A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 11 times the instantaneous velocity. Determine the equations of motion if the following is true?

a. the mass is initially released from rest from a point 1 meter below the equilibrium position
b. the mass is initially released from a point 1 meter below the equilibrium position with an upward velocity of 11 m/s

Answers

Answer 1

Answer:

Let [tex]x(t)[/tex] denote the position (in meters, with respect to the equilibrium position of the spring) of this mass at time [tex]t[/tex] (in seconds.) Note that this question did not specify the direction of this motion. Hence, assume that the gravity on this mass can be ignored.

a. [tex]\displaystyle x(t) = -\frac{9}{7}\, e^{-2 t} + \frac{2}{7}\, e^{-9 t}[/tex].

b. [tex]\displaystyle x(t) = \frac{2}{7}\, e^{-2 t} - \frac{9}{7}\, e^{-9 t}[/tex].

Explanation:

Let [tex]x[/tex] denote the position of this mass (in meters, with respect to the equilibrium position of the spring) at time [tex]t[/tex] (in seconds.) Let [tex]x^\prime[/tex] and [tex]x^{\prime\prime}[/tex] denote the first and second derivatives of  [tex]x[/tex], respectively (with respect to time [tex]t[/tex].)

[tex]x^\prime[/tex] would thus represent the velocity of this mass.[tex]x^{\prime\prime}[/tex] would represent the acceleration of this mass.

Constructing the ODE

Construct an equation using [tex]x[/tex], [tex]x^\prime[/tex], and [tex]x^{\prime\prime}[/tex], with both sides equal the net force on this mass.

The first equation for the net force on this mass can be found with Newton's Second Law of motion. Let [tex]m[/tex] denote the size of this mass. By Newton's Second Law of motion, the net force on this mass would thus be equal to:

[tex]F(\text{net}) = m\, a = m\, x^{\prime\prime}[/tex].

The question described another equation for the net force on this mass. This equation is the sum of two parts:

The restoring force of the spring: [tex]F(\text{spring}) = -k\, x[/tex], where [tex]k[/tex] denotes the constant of this spring.The damping force: [tex]F(\text{damping}) = - 11\,x^\prime[/tex] according to the question. Note the negative sign in this expression- the damping force should always oppose the direction of motion.

Assume that there's no other force on this mass. Combine the restoring force and the damping force obtain an expression for the net force on this mass:

[tex]F(\text{net}) = -k\, x - 11\, x^\prime[/tex].

Combine the two equations for the net force on this mass to obtain:

[tex]m\, x^{\prime\prime} = -k\, x - 11\, x^\prime[/tex].

From the question:

Size of this mass: [tex]m = 1\; \rm kg[/tex].Spring constant: [tex]k = 18\; \rm N \cdot m^{-1}[/tex].

Hence, the equation will become:

[tex]x^{\prime\prime} = -18\, x - 11\, x^\prime[/tex].

Rearrange to obtain:

[tex]x^{\prime\prime} + 11\, x^\prime + 18\; x = 0[/tex].

Finding the general solution to this ODE

[tex]x^{\prime\prime} + 11\, x^\prime + 18\; x = 0[/tex] fits the pattern of a second-order homogeneous ODE with constant coefficients. Its auxiliary equation is:

[tex]m^2 + 11\, m + 18 = 0[/tex].

The two roots are:

[tex]m_1 = -2[/tex], and[tex]m_2 = -9[/tex].

Let [tex]c_1[/tex] and [tex]c_2[/tex] denote two arbitrary real constants. The general solution of a second-order homogeneous ODE with two distinct real roots [tex]m_1[/tex] and [tex]m_2[/tex] is:

[tex]x = c_1\, e^{m_1\cdot t} + c_2\, e^{m_2\cdot t}[/tex].

For this particular ODE, that general solution would be:

[tex]x = c_1\, e^{-2 t} + c_2\, e^{-9 t}[/tex].

Finding the particular solutions to this ODE

Note, that if [tex]x(t) = c_1\, e^{-2 t} + c_2\, e^{-9 t}[/tex] denotes the position of this mass at time [tex]t[/tex], then [tex]x^\prime(t) = -2\,c_1\, e^{-2 t} -9\, c_2\, e^{-9 t}[/tex] would denote the velocity of this mass at time

The position at time [tex]t = 0[/tex] would be [tex]x(0) = c_1 + c_2[/tex].The velocity at time [tex]t = 0[/tex] would be [tex]x^\prime(0) = -2\, c_1 - 9\, c_2[/tex].

For section [tex]\rm a.[/tex]:

[tex]\left\lbrace\begin{aligned}& x(0) = -1 \\ &x^\prime(0) = 0\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 + c_2 = -1 \\ &-2\, c_1 - 9\, c_2 = 0\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 = -\frac{9}{7} \\ &c_2 = \frac{2}{7}\end{aligned}\right.[/tex].

Hence, the particular solution for section [tex]\rm a.[/tex] will be:

[tex]\displaystyle x(t) = -\frac{9}{7}\, e^{-2 t} + \frac{2}{7}\, e^{-9 t}[/tex].

Similarly, for section [tex]\rm b.[/tex]:

[tex]\left\lbrace\begin{aligned}& x(0) = -1 \\ &x^\prime(0) = 11\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 + c_2 = -1 \\ &-2\, c_1 - 9\, c_2 = 11\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 = \frac{2}{7} \\ &c_2 = -\frac{9}{7}\end{aligned}\right.[/tex].

Hence, the particular solution for section [tex]\rm b.[/tex] will be:

[tex]\displaystyle x(t) = \frac{2}{7}\, e^{-2 t} - \frac{9}{7}\, e^{-9 t}[/tex].


Related Questions

Calculate the power of the eye in D when viewing an object 5.70 m away. (Assume the lens-to-retina distance is 2.00 cm. Enter your answer to at least one decimal place.)

Answers

Answer:

Power=50.17dioptre

Power=50.17D

Explanation:

P=1/f = 1/d₀ + 1/d₁

Where d₀ = the eye's lens and the object distance= 5.70m=

d₁= the eye's lens and the image distance= 0.02m

f= focal length of the lense of the eye

We know that the object can be viewed clearly by the person ,then image and lens of the eye's distance needs to be equal with the retinal and the eye lens distance and this distance is given as 0.02m

Therefore, we can calculate the power using above formula

P= 1/5.70 + 1/0.02

Power=50.17dioptre

Therefore, the power the eye's is using to see the object from distance is 5.70D

An 1300-turn coil of wire that is 2.2 cmcm in diameter is in a magnetic field that drops from 0.14 TT to 0 TT in 9.0 msms . The axis of the coil is parallel to the field.
What is the emf of the coil? (in V)

Answers

Answer:

The induced  emf is  [tex]\epsilon =7.68 \ V[/tex]

Explanation:

From the question we are told that

     The number of turns is  [tex]N = 1300 \ turns[/tex]

    The diameter is  [tex]d = 2.2 \ cm = 2.2*10^{-2}[/tex]

     The initial magnetic field is  [tex]B_i = 0.14 \ T[/tex]

      The final magnetic field is  [tex]B_f = 0 \ T[/tex]

      The  time taken is  [tex]dt = 9.0ms = 9.0*10^{-3} \ s[/tex]

 

The radius is mathematically evaluated as

      [tex]r = \frac{d}{2 }[/tex]

substituting values

     [tex]r = \frac{2.2 *10^{-2}}{2 }[/tex]

     [tex]r = 1.1*10^{-2} \ m[/tex]

The induced emf is mathematically represented as

    [tex]\epsilon =- N * \frac{d\phi }{dt }[/tex]

Where  [tex]d\phi[/tex] is the change in magnetic field which is mathematically represented as

        [tex]d\phi = dB * A * cos\theta[/tex]

=>   [tex]d\phi = [B_f - B_i ] * A * cos\theta[/tex]

Here  [tex]\theta = 0[/tex] given that the axis of the coil is parallel to the field

Also A is the cross-sectional area which is mathematically represented as

       [tex]A = \pi r^2[/tex]

substituting values

      [tex]A = 3.142 * [1.1*10^{-2}]^2[/tex]

       [tex]A = 3.8 *10^{-4] \ m^2[/tex]

So

    [tex]d\phi = [0 - 0.14 ] * 3.8*10^{-4}[/tex]

    [tex]d\phi = -5.32*10^{-5} \ weber[/tex]

So  

     [tex]\epsilon =- 1300 * \frac{-5.32*10^{-5} }{ 9.0*10^{-3} }[/tex]

    [tex]\epsilon =7.68 \ V[/tex]

A magnetic field is entering into a coil of wire with radius of 2(mm) and 200 turns. The direction of magnetic field makes an angle 25° in respect to normal to surface of coil. The magnetic field entering coil varies 0.02 (T) in every 2 seconds. The two ends of coil are connected to a resistor of 20 (Ω).
A) Calculate Emf induced in coil
B) Calculate the current in resistor
C) Calculate the power delivered to resistor by Emf

Answers

Answer:

a) 2.278 x 10^-5 volts

b) 1.139 x 10^-6 Ampere

c) 2.59 x 10^-11 W

Explanation:

The radius of the wire r = 2 mm = 0.002 m

the number of turns N = 200 turns

direction of the magnetic field ∅ = 25°

magnetic field strength B = 0.02 T

varying time = 2 sec

The cross sectional area of the wire = [tex]\pi r^{2}[/tex]

==> A = 3.142 x [tex]0.002^{2}[/tex] = 1.257 x 10^-5 m^2

Field flux Φ = BA cos ∅ = 0.02 x 1.257 x 10^-5 x cos 25°

==> Φ = 2.278 x 10^-7 Wb

The induced EMF is given as

E = NdΦ/dt

where dΦ/dt = (2.278 x 10^-7)/2 = 1.139 x 10^-7

E = 200 x 1.139 x 10^-7 = 2.278 x 10^-5 volts

b) If the two ends are connected to a resistor of 20 Ω, the current through the resistor is given as

[tex]I[/tex] = E/R

where R is the resistor

[tex]I[/tex] = (2.278 x 10^-5)/20 = 1.139 x 10^-6 Ampere

c) power delivered to the resistor is given as

P = [tex]I[/tex]E

P = (1.139 x 10^-6) x (2.278 x 10^-5) = 2.59 x 10^-11 W

Consider the following spectrum where two colorful lines (A and B) are positioned on a dark background. The violet end of the spectrum is on the left and the red end of the spectrum is on the right. A B 5. (1 point) What is the name for this type of spectrum? 6. (1 point) Transition A is associated with an electron moving between the n= 1 and n= 3 levels. Transition B is associated with an electron moving between the n= 2 and n= 5 levels. Which transition is associated with a photon of longer wavelength?

Answers

Answer:

Explanation:

a )

This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .

b ) The wavelength of a photon  is inversely proportional to its energy .  Photon  due to transition between n = 1 and n = 3 will have higher energy than

that due to transition between n = 2 and n = 5 . So the later photon ( B)  will have greater wavelength or photon  due to transition between n = 2 and n = 5 will have greater wavelength .

If an astronomer wants to find and identify as many stars as possible in a star cluster that has recently formed near the surface of a giant molecular cloud (such as the Trapezium cluster in the Orion Nebula), what instrument would be best for her to use

Answers

Answer:

Infrared telescope and camera

Explanation:

An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.

Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, Infrared images is better used, since they are able to penetrate the surrounding clouds of dust, and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.

A skater spins at 3rev/s when she stretches her arms outward. If she keeps her fists on her chest she can spin at 4.5rev/s and her body inertia is 3kg.m2. What is her body inertia when she stretches her arms outward?

Answers

Answer:

Body inertia I = 4.5 kg/m^2

Explanation:

Here, we want to calculate the body inertia when the arms are stretched outwards.

We know from the question that angular momentum is conserved

Thus;

I * 3 = 4.5 * 3

I = 4.5 kg/m^2

Astronauts increased in height by an average of approximately 40 mm (about an inch and a half) during the Apollo-Soyuz missions, due to the absence of gravity compressing their spines during their time in space. Does something similar happen here on Earth

Answers

Answer:

Yes. Something similar occurs here on Earth.

Explanation:

Gravity tends to pull objects perpendicularly to the ground. In space, the absence of this force means there is no compression on the spine due to gravity trying to pull it down. This means that astronauts undergo an increase in height in space.

Here on Earth, we experience gravity pull on our spine during the day. At night when we sleep, we lie down with our spine parallel to the ground, which means that our spine is no longer under compression from gravity force. The result is that we are a few centimetres taller in the morning when we wake up, than we are before going to bed at night. The increase is not much pronounced here on Earth because there is a repeated cycle of compression and decompression of our spine due to gravity, unlike when compared to that of astronauts that spend long duration in space, all the while without gravity forces on their spine

Describe the orientation of magnetic field lines by drawing a bar magnet, labeling the poles, and drawing several lines indicating the direction of the forces.

Answers

Answer:

A field is a way of mapping forces surrounding any object that can act on another object at a distance without apparent physical connection. The field represents the object generating it. Gravitational fields map gravitational forces, electric fields map electrical forces, and magnetic fields map magnetic forces.

Explanation:

A particle moves in a velocity field V(x, y) = x2, x + y2 . If it is at position (x, y) = (7, 2) at time t = 3, estimate its location at time t = 3.01.

Answers

Answer:

New location at time 3.01 is given by: (7.49, 2.11)

Explanation:

Let's start by understanding what is the particle's velocity (in component form) in that velocity field at time 3:

[tex]V_x=x^2=7^2=49\\V_y=x+y^2=7+2^2=11[/tex]

With such velocities in the x direction and in the y-direction respectively, we can find the displacement in x and y at a time 0.01 units later by using the formula:

[tex]distance=v\,*\, t[/tex]

[tex]distance_x=49\,(0.01)=0.49\\distance_y=11\,(0.01)=0.11[/tex]

Therefore, adding these displacements in component form to the original particle's position, we get:

New position: (7 + 0.49, 2 + 0.11) = (7.49, 2.11)

Consider an electromagnetic wave where the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis.

Required:
In what directions is it possible that the wave is traveling?

Answers

Answer:

The wave is traveling in the y axis direction

Explanation:

Because the wave will always travel in a direction 90° to the magnetic and electric components

Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength is 4.0 mV/m at a point 1.5 m away from the center of the circle. At what rate is the magnetic field changing?

Answers

Answer:

The rate at which the magnetic field changes is  [tex]\frac{\Delta B }{\Delta t } = - 5.33*10^{-3} \ T/ s[/tex]

Explanation:

From the question we are told that

   The  electric field strength is [tex]E = 4.0 mV/m = 4.0 *10^{-3} V/m[/tex]

   The  radius of the  circular region where the electric field is induced is

   [tex]d = 1.5 \ m[/tex]

Generally the induced electric field is mathematically represented as

     [tex]E = - \frac{r}{2} * \frac{\Delta B }{\Delta t }[/tex]

The  negative sign show that the induced electric field is acting in opposite direction to the change in magnetic field

Where  [tex]\frac{\Delta B }{\Delta t }[/tex] is the change in magnetic field

So  

       [tex]\frac{\Delta B }{\Delta t } = - \frac{2 * E }{r}[/tex]

substituting values

       [tex]\frac{\Delta B }{\Delta t } = - \frac{2 * 4.0 *10^{-3}}{ 1.5 }[/tex]

       [tex]\frac{\Delta B }{\Delta t } = - 5.33*10^{-3} \ T/ s[/tex]

Two objects are in all respects identical except for the fact that one was coated with a substance that is an excellent reflector of light while the other was coated with a substance that is a perfect absorber of light. You place both objects at the same distance from a powerful light source so they both receive the same amount of energy U from the light. The linear momentum these objects will receive is such that:

Answers

Answer:

absorbent    p = S / c

reflective         p = 2S/c

Explanation:

The moment of radiation on a surface is

          p = U / c

where U is the energy and c is the speed of light.

In the case of a fully absorbent object, the energy is completely absorbed. The energy carried by the light is given by the Poynting vector.

           p = S / c

in the case of a completely reflective surface the energy must be absorbed and remitted, therefore there is a 2-fold change in the process

           p = 2S/c

Tuning a guitar string, you play a pure 330 Hz note using a tuning device, and pluck the string. The combined notes produce a beat frequency of 5 Hz. You then play a pure 350 Hz note and pluck the string, finding a beat frequency of 25 Hz. What is the frequency of the string note?

Answers

Answer:

The  frequency is  [tex]F = 325 Hz[/tex]

Explanation:

From the question we are told that

    The frequency for the first note is  [tex]F_1 = 330 Hz[/tex]

     The  beat frequency of the first note is  [tex]f_b = 5 \ Hz[/tex]

     The  frequency for the second note is  [tex]F_2 = 350 \ H_z[/tex]

      The  beat frequency of the first note is [tex]f_a = 25 \ Hz[/tex]

Generally beat frequency is mathematically represented as

        [tex]F_{beat} = | F_a - F_b |[/tex]

Where [tex]F_a \ and \ F_b[/tex] are frequencies of two sound source

  Now in the case of this question

For the first note

     [tex]f_b = F_1 - F \ \ \ \ \ ...(1)[/tex]

Where  F is the frequency of the string note

For the second note  

      [tex]f_a = F_2 - F \ \ \ \ \ ...(2)[/tex]

Adding  equation 1 from 2

      [tex]f_b + f_a = F_1 + F_2 + ( - F) + (-F) )[/tex]

      [tex]f_b + f_a = F_1 + F_2 -2F[/tex]

substituting values

       [tex]5 +25 = 330 + 350 -2F[/tex]

=>     [tex]F = 325 Hz[/tex]

       

A piece of electronic equipment that is surrounded by packing material is dropped so that it hits the ground with a speed of 4 m/s. After impact, the equipment experiences an acceleration of a = 2kx, where k is a constant and x is the compression of the packing material. If the packing material experiences a maximum compression of 20 mm, determine the maximum acceleration of the equipment.

Answers

Answer:

Maximum acceleration is 800m/s^2

Explanation:

See attached file

Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.5 m diameter and a mass of 250 kg. Its maximum angular velocity is 1200 rpm.
How long does it take the flywheel to reach top angular speed of 1200 rpm?

Answers

Answer:

t = 2.95 min

Explanation:

Given that,

The diameter of flywheeel, d = 1.5 m

Mass of flywheel, m = 250 kg

Initial angular velocity is 0

Final angular velocity, [tex]\omega_f=1200\ rpm = 126\ rad/s[/tex]

We need to find the time taken by the flywheel to each a speed of 1200 rpm if it starts from rest.

Firstly, we will find the angular acceleration of the flywheel.

The moment of inertia of the flywheel,

[tex]I=\dfrac{1}{2}mr^2\\\\I=\dfrac{1}{2}\times 250\times (0.75)^2\\\\I=70.31\ kg-m^2[/tex]

Now,

Let the torque is 50 N-m. So,

[tex]\alpha =\dfrac{\tau}{I}\\\\\alpha =\dfrac{50}{70.31}\\\\\alpha =0.711\ rad/s^2[/tex]

So,

[tex]t=\dfrac{\omega_f-\omega_i}{\alpha }\\\\t=\dfrac{126-0}{0.711}\\\\t=177.21\ s[/tex]

or

t = 2.95 min

At what frequency f, in hertz, would you have to move the comb up and down to produce red light, of wavelength 600 nm

Answers

Answer:

f = 500 x 10^12Hz

Explanation:

E=hc/wavelength

E=hf

hc/wavelength =hf

c/wavelength =f

f = 3 x 10^8 / 600 x 10^-9 = 500 x 10^12Hz

A 4g bullet, travelling at 589m/s embeds itself in a 2.3kg block of wood that is initially at rest, and together they travel at the same velocity. Calculate the percentage of the kinetic energy that is left in the system after collision to that before.

Answers

Answer:

The  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

Explanation:

Given;

mass of bullet, m₁ = 4g = 0.004kg

initial velocity of bullet, u₁ = 589 m/s

mass of block of wood, m₂ = 2.3 kg

initial velocity of the block of wood, u₂ = 0

let the final velocity of the system after collision = v

Apply the principle of conservation of linear momentum

m₁u₁ + m₂u₂ = v(m₁+m₂)

0.004(589) + 2.3(0) = v(0.004 + 2.3)

2.356 = 2.304v

v = 2.356 / 2.304

v = 1.0226 m/s

Initial kinetic energy of the system

K.E₁ = ¹/₂m₁u₁² + ¹/₂m₂u₂²

K.E₁ = ¹/₂(0.004)(589)² = 693.842 J

Final kinetic energy of the system

K.E₂ = ¹/₂v²(m₁ + m₂)

K.E₂ = ¹/₂ x 1.0226² x (0.004 + 2.3)

K.E₂ = 1.209 J

The kinetic energy left in the system = final kinetic energy of the system

The percentage of the kinetic energy that is left in the system after collision to that before = (K.E₂ / K.E₁) x 100%

                       = (1.209 / 693.842) x 100%

                        = 0.174 %

Therefore, the  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

Consider a long rod of mass, m, and length, l, which is thin enough that its width can be ignored compared to its length. The rod is connected at its end to frictionless pivot.
a) Find the angular frequency of small oscillations, w, for this physical pendulum.
b) Suppose at t=0 it pointing down (0 = 0) and has an angular velocity of 120 (that is '(t = 0) = 20) Note that 20 and w both have dimensions of time-1. Find an expression for maximum angular displacement for the pendulum during its oscillation (i.e. the amplitude of the oscillation) in terms of 20 and w assuming that the angular displacement is small.

Answers

Answer:

Explanation:

The rod will act as pendulum for small oscillation .

Time period of oscillation

[tex]T=2\pi\sqrt{\frac{l}{g} }[/tex]

angular frequency ω = 2π / T

= [tex]\omega=\sqrt{\frac{g}{l} }[/tex]

b )

ω = 20( given )

velocity = ω r = ω l

Let the maximum angular displacement in terms of degree be θ .

1/2 m v ² = mgl ( 1 - cosθ ) ,

[ l-lcosθ is loss of height . we have applied law of conservation of mechanical energy .]

.5 (  ω l )² = gl( 1 - cos θ )

.5 ω² l = g ( 1 - cosθ )

1 - cosθ  = .5 ω² l /g

cosθ = 1 - .5 ω² l /g

θ can be calculated , if value of l is given .

Two buses are moving in opposite directions with velocities of 36 km/hr and 108
km/hr. Find the distance between them after 20 minutes.

Answers

Explanation:

It is given that,

Speed of bus 1 is 36 km/h and speed of bus 2 is 108 km/h. We need to find the distance between bus 1 and 2 after 20 minutes.

Time = 20 minutes = [tex]\dfrac{20}{60}\ h=\dfrac{1}{3}\ h[/tex]

As the buses are moving in opposite direction, then the concept of relative velocity is used. So,

Distance, [tex]d=v\times t[/tex]

v is relative velocity, v = 108 + 36 = 144 km/h

So,

[tex]d=144\ km/h \times \dfrac{1}{3}\ h\\\\d=48\ km[/tex]

So, the distance between them is 48 km after 20 minutes.

Determine the position in the oscillation where an object in simple harmonic motion: (Be very specific, and give some reasoning to your answer.) has the greatest speed has the greatest acceleration experiences the greatest restoring force experiences zero restoring force g

Answers

Answer:

Explanation:

The greatest speed is attained at middle point or equilibrium point or where displacement from equilibrium point is zero .

When the object remains at one of the extreme point it experiences greatest acceleration but at that point velocity is zero . Due to acceleration , its velocity goes on increasing till it come to equilibrium point . At this point acceleration becomes zero . After that its velocity starts decreasing because of negative acceleration . Hence at middle point velocity is maximum .

The greatest acceleration is attained at maximum displacement or at one of the two extreme end .

Greatest restoring force too will be at position where acceleration is maximum because acceleration is produced by restoring force .

Restoring force is proportional to displacement or extension against restoring force . So it will be maximum when displacement is maximum .

Zero restoring force exists at equilibrium position or middle point or at point where displacement is zero . It is so because acceleration at that point is zero .

If the magnetic field steadily decreases from BBB to zero during a time interval ttt, what is the magnitude III of the induced current

Answers

Answer:

Using ohms law

The current is found from Ohm's Law.

I = V /R = E /R = Bxy /Rt.

The radius of curvature of the path of a charged particle in a uniform magnetic field is directly proportional toA) the particle's charge.B) the particle's momentum.C) the particle's energy.D) the flux density of the field.E)All of these are correct

Answers

Answer:

B) the particle's momentum.

Explanation:

We know that

The centripetal force  on the particle when its moving in the radius R and velocity V

[tex]F_c=\dfrac{m\times V^2}{R}[/tex]

The magnetic force on the particle when the its moving with velocity V in the magnetic filed B and having charge q

[tex]F_m=q\times V\times B[/tex]

At the equilibrium condition

[tex]F_m=F_c[/tex]

[tex]q\times V\times B=\dfrac{m\times V^2}{R}[/tex]

[tex]R=\dfrac{m\times V}{q\times B}[/tex]

Momentum = m V

Therefore we can say that the radius of curvature is directly proportional to the particle momentum.

B) the particle's momentum.

Based on the graph below, what prediction can we make about the acceleration when the force is 0 newtons? A. It will be 0 meters per second per second. B. It will be 5 meters per second per second. C. It will be 10 meters per second per second. D. It will be 15 meters per second per second.
PLZ HURRY WILL MARK BRAINLIEST IF CORRECT

Answers

Answer:

Option A

Explanation:

Acceleration will be obviously zero when Force = 0

That is how:

Force = Mass * Acceleration

So, If force = 0

0 = Mass * Acceleration.

Dividing both sides by Mass

Acceleration = 0/Mass

Acceleration = 0 m/s²

Answer:

[tex]\boxed{\mathrm{A. \: It \: will \: be \: 0 \: meters \: per \: second \: per \: second. }}[/tex]

Explanation:

[tex]\mathrm{force=mass \times acceleration}[/tex]

The force is given 0 newtons.

[tex]\mathrm{force=0 \: N}[/tex]

Plug force as 0.

[tex]\mathrm{0=mass \times acceleration}[/tex]

Divide both sides by mass.

[tex]\mathrm{\frac{0}{mass} =acceleration}[/tex]

[tex]\mathrm{0 =acceleration}[/tex]

[tex]\mathrm{acceleration= 0\: m/s/s}[/tex]

Exercise 1 - Questions 1. Hold the grating several inches from your face, at an angle. Look at the grating that you will be using. Record what details you see at the grating surface. 0 Words 2. Hold the diffraction grating up to your eye and look through it. Record what you see. Be specific. 0 Words 3. Before mounting the diffraction grating, look through the opening that you made for your grating. Record what you see across the back of your spectroscope.

Answers

Answer:

1) on the surface you can see the slits with equal spacing, on the one hand and on the other hand it is smooth.

2)If the angle is zero we see a bright light called undispersed light

For different angles we see the colors of the spectrum

3) must be able to see the well-collimated light emission source

Explanation:

1) A diffraction grating (diffraction grating) is a surface on which a series of indentations are drawn evenly spaced.

These crevices or lines are formed by copying a standard metal net when the plastic is melted and after hardening is carefully removed, or if the nets used are a copy of the master net.

The network can be of two types of transmission or reflection, in teaching work the most common is the transmission network, on the surface you can see the slits with equal spacing, on the one hand and on the other hand it is smooth.

The number of lines per linear mm determines which range of the spectrum a common value can be observed to observe the range of viable light is 600 and 1200 lines per mm.

2) when looking through the diffraction grating what we can observe depends on the relative angle between the eye and the normal to the network.

If the angle is zero we see a bright light called undispersed light

For different angles we see the colors of the spectrum, if it is an incandescent lamp we see a continuum with all the colors in the visible range and if it is a gas lamp we see the characteristic emission lines of the gas.

3) Before mounting the grid on the spectrometer, we must be able to see the well-collimated light emission source, this means that it is clearly observed.

The spectrometers have several screws to be able to see the lamp clearly, this is of fundamental importance in optical experiments.

Jane is collecting data for a ball rolling down a hill. she measure out a set of different distances and then proceeds to use a stopwatch to find the time it takes the ball to roll each distance

Answers

Answer:

The Independent variable in this experiment is the time taken by the ball to roll down each distance.

The dependent variable is the distance  through which the ball rolls

The control variables are: slope of hill, weight, of the ball, size of ball, wind speed, surface characteristics of the ball.

Explanation:

The complete question is

Jane is collecting data for a ball rolling down a hill. She measures out a set of different distances and then proceeds to use a stop watch to find the time it takes the ball to roll. What are the independent, dependent, and control variables in this experiment?

Independent variable have their values not dependent on any other variable in the scope of the experiment. The time for the ball to roll down the hill is not dependent on any other variable in the experiment. Naturally, some common independent variables are time, space, density, mass, fluid flow rate.

A dependent variable has its value dependent on the independent variable in the experiment. The value of the distance the ball rolls depends on the time it takes to roll down the hill.

The relationship between the dependent and independent variables in an experiment is given as

y = f(x)

where y is the output or the dependent variable,

and x is the independent variable.

Control variables are those variable that if not held constant could greatly affect the results of an experiment. For an experiment to be more accurate, control variables should be confined to a given set of value throughout the experiment.

two resistors of resistance 10 ohm's and 20 ohm's are connected in parallel to a batery of e.m.f 12V. Calculate the current passing through the 20hm's resister​

Answers

Current through 20 ohm resistor is 0.6 A

Need help understanding this. If anyone help, that would be greatly appreciated!

Answers

Answer:

8.33` m/s^2 and 8333.3 N

Explanation:

a) acceleration:

ā=v^2/r

ā=(15m/s)^2/27m

ā=225/27 m/s^2

ā=8.333 m/s^2

force:

F=mā. where the is equal to v^2/r

F=1000kg*8.3 m/s^2

F=8333.3 N

Answer:

8.33` m/s^2 and 8333.3 N

Explanation:

A person standing 180m from the foot of a high building claps hi
hand and hears the echo 0.03minutes later. What is the speed
sound in air at that temperature?
A) 331m/s
B) 240m/s C) 200m/s D) 300m/s

Answers

Answer:

C) 200 m/s

Explanation:

The sound travels a total distance of 360 m in 0.03 minutes.

v = (360 m) / (0.03 min × 60 s/min)

v = 200 m/s

A proton moving at 4.80 106 m/s through a magnetic field of magnitude 1.74 T experiences a magnetic force of magnitude 7.00 10-13 N. What is the angle between the proton's velocity and the field? (Enter both possible answers from smallest to largest. Enter only positive values between 0 and 360.)

Answers

Answer:

31.55° and 148.45°

Explanation:

Formula for calculating the force experiences by the proton placed in a magnetic field is as expressed below;

F = qvBsinθ where;

F is the magnetic force experienced by the proton

q is the charge on the proton

v is the velocity of the proton

B is the magnetic field

θ is the angle between the proton's velocity and the field (Required)

Given parameters

F =  7.00 * 10⁻¹³N

q = 1.602*10⁻¹⁹C

v = 4.80 * 10⁶ m/s

B = 1.74 T

θ  =?

From the formula F = qvBsinθ;

sinθ = F/qvB

sinθ = 7.00 * 10⁻¹³/1.602*10⁻¹⁹* 4.80 * 10⁶*1.74

sinθ =  7.00 * 10⁻¹³/13.38*10⁻¹³

sinθ = 0.5231689 * 10⁰

sinθ = 0.5231689

θ = sin⁻¹0.5231689

θ = 31.55°

The following are the positive values of the angle between 0° and 360°

Sin is positive in the first and second quadrant. In the second quadrant the angle is equal to 180°-31.55° = 148.45°.

Hence the possible values of the angle from smallest to largest are 31.55° and 148.45°

g a conductor consists of an infinite number of adjacent wires, each infinitely long. If there are n wires per unit length, what is the magnitude of B~

Answers

Answer:

B=uonI/2

Explanation:

See attached file

Other Questions
The Pennington Corporation issued a new series of bonds on January 1, 1985. The bonds were sold at par ($1,000); had a 12% coupon; and mature in 30 years, on December 31, 2014. Coupon payments are made semiannually (on June 30 and December 31). a. What was the YTM on January 1, 1985? PLEASE HELP Question 1(Multiple Choice Worth 4 points) (08.03)A system of equations is given below: y = 2x + 1 6x + 2y = 22 Which of the following steps could be used to solve by substitution? 6x + 2(2x + 1) = 22 2x + 1 = 6x + 2y 6(2x + 1) + 2y = 22 6(y = 2x + 1) Question 2(Multiple Choice Worth 4 points) (08.03)Solve the system of equations and choose the correct answer from the list of options. d + e = 15 d + e = 5 Label the ordered pair as (d, e). (0, 0) (10, 5) (5, 10) (10, 5) Question 3(Multiple Choice Worth 4 points) (08.03)A set of equations is given below: Equation H: y = x + 2 Equation J: y = 3x 4 Which of the following steps can be used to find the solution to the set of equations? x = 3x 4 x +2 = 3x x + 2 = 3x 4 x + 1 = 3x + 2 Question 4(Multiple Choice Worth 4 points) (08.03)A set of equations is given below: Equation M: y = 3x + 4 Equation P: y = 3x + 7 Which of the following options is true about the solution to the given set of equations? No solution One solution Two solutions Infinite solutions Question 5(Multiple Choice Worth 4 points) (08.03)Solve the system of equations and choose the correct answer from the list of options. x + y = 3 y = 2x + 2 five over 3 comma 4 over 3 negative 5 over 3 comma negative 4 over 3 negative 3 over 5 comma negative 3 over 4 3 over 4 comma 3 over 5 a.Le nom de votre village natal / ville natale.b: L o se trouve le village natal / la ville natale.c. Le nom de march de votre village natal/ville nataled. Comment est le march?e. Le jour de march de votre village natal / ville natalf. Que font les gens pendant le jour de march?g. L'heure ou le march commence.1. Comment devient le village pendant le jour de mLes marchandises qu'on vend et chete au journatal/ville natale.ur anneler les achete A plane drops a package for delivery. The plane is flying horizontally at a speed of 120m/s,and the package travels 255 m horizontally during the drop. We can ignore air resistance.What is the package's vertical displacement during the drop? easy question i will mark braineliest PLS HELP! A rectangle has a height of 2 and a width of 5x^2-2x+3. Express the area of the entire rectangle. Expression should be expanded. Jameson lives in a city on the shores of the Atlantic Ocean. The temperature fluctuations are relatively small in his city because(blank)takes longer to heat up and cool down due to its high(blank) . First blank choices are: water, land, air Second blank choices are :volume, density, specific heat The Virginia Company was founded in 1606 with the intention of: A. producing tobacco in North America. B. removing the Spanish from Florida. C. merging with the French in Canada to overpower Spain's lucrative New World economy. D. expanding British political influence across the Western Hemisphere. E. removing undesirables out of England. Write them in a standard form. Hypoxia induces transcription of a DNA methyltransferase, DNMT1. What does this suggest about the relationship between hypoxia and regulation of gene expression New mutations can also occur randomly, so theres a chance that children of parents who didnt inherit the gene for Huntingtons can develop a mutation in the gene that causes Huntingtons disease explain how protein synthesis contributes to the symptoms of the disease Help pls. ive been stuck on this for a long time of the CP of 15 articles equals to the SP of 12 articles, find the gain percent.anple 4: BRAINLIEST, 5 STARS, THANKS AND 100 POINTS IF ANSWERED BOTH CORRECTLY. --------------------- Which function rule describes the pattern in the table? X: -2, -1, 0, 1, 2 Y: 3, 2, 1, 0, -1 A) y = x + 1 B) y = x - 1 C) y = -x + 1 D) y = -x - 1 --------------------- Which function rule describes the pattern in the table? X: -2, -1, 0, 1, 2 Y: 14, 11, 8, 5, 2 A) y = 3x + 8 B) y = -3x - 8 C) y = 3x - 8 D) y = -3x + 8 -------------------- Thank you if you answered both correctly! 10=12-x what would match this equation Which side lengths form a right triangle? simplify (3+3 / x(x+1) )(x-3 / x(x-1) ) And [you] have put on the new self . . . . Here there is no Greek nor Jew . . . barbarian, Scythian, slave or free, but Christ is all, and is in all. From Paul in his letters to the Colossians and the Galatians. What is the main point of the passage? compare -1/6 and -2/3 In "The First Seven Years" by Bernard Malamud, how is the climax of the story also an epiphany for Feld?A) Feld's confrontation with Sobel makes him to realize he wanted the wrong things for Miriam.B) Feld is surprised by Sobel's admission and realizes he will have to rescind his offer to Max.C) Feld is shocked by Sobel's confession but then realizes he sensed Sobel's feelings.D) Feld's argument with Sobel forces him to face his situation and admit his mortality,