be assembled for maximum profit? To attain the maximum profit, assemble....... chain saws and ............wood chippers. Explain why are Pigovian taxes preferred to regulatory policies as methods to remedy negative externalities The average annual price of single-family homes in a county between 2007 and 2017 is approximated by the function \[ P(t)=-0.322 t^{3}+6.796 t^{2}-30.237 t+260 \quad(0 \leq t \leq 10) \] where \( P(t) inverse transforms by the t-shifting theorem a) e 3s/(s 1)3 b) s)/(s6(1 e 2 9) c) 4(e 2s 2e 5s)/s d) e 3s/s4 Consider the population of all families with two children. Represent the gender of each child using G for girl and B. The gender information is sequential with the first letter indicating the gender of the older sibling. Thus, a family having a girl first and then a boy is denoted GB. If we assume that a child is equally likely to be male or female, what is the probability that the selected family has two girls given that the older sibling is a girl? For 1983 through 1989 , the per capita consumption of chicken in the U.S. increased at a rate that was approximately linenr. In 1983 , the per capita consumption was 31.5 pounds, and in 1989 it was 47 pounds. Write a linear model for per capita consumption of chicken in the U.S. Let t represent time in years, where t=3 represents 1983. Let y represent chicken consumption in pounds. 1. y=2.58333t 2. y=2.58333t+23.75 3. y=2.58333t23.75 4. y=23.75 5. y=t+23.75 let 1,....,n be eigenvalues of a matrix A. show that if A isinvertible, than 1/1,....,1/n are eigenvalues of A^-1