A 10 kg mass car initially at rest on a horizontal track is pushed by a horizontal force of 10 N magnitude. If we neglect the friction force between the car and the track, calculate how much the car travels in 10 s

Answers

Answer 1

Answer:

50 m

Explanation:

F = ma

10 N = (10 kg) a

a = 1 m/s²

Given:

v₀ = 0 m/s

a = 1 m/s²

t = 10 s

Find: Δx

Δx = v₀ t + ½ at²

Δx = (0 m/s) (10 s) + ½ (1 m/s²) (10 s)²

Δx = 50 m


Related Questions

A large power plant generates electricity at 12.0 kV. Its old transformer once converted the voltage to 390 kV. The secondary of this transformer is being replaced so that its output can be 515 kV for more efficient cross-country transmission on upgraded transmission lines. (a) What is the ratio of turns in the new secondary compared with turns in the old secondary

Answers

Answer:

1.32 is the turns ratio

Explanation:

Note that The transformer steps up the voltage from 12000 V to 390000V

12000 V is the primary and in the secondary it is 390000 V in old transformer

If n₁ be no of turns in primary coil and n₂ be no of turns in secondary coils

the formula is

n₂ / n₁ = voltage in secondry / voltage in primary

n₂ / n₁ = 390000 / 12000

ratio of turns in old transformer is 32.5

ratio of turns in new transformer

n₃ / n₁ = 515 / 12 ( n₃ is no of turns in the secondary of new transformer )

= 42.9

T he ratio of turns in the new secondary compared with the old secondary

n₃ / n₂ = 42.9 / 32.5

= 1.32

A light bulb is completely immersed in water. Light travels out in all directions from the bulb, but only some light escapes the water surface. What happens to the fraction (f) of light that escapes the water's surface as the bulb is moved deeper into the water?

Answers

Answer:

The fraction of light that escapes the water surface as the water moves deeper into the water will decrease.

Explanation:

The speed of light in water is small compared to the speed of light in air, and a larger part of the light energy is absorbed in water than in air. When the bulb is immersed in water, some of the light energy is absorbed by the mass of water. When the light bulb is further moved deeper into the water, the fraction of light that escapes decreases, because more mass of water is made available to absorb more of the light energy from the bulb.

Astronauts increased in height by an average of approximately 40 mm (about an inch and a half) during the Apollo-Soyuz missions, due to the absence of gravity compressing their spines during their time in space. Does something similar happen here on Earth

Answers

Answer:

Yes. Something similar occurs here on Earth.

Explanation:

Gravity tends to pull objects perpendicularly to the ground. In space, the absence of this force means there is no compression on the spine due to gravity trying to pull it down. This means that astronauts undergo an increase in height in space.

Here on Earth, we experience gravity pull on our spine during the day. At night when we sleep, we lie down with our spine parallel to the ground, which means that our spine is no longer under compression from gravity force. The result is that we are a few centimetres taller in the morning when we wake up, than we are before going to bed at night. The increase is not much pronounced here on Earth because there is a repeated cycle of compression and decompression of our spine due to gravity, unlike when compared to that of astronauts that spend long duration in space, all the while without gravity forces on their spine

Bright and dark fringes are seen on a screen when light from a single source reaches two narrow slits a short distance apart. The number of fringes per unit length on the screen can be doubled:______.
a. if the distance between the slits is doubled.
b. if the wavelength is changed to λ = λ/2.
c. if the distance between the slits is quadruple the original distance and the wavelength is changed to λ = 2λ.
d. if any of the above occurs.
e. only if the width of the slits is changed to w = w/2

Answers

Answer:

d. if any of the above occurs

Explanation:

That is The number of fringes per unit length on the screen can be doubled if

if the distance between the slits is doubled.

if the wavelength is changed to λ = λ/2.

And if the distance between the slits is quadruple the original distance and the wavelength is changed to λ = 2λ

a car brakes and stops at 10 [m]. While stopping, the friction force of the wheels on the pavement is 400 [N]. Calculate the work done.

Answers

Explanation:

Work = force × distance

W = (400 N) (10 m)

W = 4000 J

An electronic stove is rated 1000w, 240v. explain this statement. please I'm in need​

Answers

Answer and Explanation:

When an electronic appliance such as electric heater, electric stove e.t.c is rated, the rating actually specifies the ideal working properties of the appliance. For example if it is rated 200W, 220V, it shows that the power the appliance will consume at a voltage of 220V is 200W.

Therefore, for the electronic stove mentioned with a rating of 1000W, 240V, the stove will consume or draw a power of 1000 watts at a voltage of 240volts.

Ratings can also help determine some other properties of the appliance such as current consumption and resistance in the appliance. For the given electronic stove, the current consumed can be found by using the following relation:

P = IV                 -------------(i)

Where;

P = Power rating = 1000W

I = Current used

V = Voltage rating = 240V

Substituting these values into equation (i) gives;

1000 = I x 240

I = [tex]\frac{1000}{240}[/tex] = 4.17A

Therefore, the current used by the stove is 4.17A

To get the resistance R of the stove, we can use the relation;

P = [tex]\frac{V^2}{R}[/tex]

R = [tex]\frac{V^2}{P}[/tex]

R = [tex]\frac{240^2}{1000}[/tex]

R = 57.6Ω

Therefore, the resistance of the stove is 57.6Ω

A small meteorite with mass of 1 g strikes the outer wall of a communication satellite with a speed of 2Okm/s (relative to the satellite). The mass of the satellite is 200 kg.
About how much energy (in kJ) was converted to heat?

Answers

Answer:

The energy coverted to heat is 200 kilojoules.

Explanation:

GIven the absence of external forces exerted both on the small meteorite and on the communication satellite, the Principle of Linear Momentum is considered and let suppose that collision is completely inelastic and that satellite is initially at rest. Hence, the expression for the satellite-meteorite system:

[tex]m_{M}\cdot v_{M} + m_{S}\cdot v_{S} = (m_{M}+m_{S})\cdot v[/tex]

Where:

[tex]m_{M}[/tex], [tex]m_{S}[/tex] - Masses of the small meteorite and the communication satellite, measured in kilograms.

[tex]v_{M}[/tex], [tex]v_{S}[/tex] - Speeds of the small meteorite and the communication satellite, measured in meters per second.

[tex]v[/tex] - Final speed of the satellite-meteorite system, measured in meters per second.

The final speed of the satellite-meteorite system is cleared:

[tex]v = \frac{m_{M}\cdot v_{M}+m_{S}\cdot v_{S}}{m_{M}+m_{S}}[/tex]

If [tex]m_{M} = 1\times 10^{-3}\,kg[/tex], [tex]m_{S} = 200\,kg[/tex], [tex]v_{M} = 20000\,\frac{m}{s}[/tex] and [tex]v_{S} = 0\,\frac{m}{s}[/tex], the final speed is now calculated:

[tex]v = \frac{(1\times 10^{-3}\,kg)\cdot \left(20000\,\frac{m}{s} \right)+(200\,kg)\cdot \left(0\,\frac{m}{s} \right)}{1\times 10^{-3}\,kg+200\,kg}[/tex]

[tex]v = 0.1\,\frac{m}{s}[/tex]

Which means that the new system remains stationary and all mechanical energy from meteorite is dissipated in the form of heat. According to the Principle of Energy Conservation and the Work-Energy Theorem, the change in the kinetic energy is equal to the dissipated energy in the form of heat:

[tex]K_{S} + K_{M} - K - Q_{disp} = 0[/tex]

[tex]Q_{disp} = K_{S}+K_{M}-K[/tex]

Where:

[tex]K_{S}[/tex], [tex]K_{M}[/tex] - Initial translational kinetic energies of the communication satellite and small meteorite, measured in joules.

[tex]K[/tex] - Kinetic energy of the satellite-meteorite system, measured in joules.

[tex]Q_{disp}[/tex] - Dissipated heat, measured in joules.

The previous expression is expanded by using the definition for the translational kinetic energy:

[tex]Q_{disp} = \frac{1}{2}\cdot [m_{M}\cdot v_{M}^{2}+m_{S}\cdot v_{S}^{2}-(m_{M}+m_{S})\cdot v^{2}][/tex]

Given that [tex]m_{M} = 1\times 10^{-3}\,kg[/tex], [tex]m_{S} = 200\,kg[/tex], [tex]v_{M} = 20000\,\frac{m}{s}[/tex], [tex]v_{S} = 0\,\frac{m}{s}[/tex] and [tex]v = 0.1\,\frac{m}{s}[/tex], the dissipated heat is:

[tex]Q_{disp} = \frac{1}{2}\cdot \left[(1\times 10^{-3}\,kg)\cdot \left(20000\,\frac{m}{s} \right)^{2}+(200\,kg)\cdot \left(0\,\frac{m}{s} \right)^{2}-(200.001\,kg)\cdot \left(0.001\,\frac{m}{s} \right)^{2}\right][/tex][tex]Q_{disp} = 200000\,J[/tex]

[tex]Q_{disp} = 200\,kJ[/tex]

The energy coverted to heat is 200 kilojoules.

A solid disk of radius 1.4 cm and mass 430 g is attached by a wire to one of its circular faces. It is twisted through an angle of 10 o and released. If the spring has a torsion constant of 370 N-m/rad, what is the frequency of the motion

Answers

Answer:

    f= 4,186  10²  Hz

Explanation:

El sistema descrito es un pendulo de torsión que oscila con con velocidad angular, que esta dada por

             w = √ k/I

donde ka es constante de torsion de hilo e I es el momento de inercia del disco

El  momento de inercia de indican que giran un eje que pasa                 por enronqueces

           I= ½ M R2  

reduzcamos las cantidades al sistema SI

         R= 1,4 cm = 0,014  m

         M= 430 g = 0,430 kg

substituimos

           w= √ (2 k/M R2)

calculemos  

           w = RA ( 2 370 / (0,430  0,014 2)

           w = 2,963 103 rad/s

la velocidad angular esta relacionada con la frecuencia por

            w =2pi f

            f= w/2π

            f= 2,963 10³/ (2π)

            f= 4,186  10²  Hz

Exercise 1 - Questions 1. Hold the grating several inches from your face, at an angle. Look at the grating that you will be using. Record what details you see at the grating surface. 0 Words 2. Hold the diffraction grating up to your eye and look through it. Record what you see. Be specific. 0 Words 3. Before mounting the diffraction grating, look through the opening that you made for your grating. Record what you see across the back of your spectroscope.

Answers

Answer:

1) on the surface you can see the slits with equal spacing, on the one hand and on the other hand it is smooth.

2)If the angle is zero we see a bright light called undispersed light

For different angles we see the colors of the spectrum

3) must be able to see the well-collimated light emission source

Explanation:

1) A diffraction grating (diffraction grating) is a surface on which a series of indentations are drawn evenly spaced.

These crevices or lines are formed by copying a standard metal net when the plastic is melted and after hardening is carefully removed, or if the nets used are a copy of the master net.

The network can be of two types of transmission or reflection, in teaching work the most common is the transmission network, on the surface you can see the slits with equal spacing, on the one hand and on the other hand it is smooth.

The number of lines per linear mm determines which range of the spectrum a common value can be observed to observe the range of viable light is 600 and 1200 lines per mm.

2) when looking through the diffraction grating what we can observe depends on the relative angle between the eye and the normal to the network.

If the angle is zero we see a bright light called undispersed light

For different angles we see the colors of the spectrum, if it is an incandescent lamp we see a continuum with all the colors in the visible range and if it is a gas lamp we see the characteristic emission lines of the gas.

3) Before mounting the grid on the spectrometer, we must be able to see the well-collimated light emission source, this means that it is clearly observed.

The spectrometers have several screws to be able to see the lamp clearly, this is of fundamental importance in optical experiments.

Two buses are moving in opposite directions with velocities of 36 km/hr and 108
km/hr. Find the distance between them after 20 minutes.

Answers

Explanation:

It is given that,

Speed of bus 1 is 36 km/h and speed of bus 2 is 108 km/h. We need to find the distance between bus 1 and 2 after 20 minutes.

Time = 20 minutes = [tex]\dfrac{20}{60}\ h=\dfrac{1}{3}\ h[/tex]

As the buses are moving in opposite direction, then the concept of relative velocity is used. So,

Distance, [tex]d=v\times t[/tex]

v is relative velocity, v = 108 + 36 = 144 km/h

So,

[tex]d=144\ km/h \times \dfrac{1}{3}\ h\\\\d=48\ km[/tex]

So, the distance between them is 48 km after 20 minutes.

A box of mass 0.8 kg is placed on an inclined surface that makes an angle 30 above
the horizontal, Figure 1. A constant force of 18 N is applied on the box in a direction 10°
with the horizontal causing the box to accelerate up the incline.
The coefficient of
kinetic friction between the block and the plane is 0.25.

Show the free body diagrams

(a) Calculate the block's
acceleration as it moves up the incline. (6 marks)

(b) If the block slides down at a constant speed, find the value of force applied.
(4 marks)

Answers

Answer:

a)    a = 17.1 m / s², b)    F = 3.04 N

Explanation:

This is an exercise of Newton's second law, in this case the selection of the reference system is very important, we have two possibilities

* a reference system with the horizontal x axis, for this selection the normal and the friction force have x and y components

* a reference system with the x axis parallel to the plane, in this case the weight and the applied force have x and y components

We are going to select the second possibility, since it is the most used in inclined plane problems, let's analyze the angle of the applied force (F) it has an angle 10º with respect to the x axis, if we rotate this axis 30º the new angle is

                θ = 10 -30 = -20º

The negative sign indicates that it is in the fourth quadrant. Let's use trigonometry to find the components of the applied force

              sin (-20) = F_{y} / F

              cos (-20) = Fₓ / F

              F_{y} = F sin (-20)

              Fₓ = F cos (-20)

              F_y = 18 sin (-20) = -6.16 N

              Fₓ = 18 cos (-20) = 16.9 N

The decomposition of the weight is the customary

               sin 30 = Wₓ / W

               cos 30 = W_y / W

               Wₓ = W sin 30 = mg sin 30

                W_y = W cos 30 = m g cos 30

                Wₓ = 0.8 9.8 sin 30 = 3.92 N

                 W_y = 0.8 9.8 cos 30 = 6.79 N

Notice that in the case  the angle is measured with respect to the axis y perpendicular to the plane

Now we can write Newton's second law for each axis

X axis

      Fₓ - fr = m a

Y Axis  

      N - [tex]F_{y}[/tex] - Wy = 0

      N =F_{y} + Wy

      N = 6.16 + 6.79

     

They both go to the negative side of the axis and

      N = 12.95 N

The friction force has the formula

        fr = μ N

we substitute

        Fₓ - μ N = m a

        a = (Fₓ - μ N) / m

     

we calculate

       a = (16.9 - 0.25 12.95) / 0.8

       a = 17.1 m / s²

b) now the block slides down with constant speed, therefore the acceleration is zero

ask for the value of the applied force, we will suppose that with the same angle, that is, only its modulus was reduced

       Newton's law for the x axis

              Fₓ -fr = 0

              Fₓ = fr

              F cos 20 = μ N

              F = μ N / cos 20

we calculate

              F = 0.25 12.95 / cos 20

              F = 3.04 N

this is the force applied at an angle of 10º to the horizontal

Suppose there is a uniform electric field pointing in the positive x-direction with a magnitude of 5.0 V/m. The electric potential is measured to be 50 V at the position x = 10 m. What is the electric potential at other positions?
Position [m] = (−20)--- (0.00) ---(10)--- (11)--- (99)
Electric Potential [V]=

Answers

Answer:

Electric potential at position, x = -20 m, = -100 V

Electric potential at position, x = 0 m, = 0

Electric potential at position, x = 10 m, = 50 V

Electric potential at position, x = 11 m, = 55 V

Electric potential at position, x = 99 m, 495 V

Explanation:

Given;

magnitude of electric field, E = 5.0 V/m

at position x = 10 m, electric potential = 50 V

Electric potential at position, x = -20 m

V = Ex

V = 5 (-20)

V = -100 V

Electric potential at position, x = 0 m

V = Ex

V = 5(0)

V = 0

Electric potential at position, x = 10 m

V = Ex

V = 5(10)

V = 50 V

Electric potential at position, x = 11 m

V = Ex

V = 5(11)

V = 55 V

Electric potential at position, x = 99 m

V = Ex

V = 5(99)

V = 495 V

A 2 m tall, 0.5 m inside diameter tank is filled with water. A 10 cm hole is opened 0.75 m from the bottom of the tank. What is the velocity of the exiting water? Ignore all orificelosses.

Answers

Answer:

4.75 m/s

Explanation:

The computation of the velocity of the existing water is shown below:

Data provided in the question

Tall = 2 m

Inside diameter tank = 2m

Hole opened = 10 cm

Bottom of the tank = 0.75 m

Based on the above information, first we have to determine the height which is

= 2 - 0.75 - 0.10

= 2 - 0.85

= 1.15 m

We assume the following things

1. Compressible flow

2. Stream line followed

Now applied the Bernoulli equation to section 1 and 2

So we get

[tex]\frac{P_1}{p_g} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{p_g} + \frac{v_2^2}{2g} + z_2[/tex]

where,

P_1 = P_2 = hydrostatic

z_1 = 0

z_2 = h

Now

[tex]\frac{v_1^2}{2g} + 0 = \frac{v_2^2}{2g} + h\\\\V_2 < < V_1 or V_2 = 0\\\\Therefore\ \frac{v_1^2}{2g} = h\\\\v_1^2 = 2gh\\\\ v_1 = \sqrt{2gh} \\\\v_1 = \sqrt{2\times 9.8\times 1.15}[/tex]

= 4.7476 m/sec

= 4.75 m/s

A brick of mass M has been placed on a rubber cushion of mass m. Together they are sliding to the right at constant velocity on an ice-covered parking lot. (a) Draw a free-body diagram of the brick and identify each force acting on it. (b) Draw a free-body diagram of the cushion and identify each force acting on it. (c) Identify all of the action–reaction pairs of forces in the brick–cushion–planet system.

Answers

A) The free-body diagram of the forces acting on the brick is attached.

B) The free-body diagram of the forces acting on the rubber cushion is attached.

C) The action and reaction forces of the entire brick–cushion–planet system has been enumerated below.

A) The brick has a Mass M placed on top of a rubber cushion of mass m.

This means that there will be a normal force acting acting upwards on the brick and also a gravitational force acting downward. These forces are denoted as;

Normal force of rubber cushion acting on brick = [tex]n_{cb}[/tex]

Gravitational force acting on brick = Mg

Find attached the free body diagram.

B) The forces acting on the cushion will be;

Normal force of parking lot pavement on rubber cushion  = [tex]n_{pc}[/tex]

Gravitational force of earth acting on cushion = mg

Force of brick acting on the rubber cushion = [tex]F_{bc}[/tex]

C)  The action pairs of forces are;

i) Force; Normal force of rubber cushion acting on brick  = [tex]n_{cb}[/tex]

Reaction Force; Force of brick acting on the rubber cushion = [tex]F_{bc}[/tex]

ii) Action Force; Gravitational force acting on brick = Mg

Reaction; Gravitational force of brick acting on the earth

iii) Action Force; Normal force of parking lot pavement on rubber cushion = [tex]n_{pc}[/tex]

Reaction; Force of rubber cushion on parking lot pavement

iv) Action Force; Gravitational force of earth acting on rubber cushion = mg

Reaction Force; Gravitational force of rubber cushion on the earth.

Read more at; https://brainly.com/question/17747931

Based on the graph below, what prediction can we make about the acceleration when the force is 0 newtons? A. It will be 0 meters per second per second. B. It will be 5 meters per second per second. C. It will be 10 meters per second per second. D. It will be 15 meters per second per second.
PLZ HURRY WILL MARK BRAINLIEST IF CORRECT

Answers

Answer:

Option A

Explanation:

Acceleration will be obviously zero when Force = 0

That is how:

Force = Mass * Acceleration

So, If force = 0

0 = Mass * Acceleration.

Dividing both sides by Mass

Acceleration = 0/Mass

Acceleration = 0 m/s²

Answer:

[tex]\boxed{\mathrm{A. \: It \: will \: be \: 0 \: meters \: per \: second \: per \: second. }}[/tex]

Explanation:

[tex]\mathrm{force=mass \times acceleration}[/tex]

The force is given 0 newtons.

[tex]\mathrm{force=0 \: N}[/tex]

Plug force as 0.

[tex]\mathrm{0=mass \times acceleration}[/tex]

Divide both sides by mass.

[tex]\mathrm{\frac{0}{mass} =acceleration}[/tex]

[tex]\mathrm{0 =acceleration}[/tex]

[tex]\mathrm{acceleration= 0\: m/s/s}[/tex]

How would the interference pattern produced by a diffraction grating change if the laser light changed from red to blue?

Answers

Answer

fringe separation l distance between maxima decreases

Explanation:

Because the wavelength of blue light is smaller than that if red light

2. A solid plastic cube of side 0.2 m is submerged in a liquid of density 0.8 hgm calculate the
upthrust of the liquid on the cube.​

Answers

Answer:

vpg = 0.064 N

Explanation:

Upthrust = Volume of fluid displaced

upthrust liquid on the cube g=10ms−2

vpg =0.2 x 0.2 x 0.2 x0.8 x 10= 0.064N

vpg = 0.064 N

hope it helps.

Your ear is capable of differentiating sounds that arrive at each ear just 0.34 ms apart, which is useful in determining where low-frequency sound is originating from.
(a) Suppose a low-frequency sound source is placed to the right of a person, whose ears are approximately 20 cm apart, and the speed of sound generated is 340 m/s. How long (in s) is the interval between when the sound arrives at the right ear and the sound arrives at the left ear?
(b) Assume the same person was scuba diving and a low-frequency sound source was to the right of the scuba diver. How long (in ) is the interval between when the sound arrives at the right ear and the sound arrives at the left ear if the speed of sound in water is 1,530 m/s? S
(c) What is significant about the time interval of the two situations?

Answers

Answer:

(a) 0.59 ms

(b) 0.15 ms

(c) The significance is that the speed of sound in different media determines the time interval of perception by the ears, which are at constant distance apart.

Explanation:

(a) distance between ears = 20 cm = 0.2 m

speed of sound generated = 340 m/s

time = ?

speed = [tex]\frac{distance covered}{time taken}[/tex]

⇒ time taken, t = [tex]\frac{distance covered}{speed}[/tex]

                        = [tex]\frac{0.2}{340}[/tex]

                        = 5.8824 × [tex]10^{-4}[/tex]

                        = 0.59 ms

The time interval of the arrival of the sound at the right ear to the left ear is 0.59 ms.

(b) distance between ears = 20 cm = 0.2 m

speed of sound in water = 1530 m/s

time = ?

speed = [tex]\frac{distance covered}{time taken}[/tex]

⇒ time taken, t = [tex]\frac{distance covered}{speed}[/tex]

                         = [tex]\frac{0.2}{1530}[/tex]

                         = 1.4815 × [tex]10^{-4}[/tex]

                         = 0.15 ms

The sound heard by the right ear of the diver would arrive at the left 0.15 ms latter.

(c) The significance is that the speed of sound in different media, determines the time interval of perception by the ears, which are at constant distance apart.

A) The time interval between when the sound arrives at the right ear and the sound arrives at the left ear is; t = 0.588 × 10⁻³ seconds

B) The time interval between when the sound arrives at the right ear and the sound arrives at the left ear if the speed of sound in water is 1,530 m/s is; t = 0.131 × 10⁻⁵ seconds

C) The significance about the time interval of the two situations is that;

Transmission of sound varies with different mediums.

A) We are given;

Distance between the two ears; d = 20 cm = 0.2 m

Speed of sound; v = 340 m/s

Since the sound source is placed at the right ear, the time interval for it to get to the left ear is;

t = d/v

t = 0.2/340

t = 0.588 × 10⁻³ seconds

B) We are now told that the speed of sound in water is 1530 m/s. Thus;

t = 0.2/1530

t = 0.131 × 10⁻⁵ seconds

C) We can see that in answer A and B, the time interval is different even when the distance remained the same. This means that, the time interval of hearing a sound changes with respect to the medium of transmission.

Read more at; https://brainly.com/question/18451537

Consider an electromagnetic wave where the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis.

Required:
In what directions is it possible that the wave is traveling?

Answers

Answer:

The wave is traveling in the y axis direction

Explanation:

Because the wave will always travel in a direction 90° to the magnetic and electric components

A magnetic field is entering into a coil of wire with radius of 2(mm) and 200 turns. The direction of magnetic field makes an angle 25° in respect to normal to surface of coil. The magnetic field entering coil varies 0.02 (T) in every 2 seconds. The two ends of coil are connected to a resistor of 20 (Ω).
A) Calculate Emf induced in coil
B) Calculate the current in resistor
C) Calculate the power delivered to resistor by Emf

Answers

Answer:

a) 2.278 x 10^-5 volts

b) 1.139 x 10^-6 Ampere

c) 2.59 x 10^-11 W

Explanation:

The radius of the wire r = 2 mm = 0.002 m

the number of turns N = 200 turns

direction of the magnetic field ∅ = 25°

magnetic field strength B = 0.02 T

varying time = 2 sec

The cross sectional area of the wire = [tex]\pi r^{2}[/tex]

==> A = 3.142 x [tex]0.002^{2}[/tex] = 1.257 x 10^-5 m^2

Field flux Φ = BA cos ∅ = 0.02 x 1.257 x 10^-5 x cos 25°

==> Φ = 2.278 x 10^-7 Wb

The induced EMF is given as

E = NdΦ/dt

where dΦ/dt = (2.278 x 10^-7)/2 = 1.139 x 10^-7

E = 200 x 1.139 x 10^-7 = 2.278 x 10^-5 volts

b) If the two ends are connected to a resistor of 20 Ω, the current through the resistor is given as

[tex]I[/tex] = E/R

where R is the resistor

[tex]I[/tex] = (2.278 x 10^-5)/20 = 1.139 x 10^-6 Ampere

c) power delivered to the resistor is given as

P = [tex]I[/tex]E

P = (1.139 x 10^-6) x (2.278 x 10^-5) = 2.59 x 10^-11 W

Each side of a metal plate is illuminated by light of different wavelengths. The left side is illuminated by light with λ0 = 500 nm and the right side by light of unknown λ. Two electrodes A and B provide the stopping potential for the ejected electrons. If the voltage across AB is VAB=1.2775 V, what is the unknown λ?

Answers

Answer:

The  wavelength is  [tex]\lambda = 1029 nm[/tex]

Explanation:

From the question we are told that

    The  wavelength of the left light is  [tex]\lambda_o = 500 nm = 500 *10^{-9} \ m[/tex]

      The  voltage across A  and  B is  [tex]V_{AB } = 1.2775 \ V[/tex]

Let the stopping potential  at A  be [tex]V_A[/tex] and the electric potential at B  be  [tex]V_B[/tex]

The voltage across A and B is mathematically represented as

      [tex]V_{AB} = V_A - V_B[/tex]

Now  According to Einstein's photoelectric equation the stopping potential at A for the ejected electron from the left side  in terms of electron volt is mathematically represented as

        [tex]eV_A = \frac{h * c}{\lambda_o } - W[/tex]

Where  W is the work function of the metal

             h is the Planck constant with values  [tex]h = 6.626 *10^{-34} \ J \cdot s[/tex]

             c  is the speed of light with value [tex]c = 3.0 *10^{8} \ m/s[/tex]

And  the stopping potential at B for the ejected electron from the right side  in terms of electron volt is mathematically represented as

          [tex]eV_B = \frac{h * c}{\lambda } - W[/tex]

So  

      [tex]eV_{AB} = eV_A - eV_B[/tex]

=>    [tex]eV_{AB} = \frac{h * c}{\lambda_o } - W - [\frac{h * c}{\lambda } - W][/tex]

=>   [tex]eV_{AB} = \frac{h * c}{\lambda_o } - \frac{h * c}{\lambda }[/tex]

=>   [tex]\frac{h * c}{\lambda } = \frac{h * c}{\lambda_o } -eV_{AB}[/tex]

=>  [tex]\frac{1}{\lambda } =\frac{1}{\lambda_o } - \frac{ eV_{AB}}{hc}[/tex]

Where e is the charge on an electron with the value  [tex]e = 1.60 *10^{-19} \ C[/tex]

=>   [tex]\frac{1}{\lambda } = \frac{1}{500 *10^{-9} } - \frac{1.60 *10^{-19} * 1.2775}{6.626 *10^{-34} * 3.0 *10^{8}}[/tex]      

=>  [tex]\frac{1}{\lambda } = 9.717*10^{5} m^{-1}[/tex]  

=>   [tex]\lambda = 1.029 *10^{-6} \ m[/tex]

=>   [tex]\lambda = 1029 nm[/tex]

     

Jane is collecting data for a ball rolling down a hill. she measure out a set of different distances and then proceeds to use a stopwatch to find the time it takes the ball to roll each distance

Answers

Answer:

The Independent variable in this experiment is the time taken by the ball to roll down each distance.

The dependent variable is the distance  through which the ball rolls

The control variables are: slope of hill, weight, of the ball, size of ball, wind speed, surface characteristics of the ball.

Explanation:

The complete question is

Jane is collecting data for a ball rolling down a hill. She measures out a set of different distances and then proceeds to use a stop watch to find the time it takes the ball to roll. What are the independent, dependent, and control variables in this experiment?

Independent variable have their values not dependent on any other variable in the scope of the experiment. The time for the ball to roll down the hill is not dependent on any other variable in the experiment. Naturally, some common independent variables are time, space, density, mass, fluid flow rate.

A dependent variable has its value dependent on the independent variable in the experiment. The value of the distance the ball rolls depends on the time it takes to roll down the hill.

The relationship between the dependent and independent variables in an experiment is given as

y = f(x)

where y is the output or the dependent variable,

and x is the independent variable.

Control variables are those variable that if not held constant could greatly affect the results of an experiment. For an experiment to be more accurate, control variables should be confined to a given set of value throughout the experiment.

Consider a long rod of mass, m, and length, l, which is thin enough that its width can be ignored compared to its length. The rod is connected at its end to frictionless pivot.
a) Find the angular frequency of small oscillations, w, for this physical pendulum.
b) Suppose at t=0 it pointing down (0 = 0) and has an angular velocity of 120 (that is '(t = 0) = 20) Note that 20 and w both have dimensions of time-1. Find an expression for maximum angular displacement for the pendulum during its oscillation (i.e. the amplitude of the oscillation) in terms of 20 and w assuming that the angular displacement is small.

Answers

Answer:

Explanation:

The rod will act as pendulum for small oscillation .

Time period of oscillation

[tex]T=2\pi\sqrt{\frac{l}{g} }[/tex]

angular frequency ω = 2π / T

= [tex]\omega=\sqrt{\frac{g}{l} }[/tex]

b )

ω = 20( given )

velocity = ω r = ω l

Let the maximum angular displacement in terms of degree be θ .

1/2 m v ² = mgl ( 1 - cosθ ) ,

[ l-lcosθ is loss of height . we have applied law of conservation of mechanical energy .]

.5 (  ω l )² = gl( 1 - cos θ )

.5 ω² l = g ( 1 - cosθ )

1 - cosθ  = .5 ω² l /g

cosθ = 1 - .5 ω² l /g

θ can be calculated , if value of l is given .

You shine unpolarized light with intensity 54.0 W/m^2 on an ideal polarizer, and then the light that emerges from this polarizer falls on a second ideal polarizer. The light that emerges from the second polarizer has intensity 19.0 W/m^2. Find the angle between the polarizing axes of the two polarizers.°

Answers

Answer:

The angle between the polarizing axes of the two polarizers is 54°

Explanation:

Given;

intensity of unpolarized light, I₀ = 54.0 W/m²

intensity of light that emerges from second ideal polarizer, I₁ = 19.0 W/m²

The angle between the polarizing axes of the two polarizers is dtermined by applying Malus' law for intensity of a linearly polarized light passing through a polarizer.

I₁ = I₀Cos²θ

Cos²θ = I₁ / I₀

Cos²θ = 19 / 54

Cos²θ =0.3519

Cos θ = √0.3519

Cos θ = 0.5932

θ = Cos⁻¹(0.5932)

θ = 53.6°

θ = 54°

Therefore, the angle between the polarizing axes of the two polarizers is 54°

Following a collision between a large spacecraft and an asteroid, a copper disk of radius 28.0 m and thickness 1.20 m, at a temperature of 850°C, is floating in space, rotating about its axis with an angular speed of 20.0 rad/s. As the disk radiates infrared light, its temperature falls to 20.0°C. No external torque acts on the disk.
A) Find the change in kinetic energy of the disk.
B) Find the change in internal energy of the disk.
C) Find the amount of energy it radiates.

Answers

Answer:

A. 9.31 x10^10J

B. -8.47x10 ^ 12J

C. 8.38x 10^12J

Explanation:

See attached file pls

A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string

Answers

Answer:

The time interval is [tex]t = 5.48 *10^{-3} \ s[/tex]

Explanation:

From the question we are told that

   The length of the string is  [tex]l = 3.00 \ m[/tex]

    The  mass of the string is [tex]m = 5.00 \ g = 5.0 *10^{-3}\ kg[/tex]

     The  tension on the string is  [tex]T = 500 \ N[/tex]

   

The  velocity of the pulse is mathematically represented as

      [tex]v = \sqrt{ \frac{T}{\mu } }[/tex]

Where [tex]\mu[/tex] is the linear density which is mathematically evaluated as

       [tex]\mu = \frac{m}{l}[/tex]

substituting values

     [tex]\mu = \frac{5.0 *10^{-3}}{3}[/tex]

     [tex]\mu = 1.67 *10^{-3} \ kg /m[/tex]

Thus  

     [tex]v = \sqrt{\frac{500}{1.67 *10^{-3}} }[/tex]

    [tex]v = 547.7 m/s[/tex]

The time taken is evaluated as

    [tex]t = \frac{d}{v}[/tex]

substituting values

      [tex]t = \frac{3}{547.7}[/tex]

      [tex]t = 5.48 *10^{-3} \ s[/tex]

At the first minimum adjacent to the central maximum of a single-slit diffraction pattern the phase difference between the Huygens wavelet from the top of the slit and the wavelet from the midpoint of the slit is:

Answers

Answer:

Explanation:

The whole wave front may be divided into two halves , the upper half and the lower half . Waves coming from top of the slit or top of upper half and top of lower half or from the mid point of slit can form minima at given point only when there is phase difference of π radian or path difference of λ or one wavelength. Every other point in upper half and corresponding point in lower half will interfere destructively at that point and will form dark spot at the given point . In this way minima will be formed at that point

Hence the phase difference between the Huygens wavelet from the top of the slit and the wavelet from the midpoint of the slit at first minima  is π radian .

A particle moves in a velocity field V(x, y) = x2, x + y2 . If it is at position (x, y) = (7, 2) at time t = 3, estimate its location at time t = 3.01.

Answers

Answer:

New location at time 3.01 is given by: (7.49, 2.11)

Explanation:

Let's start by understanding what is the particle's velocity (in component form) in that velocity field at time 3:

[tex]V_x=x^2=7^2=49\\V_y=x+y^2=7+2^2=11[/tex]

With such velocities in the x direction and in the y-direction respectively, we can find the displacement in x and y at a time 0.01 units later by using the formula:

[tex]distance=v\,*\, t[/tex]

[tex]distance_x=49\,(0.01)=0.49\\distance_y=11\,(0.01)=0.11[/tex]

Therefore, adding these displacements in component form to the original particle's position, we get:

New position: (7 + 0.49, 2 + 0.11) = (7.49, 2.11)

A long, current-carrying solenoid with an air core has 1800 turns per meter of length and a radius of 0.0165 m. A coil of 210 turns is wrapped tightly around the outside of the solenoid, so it has virtually the same radius as the solenoid. What is the mutual inductance of this system

Answers

Answer:

The mutual inductance is  [tex]M = 0.000406 \ H[/tex]

Explanation:

From the question we  are told that

    The  number of turns per unit length  is  [tex]N = 1800[/tex]

    The radius is  [tex]r = 0.0165 \ m[/tex]

     The  number of turns of the solenoid is  [tex]N_s = 210 \ turns[/tex]

   

Generally the mutual inductance of the  system is mathematically represented as

       [tex]M = \mu_o * N * N_s * A[/tex]

Where A is the cross-sectional area of the system which is mathematically represented as

       [tex]A = \pi * r^2[/tex]

substituting values

      [tex]A = 3.142 * (0.0165)^2[/tex]

       [tex]A = 0.0008554 \ m^2[/tex]

also   [tex]\mu_o[/tex] is the permeability of free space with the value  [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

So  

      [tex]M = 4\pi * 10^{-7} *1800 * 210 * 0.0008554[/tex]

      [tex]M = 0.000406 \ H[/tex]

A dust particle on a phonograph record rotates at a speed of 45 revolutions per minute if the particle is 10 cm from the axis of rotation. Find. 1) its linear speed and linear acceleration.

Answers

Explanation:

ω = 45 rev/min × (2π rad/rev) × (1 min / 60 s) = 4.71 rad/s

r = 10 cm = 0.10 m

1) The linear speed is:

v = ωr

v = (4.71 rad/s) (0.10 m)

v = 0.471 m/s

2) The linear acceleration in the tangential direction is 0.

The linear acceleration in the radial direction is:

a = v² / r

a = (0.471 m/s)² / (0.10 m)

a = 2.22 m/s²

Other Questions
Mrs. Watson wants to buy some dresses for her trip to Houston. There are three boutiques, each offering a different deal.TableLara's Boutique 4 dresses for $64The Dress Shop 5 dresses for $75Marge's Dresses 8 dresses for $160Which boutique has the best deal for dresses?A. Both Marge's Dresses and Lara BoutiqueB. The Dress ShopC. Lara's BoutiqueD. Marge's Dresses how to evaluate cot 3pi/2 Solve and CHECK the following:8(5x2)=62(3x+1) Sorry for the bad Angle, anyways if anyone could help me out that be great, I would do the question myself if I'd know how to do it, have a nice day HELP ASAP It defines "health promotion as the process of enabling people to increase control over and toimprove their health." It identifies that there are certain prerequisites or basic conditions andresources that must be available if any gains in health are to occur. These are peace, shelter,education, food, income, as a stable ecosystem, sustainable resources, and social justice.O Define the Biomedical Model of Health,Describe and explain the function of the Social Model of Health,Describe and explain the function of the Biomedical Model of Health.O Describe and explain the Ottawa CharterIdk if that answer is right I accidentally clicked it The area of a rectangle can be expressed by 2x2 7x 4. If the rectangle has anarea of 45, find the positive value for x. Helppppp Please please List the submultiples and multiple units of length, mass, and time with respect to real-life situations. How are these units are related to S I unit of the above mentioned physical quantity? When Dave, Dan, and Darwin lost their jobs during the recent recession, they pooled their resources, borrowed a little more, and bought a couple of houses to renovate. Darwin was a single guy with two other residential properties that he rented out. Dan and Dave had families with college-age children; they owned their homes, and Dan had a wife who worked at a professional job. All three were concerned about the risk involved in owning their own business, particularly the risk of losing personal assets. As their advisor, which of the following forms of business ownership would you recommend? a) Limited liability company b) Sole proprietorship c) General partnership d) Master limited partnership Consider the different types of special-purpose maps, such as those with details about geography, environment, climate, physical features, economic opportunity, etc. What types of information can population maps tell us when compared to other special-purpose maps? Respond in a paragraph of three to five sentences. Find the heat released in cooling 10g of water at 100C down to 25C True or False : Writers use word order for expressive purposes May I know what is the final answer ? Plzzzzz Help I really need helpA Line Segment has the points (1,-2), and (3,-2). What are the new points after its dilated by a scale factor of 3/2 or 1.5 What is the area of the polygon below? Coronado, Inc. had net sales in 2017 of $1,493,700. At December 31, 2017, before adjusting entries, the balances in selected accounts were Accounts Receivable $329,800 debit, and Allowance for Doubtful Accounts $4,060 credit. If Coronado estimates that 9% of its receivables will prove to be uncollectible. Prepare the December 31, 2017, journal entry to record bad debt expense. *PLEASE ANSWER, DONT UNDERSTAND* Which native Indian group of sepoys was upset with the British government's lack of sensitivity to cultural prohibitions? It was this insensitivity that resulted in mutiny to mandatory changes in uniforms and ammunitions. a.) The Hindu soldiers were upset with changes made by the military. b.) The Christian soldiers were upset with changes made by the military. c.) Both the Hindu and the Muslim soldiers were upset with changes made by the military. d.) The Muslim soldiers were upset with changes made by the military. Use multiplication to solve the proportion w/4 = 42/24 Select the correct answer.What is the reason for heat transfer from one substance to another Tech A says that an overdrive gear ratio means the input gear turns faster than the output gear. Tech B says that overdrive ratios provide less torque output than underdrive ratios. Who is correct?