a 1.00-m3 object floats in water with 20.0% of its volume above the waterline. what does the object weigh out of the water? the density of water is 1000 kg/m3.

Answers

Answer 1

The weight of the object out of water is 800 kg.

To solve this problem, we need to use the principle of buoyancy. When an object is placed in water, it experiences an upward force called buoyant force, which is equal to the weight of the water displaced by the object.

In this case, the object has a volume of 1.00 m³, and 20.0% of its volume is above the waterline. Therefore, the volume of the object submerged in water is:

Vsubmerged = 1.00 m3 - 0.20 x 1.00 m³ = 0.80 m³

We also know the density of water is 1000 kg/m³. Therefore, the weight of the water displaced by the object is:

Wwater = density of water x volume of water displaced
Wwater = 1000 kg/m³ x 0.80 m³
Wwater = 800 kg

This means the buoyant force acting on the object is 800 kg. In order for the object to float, the buoyant force must be equal to the weight of the object. Therefore, we can find the weight of the object as:

Weight of object = Buoyant force = 800 kg

So the object weighs 800 kg out of the water.

More on weight: https://brainly.com/question/19719921

#SPJ11


Related Questions

a loop of area 0.08 m2 is rotating at constant angular speed. it rotates at 87 rev/s with the axis of rotation perpendicular to a 0.08 t magnetic field. if there are 1017 turns on the loop, what is the maximum voltage induced in it? answer in units of v.

Answers

The maximum voltage induced in the loop is 82.05 volts. The EMF is negative.

The maximum voltage induced in the loop can be calculated using the formula:

EMF = -NΔΦ/Δt

Where EMF is the induced electromotive force, N is the number of turns in the loop, ΔΦ is the change in magnetic flux, and Δt is the time interval over which the change occurs.

In this case, the loop has an area of 0.08 m2 and is rotating at a constant angular speed of 87 rev/s, which corresponds to an angular velocity of 544.89 rad/s. The magnetic field is perpendicular to the axis of rotation, so the change in magnetic flux is given by:

ΔΦ = B*A*cos(θ)*Δt

Where B is the magnetic field strength, A is the area of the loop, θ is the angle between the magnetic field and the normal to the loop (which is 90 degrees in this case), and Δt is the time interval over which the change occurs.

Since the loop is rotating at a constant speed, the time interval over which the change occurs is equal to the time it takes for the loop to complete one revolution, which is:

Δt = 1/87 s

Plugging in the given values, we get:

ΔΦ = (0.08 T)*(0.08 m2)*(1)*(1/87 s) = 0.000921 Tm2/s

Next, we can calculate the induced EMF using the formula:

EMF = -NΔΦ/Δt

Plugging in the given values, we get:

EMF = -(1017)*(0.000921 Tm2/s)/(1/87 s) = -82.05 V

Since the EMF is negative, this means that the induced voltage is in the opposite direction to the direction of the current flow in the loop.

For more such questions on EMF.

https://brainly.com/question/14300059#

#SPJ11

The current through one resistor in a parallel resistor circuit is always (need help ASAP)


a. The same as the current in the other resistors in the circuit

b. Equal to the total current in the circuit.

c. More than the total current in the circuit.

d. Less than the total current in the circuit

Answers

In a parallel resistor circuit, the current through one resistor is not always the same as the current in the other resistors in the circuit. The correct answer is: d.

In a parallel resistor circuit, the current is split between the different branches of the circuit. The total current in the circuit is equal to the sum of the currents in each branch. Each resistor in a parallel circuit has a different resistance, which determines how much current flows through it. The resistor with the lowest resistance will have the highest current flowing through it, while the resistor with the highest resistance will have the lowest current flowing through it. Therefore, option d is correct.

To know more about parallel resistor circuit, here

brainly.com/question/29006457

#SPJ4

a father with twice the mass of his daughter is watching her skate as he is standing still on ice with his skates on. she approaches him with speed v and then grabs him so that it is a perfectly inelastic collision. at what speed do the two of them move, i.e. what is their center of mass velocity? assume the ice is frictionless and there is no wind resistance.

Answers

The center of mass velocity after the perfectly inelastic collision is Vf = v/3.

To determine the center of mass velocity after the perfectly inelastic collision between the father and daughter on frictionless ice with no wind resistance.

Step 1: Assign variables to the given information.
Let the mass of the father be 2m and the mass of the daughter be m. The daughter approaches the father with a speed of v, and the father is initially at rest.

Step 2: Apply the conservation of momentum principle.
In a collision, the total momentum before the collision equals the total momentum after the collision. Let Vf represent the final velocity of both the father and daughter after the collision. The initial momentum is given by:

p_initial = (mass_daughter × v_daughter) + (mass_father × v_father)

Since the father is initially at rest, his initial velocity is 0:

p_initial = (m × v) + (2m × 0) = m × v

Step 3: Calculate the total momentum after the collision.
After the collision, the combined mass of the father and daughter is 2m + m = 3m. The final momentum is:

p_final = (mass_combined) × Vf = (3m) × Vf

Step 4: Set the initial momentum equal to the final momentum and solve for the final velocity, Vf.
m × v = (3m) × Vf

Divide both sides by 3m:

Vf = (m × v) / (3m)

The mass m cancels out:

Vf = v / 3

You can learn more about the center of mass at: brainly.com/question/29576405

#SPJ11

a binary star system in the constellation orion has an angular separation between the stars of 10-5 radians. assuming a wavelength of 500 nm, what is the smallest aperture (diameter) telescope that will just resolve the two stars? (1 nm

Answers

The smallest aperture (diameter) telescope that will just resolve the two stars is 5 cm.

The angular resolution (minimum resolvable angle) of a telescope can be calculated using the Rayleigh criterion, which states that two objects can be just resolved when the center of the diffraction pattern of one is directly over the first minimum of the diffraction pattern of the other. The formula for the angular resolution is:

θ = 1.22 λ / D

where θ is the angular resolution, λ is the wavelength of light, and D is the diameter of the aperture (telescope).

Substituting the given values, we get:

θ = 1.22 x 500 nm / Dθ = 0.61 µrad / D

The angular separation between the stars is given as 10-5 radians. To resolve the stars, the angular resolution of the telescope must be equal to or smaller than this value. Therefore:

θ = 0.61 µrad / D ≤ 10-5 radiansD ≥ 5 cm

Therefore, the smallest aperture (diameter) telescope that will just resolve the two stars is 5 cm.

To learn more about telescope, here

https://brainly.com/question/556195

#SPJ4

A client reports general malaise and has a temperature is 103.8°F (39.9°C). What is the rationale for administering a prescribed aspirin, an antipyretic, to this client?
Antipyretics protect vulnerable organs, such as the brain, from extreme temperature elevation.
Temperatures in excess of 99.5°F (37.5°C) can result in seizure activity.
Lower temperatures inhibit the protein synthesis of bacteria.
Most antipyretics have been shown to have little effect on core temperature but alleviate discomforts.

Answers

A client reports general malaise and has a temperature is 103.8°F (39.9°C). What is the rationale for administering a prescribed aspirin, an antipyretic, to this client

step-by-step explanation:

Step 1: A client reports general malaise and has a temperature of 103.8°F (39.9°C).

Step 2: The high temperature is an indication that the body is fighting an infection or inflammation.

Step 3: Antipyretics, such as aspirin, work by blocking the production of certain chemicals in the body that cause fever.

Step 4: Lowering the body temperature can help alleviate the discomfort associated with fever and reduce the risk of complications, such as seizures or dehydration.

Step 5: Aspirin is a commonly prescribed antipyretic that can be effective in reducing fever.

Step 6: The rationale for administering a prescribed aspirin, an antipyretic, to this client is to lower the body temperature and alleviate the discomfort associated with fever.

Step 7: It is important to follow the prescribed dosage and instructions for aspirin to avoid potential side effects or interactions with other medications.

                 

Step 8: If the fever persists or worsens, it is important to seek medical attention to determine the underlying cause and ensure appropriate treatment.

To know more about Antipyretics :

https://brainly.com/question/30758739

#SPJ11

A pitcher supplies a constant force on a baseball whose mass is .14 kg. The pitcher's hand is in contact with the ball over a distance of 1.5m. The ball's speed as it is released is 40 m/s.
A) What force acted on the ball?
B) What was the change in momentum of the ball?
C) How long did the force act on the ball?

Answers

That the force (F) acting on the ball is the same as calculated in part A, we can rearrange the equation to solve for time (t):

Time (t) = Impulse (J) / Force (F)

What is Mass?

Mass is a fundamental property of matter that represents the amount of matter contained in an object. It is a scalar quantity and is typically measured in units such as kilograms (kg), grams (g), or other appropriate units depending on the scale of the object being measured.

The initial momentum (p_initial) of the ball can be calculated as the product of its mass and initial velocity:

Initial momentum (p_initial) = Mass (m) × Initial velocity (v_initial)

Since the ball is released with a speed of 40 m/s, the initial velocity (v_initial) is 40 m/s.

The final momentum (p_final) of the ball can be calculated as the product of its mass and final velocity:

Final momentum (p_final) = Mass (m) × Final velocity (v_final)

Since the ball is released with a speed of 40 m/s, the final velocity (v_final) is also 40 m/s.

The change in momentum (Δp) of the ball is the difference between the final and initial momenta:

Change in momentum (Δp) = Final momentum (p_final) - Initial momentum (p_initial)

Plugging in the values, we can calculate the force (F) acting on the ball:

Force (F) = Change in momentum (Δp) / Time (t)

B) The change in momentum (Δp) of the ball can be calculated as the final momentum (p_final) minus the initial momentum (p_initial):

Change in momentum (Δp) = Final momentum (p_final) - Initial momentum (p_initial)

C) The time (t) for which the force acts on the ball can be calculated using the formula for impulse, which relates force, change in momentum, and time:

Impulse (J) = Force (F) × Time (t)

Learn more about Mass from the given link

https://brainly.com/question/86444

#SPJ1

a series circuit has a total resistance of 180 ω and a total voltage of 120 v. what is the current flow?

Answers

To find the current flow in a series circuit with a total resistance of 180 ω and a total voltage of 120 V, we can use Ohm's law,(Ohm’s law states the relationship between electric current and potential difference. The current that flows through most conductors is directly proportional to the voltage applied to it. Georg Simon Ohm, a German physicist was the first to verify Ohm’s law experimentally.)

which states that current (I) equals voltage (V) divided by resistance (R), or

I = V/R. Therefore, the current flow in this circuit would be:

I = 120V/180Ohm

I = 0.67 amperes (A)

So, the current flow in this series circuit is 0.67 A.

To know more about Ohm's law, please click:

brainly.com/question/1247379

#SPJ11

compared to the buoyant force of the atmosphere on a 1-kilogram iron block, the buoyant force on a nearby 1-kilogram helium-filled balloon is group of answer choices the same. considerably less. considerably more.

Answers

The buoyant force on a 1-kilogram helium-filled balloon will be considerably more than the buoyant force of the atmosphere on a 1-kilogram iron block.

The buoyant force is the force exerted by a fluid, such as air or water, on an object that is submerged in it. It is equal to the weight of the fluid displaced by the object.

In this case, we are comparing the buoyant force of the atmosphere on a 1-kilogram iron block to the buoyant force on a nearby 1-kilogram helium-filled balloon.

Helium is a gas that is much less dense than air, which means that it will displace a larger volume of air than the iron block of the same mass.

Therefore, the buoyant force on the helium-filled balloon will be considerably more than the buoyant force on the iron block. This is because the buoyant force is directly proportional to the volume of fluid displaced by the object.

To learn more about : buoyant

https://brainly.com/question/28464280

#SPJ11

inelastic collisions in one dimension: a 5.00-kg ball is hanging from a long but very light flexible wire when it is struck by a 1.50-kg stone traveling horizontally to the right at 12.0 m/s. the stone rebounds to the left with a speed of 8.50 m/s, and the ball swings to a maximum height h above its original level. the value of h is closest to

Answers

We can solve this problem using conservation of momentum and conservation of energy.

First, we can find the initial momentum of the system before the collision:

[tex]p_i = m_stone * v_stone[/tex] = 1.50 kg * 12.0 m/s = 18.0 kg m/s

After the collision, the stone rebounds to the left with a speed of 8.50 m/s, so we can find its final momentum:

[tex]p_f = m_stone * v'_stone = 1.50 kg * (-8.50 m/s)[/tex]= -12.75 kg m/s

The ball and the stone move together after the collision, so their final velocity is the same. Let's call it v_f. We can find the final momentum of the system:

[tex]p_f = (m_ball + m_stone) * v_f[/tex]

Since momentum is conserved, we can set p_i = [tex]p_f[/tex]and solve for v_f:

[tex]v_f = p_i / (m_ball + m_stone) = 18.0 kg m/s / (5.00 kg + 1.50 kg)[/tex]= 3.0 m/s

Now we can use conservation of energy to find the maximum height h that the ball reaches. At the maximum height, all of the kinetic energy has been converted to potential energy:

[tex]1/2 * (m_ball + m_stone) * v_f^2 = (m_ball + m_stone) * g * h[/tex]

Solving for h, we get:

[tex]h = v_f^2 / (2 * g) = 3.0 m/s^2 / (2 * 9.8 m/s^2) = 0.153 m[/tex]

So the value of h is closest to 0.153 m.

To learn more about inelastic collisions  here

https://brainly.com/question/29220028

#SPJ4

moment of inertia times angular velocity; measured in units of mass times units of velocity or expressed as kilogram-meters squared per second in si; a vector quantity.

Answers

The quantity that is expressed as the product of moment of inertia and angular velocity is known as angular momentum.

Angular momentum is a vector quantity and is measured in units of mass times units of velocity, which is equivalent to kilogram-meters squared per second in SI units. It represents the rotational analog of linear momentum and is important in understanding the conservation of angular momentum in rotating systems.
The concept of angular momentum, which involves moment of inertia and angular velocity. Angular momentum (L) is the product of an object's moment of inertia (I) and its angular velocity (ω). It can be represented mathematically as:
L = I * ω
To know more about moment of inertia:

https://brainly.com/question/30051108

#SPJ11

The moment of inertia times angular velocity is a measure of rotational motion and is expressed as the ˘ of the moment of inertia and the angular velocity. The units of velocity are typically meters per second (m/s) or radians per second (rad/s), depending on the context.

The units of moment of inertia are kilograms times meters squared (kg x m²). When these units are multiplied together, the resulting unit is kilogram-meters squared per second (kg x m²/s), which is the SI unit for angular momentum. Since angular momentum is a vector quantity, it has both magnitude and direction.

I is the moment of inertia, a measure of an object's resistance to rotational motion, and is typically determined by the object's mass distribution and geometry.

ω is the angular velocity, a measure of how fast an object rotates about a specific axis, and is typically expressed in radians per second (rad/s).

To learn more about Angular velocity Here:

https://brainly.com/question/29557272

#SPJ11

let's say i was standing in one spot (zero speed facing north). then i took one step (one meter) and it took me a second to do so (still facing north). did i acceleration?

Answers

No, you will not accelerate.

Acceleration is the rate of change of velocity, which is a vector quantity that includes both magnitude and direction. If your velocity did not change in direction, then you did not accelerate.

In your case, you moved one meter in one second while facing north. Since your velocity did not change in direction, you did not accelerate. However, you did have a non-zero average speed of 1 meter per second over that one second interval. Speed is a scalar quantity that only includes magnitude, not direction. So, while you did not accelerate, you did have a non-zero speed for that short period of time.

To know more about acceleration, here

brainly.com/question/12550364

#SPJ4

--The complete question is, Let's say i was standing in one spot (zero speed facing north). then i took one step (one meter) and it took me a second to do so (still facing north). did i accelerate?--

A rifle has a mass of 45 kg. The bullet that it fires travels at 300 m/s. The mass of the bullet is 0.01 kg. What is the velocity of the rifle after it recoils?

Answers

Assuming the rifle recoils in the same direction as the bullet, the velocity of the rifle after recoil would be 5.44 m/s.

What is velocity ?

Velocity is a vector quantity that measures the rate of change in the position of an object. It is expressed as a speed and a direction. Velocity is a measure of the rate and direction of motion of an object, and is equal to the displacement of the object divided by the time taken for the displacement. The units of velocity are usually expressed in terms of meters per second (m/s).

This can be calculated using the equation of conservation of momentum, which states that the total momentum of a system must remain constant. Thus, the momentum of the bullet (0.01 kg× 300 m/s) must be equal to the momentum of the rifle (45 kg× v), where v is the velocity of the rifle after recoil. Solving for v yields 5.44 m/s.

To learn more about velocity

https://brainly.com/question/80295?

#SPJ1

as per subpart b, a physician who is a member of the research team on a study involving nonviable neonates may assist the treating physicians in determining whether neonates are nonviable. True or false?

Answers

True a significant factor in algal blooms and the excessive growth of aquatic vegetation that results in competition for sunlight and congestion.

What exactly is a contest?

Job competition is fierce. Computer firms compete fiercely with one another. The two businesses are in opposition to one another.It can also be described more broadly as the either direct or indirect relationship between species that affects fitness when they share a resource.When there is monopolistic competition, several vendors offer differentiated goods—goods with minor differences but similar functions.

An organism is what?

Therefore, every animal, plant, mould, protist, organism, or archaeon found on Earth would be considered an organism. There are numerous methods to categorise these species.a single organism that uses its organs to carry out its life's functions

To know more about organism visit:

https://brainly.com/question/13278945

#SPJ1

one engine works with constant power p and the other one increases its power linearly with time. what is the ratio of the work done by the engines (engine two to engine one) if the second engine increased its power from zero to 5.2 p during the observed time?

Answers

The work done by the second engine is 2.6 times the work done by the first engine.

The work done by an engine is given by the product of power and time. The first engine works with a constant power of P, so its work done is given by W1 = P*t, where t is the observed time.

The second engine increases its power linearly with time, and its final power is 5.2P. Let the power at time t be

P(t) = kt, where k is the rate of increase of power.

At time t=0, the power is zero, so we have

P(0) = 0.

At time t, the power is kt, so we have

P(t) = kt.

When the power reaches 5.2P, we have

P(t) = 5.2P

so kt = 5.2P, and k = 5.2P/t.

The work done by the second engine is given by

W₂  = ∫P(t)

dt from 0 to t, which evaluates to

W₂ = 1/2 × k × t²

= 1/2 × 5.2P ÷ t × t²

= 2.6P × t.

The ratio of the work done by the second engine to the first engine is

W2 ÷ W1 = (2.6P × t) ÷ (P × t) = 2.6.

To learn more about work length the link:

https://brainly.com/question/13662169

#SPJ4

A mechanic exerts a force of 55 N on a 0.015 m2 hydraulic piston to lift a small automobile. The piston the automobile sits on has an area of 2.4 m2. What is the weight of the automobile?

Answers

The force needed to lift the car is 8800 N, which is its weight.

What kind of forces do hydraulic systems produce?

In hydraulic systems, forces are transferred from one area to another inside an incompressible fluid, such as water or oil. Most aircraft's landing gear and braking systems are hydraulic. In order to function, pneumatic systems need a compressible fluid like air.

The smaller piston received a 55 N force from the mechanic, and its surface area was 0.015 m². We may determine the pressure used by the mechanic using the pressure formula P = F/A:

P = F/A = 55 N / 0.015 m² = 3666.67 Pa

This pressure is transmitted to the larger piston with an area of 2.4 m². The force on the larger piston can be calculated using the formula F = PA:

F = PA = 3666.67 Pa x 2.4 m² = 8800 N

To know more about force visit:-

https://brainly.com/question/13191643

#SPJ1

ten 7.0-w christmas tree lights are connected in series to each other and to a 120-v source. what is the resistance of each bulb?

Answers

The resistance of each bulb which are connected in series is 20.571 Ω.

Let's find the resistance of each bulb using the given terms:

1. Voltage of source (V_source) = 120 V
2. Number of bulbs (n) = 10
3. Power of each bulb (P) = 7.0 W

We'll use the formula P = V²/R to find the resistance of each bulb.

1: Find the total power of the series.
Total power (P_total) = n * P = 10 * 7.0 W = 70 W

2: Find the total resistance of the series.
Using the formula P_total = V_source^2 / R_total, we can find R_total:
R_total = V_source² / P_total = (120 V)² / 70 W = 14400 / 70 = 205.71 Ω

3: Find the resistance of each bulb.

Since the bulbs are connected in series, the total resistance is the sum of the individual resistances. Therefore, we can find the resistance of each bulb (R_bulb) as follows:

R_bulb = R_total / n = 205.71 Ω / 10 = 20.571 Ω

So, the resistance of each bulb is approximately 20.571 Ω.

Learn more about resistance:

https://brainly.com/question/24858512

#SPJ11

calculate the energy in joules released by the fusion of a 2.25 -kg mixture of deuterium and tritium, which produces helium. there are equal numbers of deuterium and tritium nuclei in the mixture.

Answers

The energy released by the fusion of a 2.25-kg mixture of deuterium and tritium, which produces helium, is approximately [tex]2.821 * 10^{-13} J.[/tex]

The energy released by the fusion of a mixture of deuterium and tritium into helium can be calculated using the formula:

[tex]E = \Delta m \cdot c^2[/tex]

where E is the energy released, Δm is the change in mass during the fusion process, and c is the speed of light (approximately [tex]3.00 * 10^8 m/s[/tex]).

The change in mass Δm can be calculated using the difference between the mass of the reactants and the mass of the products:

[tex]\Delta m = (2 \cdot m_d + 3 \cdot m_t) - 4 \cdot m_h[/tex]

where [tex]m_d[/tex] is the mass of a deuterium nucleus (2.0141 u), [tex]m_t[/tex]is the mass of a tritium nucleus (3.0160 u), and [tex]m_h[/tex] is the mass of a helium nucleus (4.0026 u).

The mass of a nucleus in atomic mass units (u) can be converted to kilograms using the conversion factor [tex]1.66 * 10^{-27} kg/u.[/tex]

Substituting the values and simplifying, we get:

[tex]\Delta m = (2 \cdot 2.0141 \, \text{u} + 3 \cdot 3.0160 \, \text{u}) - 4 \cdot 4.0026 \, \text{u} = 0.0189 \, \text{u}[/tex]

Δm in kilograms is therefore:

[tex]\Delta m = 0.0189 \, \text{u} \cdot (1.66 \times 10^{-27} \, \text{kg/u}) = 3.134 \times 10^{-30} \, \text{kg}[/tex]

The energy released E can now be calculated:

[tex]E = \Delta m \cdot c^2 = 3.134 \times 10^{-30} \, \text{kg} \cdot (3.00 \times 10^8 \, \text{m/s})^2[/tex]

[tex]= 2.821 * 10^{-13} J[/tex]

Therefore, the energy released by the fusion of a 2.25-kg mixture of deuterium and tritium, which produces helium, is approximately [tex]2.821 * 10^{-13} J.[/tex]

For more such questions on energy , Visit:

https://brainly.com/question/13881533

#SPJ11

at the sea level the airplane can takeoff at the speed of 150mi/hr. what is the required takeoff speed at albuquerque

Answers

To determine the required takeoff speed at Albuquerque, we need to consider the difference in air density between sea level and the altitude of Albuquerque.

As altitude increases, air density decreases, which can have a significant effect on aircraft performance.

In particular, the reduced air density means that the airplane needs to achieve a higher ground speed in order to generate enough lift to take off.

To calculate the required takeoff speed at Albuquerque, we can use the following equation:

V2 = V1 x √(rho2/rho1)

where:

V1 = takeoff speed at sea level (given as 150 mph)

rho1 = air density at sea level (standard value of 1.225 kg/m^3)

rho2 = air density at Albuquerque (can be looked up or calculated using atmospheric models)

V2 = required takeoff speed at Albuquerque (what we want to find)

Let's assume that Albuquerque is at an altitude of 5,312 feet (the airport elevation).

Using atmospheric models or tables, we can find that the air density at this altitude is approximately 0.860 kg/m^3.

Now we can substitute the values into the equation:

V2 = 150 mph x √(0.860 kg/m^3 / 1.225 kg/m^3)

V2 = 150 mph x 0.806

V2 = 121 mph (rounded to the nearest whole number)

Therefore, the required takeoff speed at Albuquerque is approximately 121 mph. This is lower than the takeoff speed at sea level due to the reduced air density at higher altitudes.

To know more about speed visit link :

https://brainly.com/question/13780167

#SPJ11

at what speed do a bicycle and its rider, with a combined mass of 90 kg , have the same momentum as a 1600 kg car traveling at 4.8 m/s ? express your answer to two significant figures and include the appropriate units.

Answers

The momentum of an object is defined as the product of its mass and velocity. Therefore, we can set up an equation where the momentum of the bicycle and rider is equal to the momentum of the car:

(m_bicycle + m_rider)v_bicycle = m_carv_car

where m_bicycle and m_rider are the masses of the bicycle and rider (assumed to be combined), v_bicycle is the velocity of the bicycle and rider, m_car is the mass of the car, and v_car is the velocity of the car.

Substituting the given values, we get:

(90 kg)v_bicycle = (1600 kg)(4.8 m/s)

Solving for v_bicycle, we get:

v_bicycle = (1600 kg)(4.8 m/s)/(90 kg) = 85.3 m/s

Therefore, the bicycle and rider would have to travel at a speed of 85.3 m/s to have the same momentum as the car traveling at 4.8 m/s.

22. radio waves are diffracted by large objects such as buildings, whereas light is not noticeably diffracted. why is this? a) radio waves are unpolarized, whereas light is normally polarized. b) the wavelength of light is much smaller than the wavelength of radio waves. c) the wavelength of light is much greater than the wavelength of radio waves. d) radio waves are coherent and light is usually not coherent. e) radio waves are polarized, whereas light is usually unpolarized.

Answers

Radio waves are diffracted by large objects such as buildings, whereas light is not noticeably diffracted, because b) the wavelength of light is much smaller than the wavelength of radio waves.

The diffraction is the bending of waves around obstacles or through small openings, and the amount of diffraction is proportional to the size of the obstacle or opening and the wavelength of the wave. Since radio waves have much longer wavelengths than visible light, they are more easily diffracted by large objects such as buildings. On the other hand, visible light has a much smaller wavelength than radio waves, which makes it less prone to diffraction. Polarization and coherence are not directly related to diffraction.

Polarization refers to the direction of oscillation of the electromagnetic waves, while coherence refers to the consistency of phase between waves. Therefore, the correct answer is b) the wavelength of light is much smaller than the wavelength of radio waves. Radio waves are diffracted by large objects such as buildings, whereas light is not noticeably diffracted, because b) the wavelength of light is much smaller than the wavelength of radio waves.

Learn more about polarization at:

https://brainly.com/question/29217577

#SPJ11

if successful, leibnez's argument proves the existence of a necessary, uncaused, timeless, spaceless, immaterial, personal creator of the universe. true or false?

Answers

If successful, Leibniz's argument, also known as the Cosmological Argument, does aim to prove the existence of a necessary, uncaused, timeless, spaceless, immaterial, personal creator of the universe. The statement is true.

Leibniz's cosmological argument, also known as the Principle of Sufficient Reason, aims to demonstrate that there must be a necessary, uncaused, timeless, spaceless, immaterial, personal creator of the universe. According to the argument, every contingent thing in the universe has an explanation for its existence, and this explanation must ultimately rest on a necessary being that exists by its own nature and does not depend on anything else for its existence. This necessary being, by definition, must possess the attributes mentioned above. Therefore, if the argument is successful, it would indeed prove the existence of a necessary, uncaused, timeless, spaceless, immaterial, personal creator of the universe.

To learn more about Cosmological Argument, refer:-

https://brainly.com/question/30027032

#SPJ11

7. a high-frequency photon is scattered off of an electron andexperiences a change of wavelength of 1.7 x 10-4 nm at whatangle must a detector be placed to detect the scattered photon(relative to the direction of the incoming photon)?

Answers

The detector must be placed at an angle of approximately 0.003 degrees relative to the direction of the incoming photon to detect the scattered photon.

This formula relates the change in wavelength of the scattered photon to the scattering angle and the rest mass of electron.

Δλ = h/mc (1 - cosθ)

Rearranging the formula to solve for θ, we get:

cosθ = 1 - (Δλ mc)/h

Plugging in the given values, we get:

cos\theta = 1 - [(1.7 * 10^{-4} nm) * (9.11 * 10^{-31} kg) * (3 * 10^{8} m/s)] / \\(6.626 * 10^{-34} J.s)

cosθ ≈ 0.999996

θ ≈ 0.003 degrees

To know more about wavelength, here

brainly.com/question/31143857

#SPJ4

do photoelectrons from metal 1 have a higher speed, a lower speed, or the same speed as photoelectrons from metal 2?

Answers

photoelectrons from metal 1 have a higher speed, a lower speed, or the same speed as photoelectrons from metal 2, If the kinetic energy of photoelectrons from metal 1 is higher than that of metal 2, then the photoelectrons from metal 1 have a higher speed. If the kinetic energy is lower, they have a lower speed. If the kinetic energies are equal, the photoelectrons have the same speed.

we need to consider the following steps:

1. Determine the work function of both metals (the minimum energy required to release an electron from the metal surface). The work function is specific to each metal.
2. Identify the energy of the incident light, which should be the same for both metals to make a fair comparison.
3. Use the photoelectric effect equation: Kinetic energy of photoelectrons = Energy of incident light - Work function of the metal.
4. Compare the kinetic energy of the photoelectrons from both metals.

If the kinetic energy of photoelectrons from metal 1 is higher than that of metal 2, then the photoelectrons from metal 1 have a higher speed. If the kinetic energy is lower, they have a lower speed. If the kinetic energies are equal, the photoelectrons have the same speed.

Learn more about photoelectrons at  brainly.com/question/16772624

#SPJ11

when a charged particle moves perpendicularly to a uniform magnetic field, what best describes its trajectory? when a charged particle moves perpendicularly to a uniform magnetic field, what best describes its trajectory? a sinusoidal curve a circle a straight line a parabola

Answers

When a charged particle moves perpendicularly to a uniform magnetic field, its trajectory is a circle. Here option B is the correct answer.

When a charged particle moves perpendicularly to a uniform magnetic field, its trajectory follows a circular path. This phenomenon is known as the Lorentz force, named after the Dutch physicist Hendrik Lorentz who discovered it in the late 19th century.

The Lorentz force arises due to the interaction between the magnetic field and the charged particle's electric field. When a charged particle moves through a magnetic field, it experiences a force perpendicular to both the direction of its motion and the direction of the magnetic field. This force causes the charged particle to move in a circular path with a constant radius and a constant speed.

The radius of the circular path is determined by the particle's mass, charge, and speed, as well as the strength of the magnetic field. Specifically, the radius is proportional to the particle's momentum and inversely proportional to the magnetic field strength.

The circular motion of a charged particle in a magnetic field is fundamental to many applications in physics and engineering. For example, it is the basis of the operation of particle accelerators, mass spectrometers, and MRI machines.

To learn more about magnetic fields

https://brainly.com/question/3160109

#SPJ4

Complete question:

When a charged particle moves perpendicularly to a uniform magnetic field, what best describes its trajectory? when a charged particle moves perpendicularly to a uniform magnetic field, what best describes its trajectory?

A - a sinusoidal curve

B - a circle

C - a straight line

D - a parabola

why should ay be close to 9.8 m/s2, with the other two being close to 0? why should all three gyroscope values be essentially 0?

Answers

The values you mentioned are related to the motion of a typical object near the surface of the Earth.

The acceleration due to gravity, represented by "g", is approximately 9.8 [tex]m/s^2[/tex] at sea level. This value is constant and acts vertically downward, so it's common to see it represented as a negative value in equations. If an object is at rest on a level surface, then its acceleration in the x and y directions should be close to zero. This is because the object is not moving in those directions, so it's not accelerating.

Regarding the gyroscope values, a gyroscope is a device that measures angular velocity or rotation rate. If a gyroscope is at rest or is not undergoing any rotation, its output should be zero. This is because there is no change in angular velocity to measure. So, if all three gyroscope values are essentially zero, it suggests that the device is not rotating or undergoing any significant angular velocity changes.

In summary, the values you mentioned are related to the motion of objects on or near the Earth's surface, and their values reflect the physical laws that govern that motion.

Learn more about gyroscope

https://brainly.com/question/30214363

#SPJ4

the horizontal component of the earth's magnetic field at the location of the loop is 1.69e-5 t. calculate the maximum emf induced in the coil by the earth's field.

Answers

The maximum EMF induced in the coil by the Earth's magnetic field is zero.

We can use Faraday's law of electromagnetic induction to calculate the maximum EMF induced in the coil by the Earth's magnetic field. Faraday's law states that the EMF induced in a coil is equal to the rate of change of the magnetic flux through the coil.

Assuming the loop is a circle of radius r, the magnetic flux through the loop due to the Earth's magnetic field is given by:

Φ = B * A * cosθ

where B is the horizontal component of the Earth's magnetic field, A is the area of the loop, and θ is the angle between the normal to the loop and the direction of the magnetic field. Since the loop is lying flat on the ground, θ = 0, and cosθ = 1.

The area of a circle is A = π[tex]r^2[/tex], so we have:

Φ = B * π[tex]r^2[/tex]

The rate of change of the magnetic flux through the loop is given by the time derivative of Φ:

dΦ/dt = d(B * π[tex]r^2[/tex])/dt = π[tex]r^2[/tex] * dB/dt

Since the horizontal component of the Earth's magnetic field is constant, dB/dt = 0, so the rate of change of the magnetic flux is zero.

Therefore, the maximum EMF induced in the coil by the Earth's magnetic field is zero.

Learn more about magnetic field

https://brainly.com/question/14848188

#SPJ4

The carbon cycle describes the process in which carbon atoms continually travel from the atmosphere to the Earth and then back into the atmosphere. Examine the model. What are abiotic components of the carbon cycle? Choose ALL that apply

Answers

The carbon cycle involves both biotic (living) and abiotic (non-living) components.

What are the abiotic components of the carbon cycle?

Abiotic components of the carbon cycle include:

Atmosphere: The atmosphere is a major abiotic component of the carbon cycle. Carbon dioxide (CO2) is a greenhouse gas that makes up a small percentage of Earth's atmosphere (currently around 0.04%). Carbon dioxide is released into the atmosphere through processes such as respiration, combustion of fossil fuels, and volcanic eruptions. It can also be absorbed from the atmosphere through processes such as photosynthesis and dissolution in bodies of water.

Oceans: The world's oceans are a significant abiotic component of the carbon cycle. They act as a sink for carbon dioxide, absorbing large amounts of it from the atmosphere. Carbon dioxide dissolves in seawater to form carbonic acid, which can then undergo various chemical reactions to form bicarbonate ions and carbonate ions. These dissolved forms of carbon can be transported and stored in the deep ocean for long periods of time, a process known as oceanic carbon sequestration.

Soil: Soil is another abiotic component of the carbon cycle. Dead plant material and other organic matter that accumulates in soil can undergo decomposition by microorganisms, releasing carbon dioxide back into the atmosphere through a process called soil respiration. Additionally, carbon can be stored in soil as organic carbon, which can remain in the soil for years to centuries depending on environmental conditions.

Geological formations: Carbon can also be stored in abiotic reservoirs such as geological formations, including fossil fuels such as coal, oil, and natural gas. These fossil fuels are formed from ancient organic matter that has been buried and preserved in the Earth's crust over millions of years. When these fossil fuels are burned for energy, carbon is released into the atmosphere as carbon dioxide, contributing to the increase in atmospheric carbon dioxide concentrations.

These abiotic components of the carbon cycle play a crucial role in regulating the balance of carbon between the atmosphere, oceans, soil, and geological formations, and are important in understanding the overall carbon cycle and its impact on the Earth's climate.

Learn more about carbon cycle here: https://brainly.com/question/12005308

#SPJ1

2.5-Newton's Third Law
An astronaut in deep space is at rest relative to a nearby space station. The astronaut needs to
return to the space station. A student makes the following claim: "The astronaut should
position her feet pointing away from the space station. Then, she should repeatedly move her
feet in the opposite direction to each other. This action will propel the astronaut toward the
space station." Is the student's claim correct? Justify your selection.

Answers

The student's claim is incorrect. According to Newton's Third Law of Motion, for every action, there is an equal and opposite reaction.

How is Newton's Third Law explained for a spacecraft?

In this case, the force exerted by the astronaut on her feet is equal and opposite to the force exerted by the feet on the astronaut. Therefore, moving her feet in the opposite direction to each other will result in equal and opposite forces, which will cancel each other out and not propel the astronaut towards the space station.

To propel herself towards the space station, the astronaut needs to exert a force in the direction opposite to the direction of the space station. This can be achieved by using a jetpack or another propulsion system.

Find out more on space station here: https://brainly.com/question/18650677

#SPJ1

a mechanic releases a small object with a density of 1.5 g/cm3 and a volume of 1.0 cm3 into a large vat of motor oil whose density is 888.1 kg/m3 . the container is 12.0 m deep with a diameter of 1.8 m. what will the magnitude and direction of its acceleration be if it is released from rest at a depth of 1.6m below the surface?

Answers

Using Archimedes' principle, the magnitude of the acceleration is 39.6 m/s², and the direction is upward.

To solve this problem, we need to use Archimedes' principle, which states that the buoyant force on an object in a fluid is equal to the weight of the fluid displaced by the object. The net force on the object is then the difference between its weight and the buoyant force, and its acceleration is given by Newton's second law (F = ma).

First, we need to calculate the weight of the object. The density of the object is 1.5 g/cm³, which is equivalent to 1500 kg/m3 (since 1 g/cm³ = 1000 kg/m³). The volume of the object is 1.0 cm³, which is equivalent to 0.000001 m³. Therefore, the weight of the object is:

w = m × g = (density × volume) × g = (1500 kg/m³ × 0.000001 m³) × 9.81 m/s² = 0.014715 N

where g is the acceleration due to gravity (9.81 m/s²).

Next, we need to calculate the weight of the fluid displaced by the object. At a depth of 1.6 m, the pressure of the fluid is:

p = density × g × h = 888.1 kg/m³ × 9.81 m/s² × 1.6 m = 13841.088 N/m²

where h is the depth of the object below the surface.

The area of the object is:

A = π × r² = π × (0.9 m)² = 2.54 m²

where r is the radius of the container (which is half of the diameter).

Therefore, the buoyant force on the object is:

Fb = p × A = 13841.088 N/m² × 2.54 m² = 35166.84 N

The net force on the object is:

Fnet = w - Fb = 0.014715 N - 35166.84 N = -35166.825 N

The negative sign indicates that the net force is upward, which means that the object will accelerate upward.

Finally, we can calculate the magnitude of the acceleration:

a = Fnet / m = Fnet / (density × volume) = -35166.825 N / (888.1 kg/m³ × 0.000001 m³) = -39.6 m/s²

Learn more about magnitude and direction at

https://brainly.com/question/29766788

#SPJ4

which type of spectrum contains dark bands that represent wavelengths intercepted by a material between a radiation source and the earth?

Answers

The type of spectrum being referred to is an absorption spectrum. Here are the steps involved in creating an absorption spectrum:

1) A radiation source emits a continuous spectrum of light, which contains all wavelengths of visible light.

2) The light from the radiation source passes through a material, such as a gas, liquid, or solid.

3) The material absorbs certain wavelengths of light that are specific to its chemical composition.

These absorbed wavelengths correspond to the energy levels of the electrons in the material's atoms or molecules.

4) The remaining light that passes through the material is a spectrum that has dark bands or lines where the absorbed wavelengths should be. These dark bands represent the wavelengths that were absorbed by the material.

5) The resulting spectrum is an absorption spectrum that can be used to identify the elements or compounds present in the material.

To summarize, an absorption spectrum contains dark bands that correspond to the specific wavelengths of light that are absorbed by a material between a radiation source and the earth. By analyzing the absorption spectrum, scientists can identify the composition of the material.

To know more about absorption spectrum :

https://brainly.com/question/14282264

#SPJ11

Other Questions
The principal of a school claims that 30 % of grade 3 pupils stay in the playground after their classes. A survey among 500 grade 3 pupils revealed that 150 of them stay in the playground after their classes. Use 99% confidence to conduct a test of proportions. No unrelated answers or links or you will be reported. Thanks Grand Co. trades in an old machine for a new machine. The new machine has a list price of$10,000. The old machine has a cost of $12,000, and accumulated depreciation of $9,000. Inaddition, Grand will pay $6,000 towards the purchase. Because the new machine is much moretechnologically advanced, the exchange has commercial substance. The trade will i11clude Which linear equation shows a proportional relationship? y = 2x + 5 y equals one fifth times x minus 7 y equals negative one fifth times x y = 5 Missing _________________ affects the restore process and makes you unable to restore all the remaining backup file. Please consider a weekly full backup, a daily differential backup and hourly log backup. what is the predicted selling price for a house in renton with 3 bedrooms(s), 2 bathroom(s), and 2,000 sqft? (round your answer to two decimal places.) a garden supply company is struggling to maintain sales and found through market research that consumers don't find their company and marketing particularly trustworthy. based on this, which type of marketing do you recommend they include in their imc plan? if the tension in the cord is 110 n , how long will it take a pulse to travel from one support to the other? newton's second law: a box of mass 50 kg is at rest on a horizontal frictionless surface. a constant horizontal force f then acts on the box and accelerates it to the right. it is observed that it takes the box 8.0 seconds to travel 32 meters. what is the magnitude of the force? The company expects to borrow approximately $1 million in three months. The current rate of interest is 6.00% p.a. but is forecast to rise. To hedge the position, the company wishes to use 3 year Treasury bond futures contracts trading at 93.500. Calculate the profit or loss from the position in futures market if in 3 months the contracts are trading at 95.000.Select one:a.40,628.94 Lossb.40,972.1 Lossc.40,628.94 Profitd.40,972.1 Profit according to maltin, early betty boop shorts demonstrate the essential difference between fleischer's cartoons and disney cartoons, which is... group of answer choices disney's deals with a child's dreams; fleischer's depicts adult dreams disney's deals with a child's dreams; fleischer's depict adult traumas and emotions disney's deals with a child's traumas and emotions; fleischer's depict adult dreams disney's deals with a child's natural fears; fleischer's depicts adult traumas and emotions Natural selection can lead to diversity within a population. This is apparent with the Galpagos finches and their varying beak sizes. The appearance of certain beak sizes is a characteristic of the availablefood sources on the island. Which of the following graphs represents stabilizing selection occurring within a population of Galpagosfinches? a) What is the present worth of equal payments of $25,000 made semi-annually (i.e., twice every year) at a nominal interest rate of 8%: i. for a period of 20 years? ii. in perpetuity? ability to generate action potentials in a regular pattern is called? A project requires an initial fixed asset investment of $156,000, has annual fixed costs of $40,600, a contribution margin of $14.94, a tax rate of 21 percent, a discount rate of 15 percent, and straight-line depreciation over the project's 3-year life. The assets will be worthless at the end of the project. What is the present value break-even point in units per year? girls who mature early and boys who mature early seem to experience more subjective distress and emotional difficulties with transition to adolescense.True or False there are no standardized assessments available for outcome measures for people with autism. 4. The elevation at ground level is 0 feet. An elevator starts 80 feet below ground level. Aftertraveling for 20 seconds, the elevator is 30 feet below ground level. Which statement describesthe elevator's rate of change in elevation during this 20-second interval?A. The elevator traveled upward at a rate1 rate of 2 feet per second.B. The elevator traveled downward at a rate of 2 feet per second.C. The elevator traveled upward at a rate of 4 feet per second.D. The elevator traveled downward at a rate of 4 feet per second.a With ______ top companies form a network that can be likened to a spiders webAn American metocracyMultinational CorporationsInterlocking directories what is the purpose of the drums beating the day of the new yam festival? what might these drums symbolize? the largest and most conspicuous part of a fern plant is the . the largest and most conspicuous part of a fern plant is the . haploid gametophyte diploid gametophyte diploid sporophyte diploid sorus haploid sporophyte