A 285-kg object and a 585-kg object are separated by 4.30 m. (a) Find the magnitude of the net gravitational force exerted by these objects on a 42.0-kg object placed midway between them.

Answers

Answer 1

Answer:

The magnitude of the net gravitational force exerted by these objects on a 42.0-kg object is 1.818 x 10⁻⁷ N

Explanation:

Given;

first object with mass, m₁ = 285 kg

second object with mass, m₂ = 585 kg

distance between the two objects, r = 4.3 m

The midpoint between the two objects = r/₂ = 4.3 /2 = 2.15 m

Gravitational force between the first object and the 42 kg object;

[tex]F = \frac{GMm}{r^2}[/tex]

where;

G = 6.67 x 10⁻¹¹ Nm²kg⁻²

[tex]F = \frac{6.67*10^{-11} *285*42}{2.15^2} \\\\F = 1.727*10^{-7} \ N[/tex]

Gravitational force between the second object and the 42 kg object

[tex]F = \frac{6.67*10^{-11} *585*42}{2.15^2} \\\\F = 3.545*10^{-7} \ N[/tex]

Magnitude of net gravitational force exerted on 42kg object;

F = 3.545x 10⁻⁷ N  -  1.727 x 10⁻⁷ N

F = 1.818 x 10⁻⁷ N

Therefore, the magnitude of the net gravitational force exerted by these objects on a 42.0-kg object is 1.818 x 10⁻⁷ N


Related Questions

The temperature gradient between the core of Mars and its surface is approximately 0.0003 K/m. Compare this temperature gradient to that of Earth. What can you determine about the rate at which heat moves out of Mars’s core compared to Earth?

Answers

Answer:

The temperature gradient between the core of Mars and its surface is lower than that on Earth. So, heat moves outward more slowly on Mars than on Earth.

Explanation:

Answer:

The temperature gradient between the core of Mars and its surface is lower than that on Earth. So, heat moves outward more slowly on Mars than on Earth.

Explanation:

Edmentum sample answer

How much heat is needed to melt 2.5 KG of water at its melting point? Use Q= mass x latent heat of fusion.

Answers

Answer:

Q = 832 kJ

Explanation:

It is given that,

Mass of the water, m = 2.5 kg

The latent heat of fusion, L = 333 kJ/kg

We need to find the heat needed to melt water at its melting point. The formula of heat needed to melt is given by :

Q = mL

[tex]Q=2.5\ kg\times 333\ kJ/kg\\\\Q=832.5\ kJ[/tex]

or

Q = 832 kJ

So, the heat needed to melt the water is 832 kJ.

Sally who weighs 450 N, stands on a skate board while roger pushes it forward 13.0 m at constant velocity on a level straight street. He applies a constant 100 N force.


Work done on the skateboard


a. Rodger Work= 0J


b. Rodger work= 1300J


c. sally work= 1300J


d. sally work= 5850J


e. rodger work= 5850J

Answers

Answer:

b. Rodger work = 1300 J

Explanation:

Work done: This can be defined as the product of force and distance along the direction of the force.

From the question,

Work is done by Rodger using a force of 100 N  in pushing the skateboard through a distance of 13.0 m.

W = F×d............. Equation 1

Where W = work done, F = force, d = distance.

Given: F = 100 N, d = 13 m

Substitute these values into equation 1

W = 100(13)

W = 1300 J.

Hence the right option is b. Rodger work = 1300 J

Suppose a 185 kg motorcycle is heading toward a hill at a speed of 29 m/s. The two wheels weigh 12 kg each and are each annular rings with an inner radius of 0.280 m and an outer radius of 0.330 m.
Randomized Variables
m = 185 kg
v = 29 m/s
h = 32 m
A. How high can it coast up the hill. if you neglect friction in m?
B. How much energy is lost to friction if the motorcycle only gains an altitude of 33 m before coming to rest?

Answers

Answer:

a) Height reached before coming to rest is 42.86 m

b) Energy lost to friction is 17902.45 J

Explanation:

mass of the motorcycle = 185 kg

speed of the towards the hill = 29 m/s

The wheels weigh 12 kg each

Wheels are annular rings with an inner radius of 0.280 m and outer radius of 0.330 m

a) To go up the hill, the kinetic energy of motion of the motorcycle will be converted to the potential energy it will gain in going up a given height

the kinetic energy of the motorcycle is given as

[tex]KE[/tex] = [tex]\frac{1}{2}mv^{2}[/tex]

where m is the mass of the motorcycle

v is the velocity of the motorcycle

[tex]KE[/tex]  = [tex]\frac{1}{2}*185*29^{2}[/tex] = 77792.5 J

This will be converted to potential energy

The potential energy up the hill will be

[tex]PE[/tex] = mgh

where m is the mass

g is acceleration due to gravity 9.81 m/s^2

h is the height reached before coming to rest

[tex]PE[/tex] = 185 x 9.81 x m = 1814.85h

equating the  kinetic energy to the potential energy for energy conservation, we'll have

77792.5 = 1814.85h

height reached before coming to rest  = 77792.5/1814.85 = 42.86 m

b) if an altitude of 33 m was reached before coming to rest, then the potential energy at this height is

[tex]PE[/tex] = mgh

[tex]PE[/tex]  = 185 x 9.81 x 33 = 59890.05 J

The energy lost to friction will be the kinetic energy minus this potential energy.

energy lost = 77792.5 - 59890.05 = 17902.45 J

A) The motorcycle can coast up the hill by ; 42.86m  

B) The amount of energy lost to friction :  17902.45 J

A) Determine how high the motorcycle can coast up the hill when friction is neglected

apply the formula for kinetic and potential energies

K.E = 1/2 mv²  ---- ( 1 )

P.E = mgH  ---- ( 2 )

As the motorcycle goes uphiLl the kinetic energy is converted to potential energy.

∴ K.E = P.E

1/2 * mv² = mgH

∴ H = ( 1/2 * mv² ) / mg  ---- ( 3 )

where ; m = 185 kg ,  v = 29 m/s ,  g = 9.81

Insert values into equation ( 3 )

H ( height travelled by motorcycle neglecting friction ) =  42.86m  

B) Determine how much energy is lost to friction if the motorcycle attains 33m before coming to rest  

P.E = mgh = 185 * 9.81 * 33  = 59890.05 J

where : h = 33 m , g = 9.81

K.E = 1/2 * mv² = 77792.5 J   ( question A )

∴ Energy lost ( ΔE ) =  ( 77792.5  - 59890.05 ) = 17902.45 J

Hence we can conclude that The motorcycle can coast up the hill by ; 42.86m , The amount of energy lost to friction :  17902.45 J.

Learn more : https://brainly.com/question/3586510

A 4g bullet, travelling at 589m/s embeds itself in a 2.3kg block of wood that is initially at rest, and together they travel at the same velocity. Calculate the percentage of the kinetic energy that is left in the system after collision to that before.

Answers

Answer:

The  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

Explanation:

Given;

mass of bullet, m₁ = 4g = 0.004kg

initial velocity of bullet, u₁ = 589 m/s

mass of block of wood, m₂ = 2.3 kg

initial velocity of the block of wood, u₂ = 0

let the final velocity of the system after collision = v

Apply the principle of conservation of linear momentum

m₁u₁ + m₂u₂ = v(m₁+m₂)

0.004(589) + 2.3(0) = v(0.004 + 2.3)

2.356 = 2.304v

v = 2.356 / 2.304

v = 1.0226 m/s

Initial kinetic energy of the system

K.E₁ = ¹/₂m₁u₁² + ¹/₂m₂u₂²

K.E₁ = ¹/₂(0.004)(589)² = 693.842 J

Final kinetic energy of the system

K.E₂ = ¹/₂v²(m₁ + m₂)

K.E₂ = ¹/₂ x 1.0226² x (0.004 + 2.3)

K.E₂ = 1.209 J

The kinetic energy left in the system = final kinetic energy of the system

The percentage of the kinetic energy that is left in the system after collision to that before = (K.E₂ / K.E₁) x 100%

                       = (1.209 / 693.842) x 100%

                        = 0.174 %

Therefore, the  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

An 1300-turn coil of wire that is 2.2 cmcm in diameter is in a magnetic field that drops from 0.14 TT to 0 TT in 9.0 msms . The axis of the coil is parallel to the field.
What is the emf of the coil? (in V)

Answers

Answer:

The induced  emf is  [tex]\epsilon =7.68 \ V[/tex]

Explanation:

From the question we are told that

     The number of turns is  [tex]N = 1300 \ turns[/tex]

    The diameter is  [tex]d = 2.2 \ cm = 2.2*10^{-2}[/tex]

     The initial magnetic field is  [tex]B_i = 0.14 \ T[/tex]

      The final magnetic field is  [tex]B_f = 0 \ T[/tex]

      The  time taken is  [tex]dt = 9.0ms = 9.0*10^{-3} \ s[/tex]

 

The radius is mathematically evaluated as

      [tex]r = \frac{d}{2 }[/tex]

substituting values

     [tex]r = \frac{2.2 *10^{-2}}{2 }[/tex]

     [tex]r = 1.1*10^{-2} \ m[/tex]

The induced emf is mathematically represented as

    [tex]\epsilon =- N * \frac{d\phi }{dt }[/tex]

Where  [tex]d\phi[/tex] is the change in magnetic field which is mathematically represented as

        [tex]d\phi = dB * A * cos\theta[/tex]

=>   [tex]d\phi = [B_f - B_i ] * A * cos\theta[/tex]

Here  [tex]\theta = 0[/tex] given that the axis of the coil is parallel to the field

Also A is the cross-sectional area which is mathematically represented as

       [tex]A = \pi r^2[/tex]

substituting values

      [tex]A = 3.142 * [1.1*10^{-2}]^2[/tex]

       [tex]A = 3.8 *10^{-4] \ m^2[/tex]

So

    [tex]d\phi = [0 - 0.14 ] * 3.8*10^{-4}[/tex]

    [tex]d\phi = -5.32*10^{-5} \ weber[/tex]

So  

     [tex]\epsilon =- 1300 * \frac{-5.32*10^{-5} }{ 9.0*10^{-3} }[/tex]

    [tex]\epsilon =7.68 \ V[/tex]

two resistors of resistance 10 ohm's and 20 ohm's are connected in parallel to a batery of e.m.f 12V. Calculate the current passing through the 20hm's resister​

Answers

Current through 20 ohm resistor is 0.6 A

the efficiency of a carnot cycle is 1/6.If on reducing the temperature of the sink 75 degrees celcius ,the efficiency becomes 1/3,determine he initial and final temperatures between which the cycle is working.

Answers

Answer:

450°C

Explanation: Given that the efficiency of Carnot engine if T₁ and T₂ temperature are initial and final temperature .

η = 1 - T2 / T1

η = 1/6 initially

when T2 is reduced by 65°C then η becomes 1/3

Solution

η = 1/6

1 - T2 / T1 = 1/6 [ using the Formula ]........................(1)

When η = 1/3 :

η = 1 - ( T2 - 75 ) / T1

1/3 = 1 - (T2 - 75)/T1.........................(2)

T2 - T1 = -75 [ because T2 is reduced by 75°C ]

T2 = T1 - 75...........................(3)

Put this in (2) :

> 1/3 = 1 - ( T1 - 75 - 75 ) / T1

> 1/3 = 1 - (T1 - 150 ) /T1

> (T1 - 150) / T1 = 1 - 1/3

> ( T1 -150 ) / T1 = 2/3

> 3 ( T1 - 150 ) = 2 T1

> 3 T1 - 450 = 2 T1

Collecting the like terms

3 T1- 2 T1 = 450

T1 = 450

The temperature initially was 450°C

One hundred turns of insulated copper wire are wrapped around an iron core of cross-sectional area 0.100m2. As the magnetic field along the coil axis changes from 0.5 T to 1.00T in 4s, the voltage induced is:

Answers

Answer:

The voltage induced in the coil  is 1.25 V.

Explanation:

Given;

number of turns, N = 100 turns

cross sectional area of the copper coil, A = 0.1 m²

initial magnetic field, B₁ = 0.5 T

final magnetic field, B₂ = 1.00 T

duration of change in magnetic field, dt = 4 s

The induced emf in the coil is calculated as;

[tex]emf = -N\frac{\delta \phi}{\delta t} \\\\emf = - N (\frac{\delta B}{\delta t}) A\\\\emf = -N (\frac{B_1 -B_2}{\delta t} )A\\\\emf = N(\frac{B_2-B_1}{\delta t} )A\\\\emf = 100(\frac{1-0.5}{4} )0.1\\\\emf = 1.25 \ Volts[/tex]

Therefore, the voltage induced in the coil  is 1.25 V.

An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.14 mT. If the speed of the electron is 1.48 107 m/s, determine the following.
(a) the radius of the circular path ............ cm
(b) the time interval required to complete one revolution ............ s

Answers

Answer:

(a) 3.9cm

(b) 1.66 x 10⁻⁸s

Explanation:

Since the electron is moving in a circular path, the centripetal acceleration needed to keep it from slipping off is provided by the magnetic force. This force (F), according to Newton's second law of motion is given by,

F = m x a          --------------(i)

Where;

m = mass of the particle

a = acceleration of the mass

The centripetal acceleration is given by;

a = v² / r          [v = linear velocity of particle, r = radius of circular path]

Therefore, equation (i) becomes;

F = m v²/ r             --------------------(ii)

The magnitude of the magnetic force on a moving charge in a magnetic field as stated by Lorentz's law is given by;

F = qvBsinθ          -------------(iii)

Where;

q = charge of the particle

v = velocity of the particle

B = magnetic field

θ = angle between the velocity and the magnetic field

Combine equations (ii) and (iii) as follows;

m (v² / r) = qvBsinθ         [divide both side by v]

m v / r = qBsinθ              [make r subject of the formula]

r = (m v) / (qBsinθ)              ---------(iv)

(a) From the question;

v = 1.48 x 10⁷m/s

B = 2.14mT = 2.14 x 10⁻³T

θ = 90°          [since the direction of velocity is perpendicular to magnetic field]

m = mass of electron = 9.11 x 10⁻³¹kg

q = charge of electron = 1.6 x 10⁻¹⁹C

Substitute these values into equation (iv) as follows;

r = (9.11 x 10⁻³¹ x 1.48 x 10⁷) / (1.6 x 10⁻¹⁹ x 2.14 x 10⁻³ sin 90°)

r = 3.9 x 10⁻²m

r = 3.9cm

Therefore, the radius of the circular path is 3.9cm

(b) The time interval required to complete one revolution is the period (T) of the motion of the electron and it is given by

T = d / v          --------------(*)

Where;

d = distance traveled in the circular path in one complete turn = 2πr

v = velocity of the motion = 1.48 x 10⁷m/s

d = 2 π (3.9 x 10⁻²)            [Take π = 22/7 = 3.142]

d = 2(3.142)(3.9 x 10⁻²) = 0.245m

Substitute the values of d and v into equation (*) as follows;

T = 0.245 / 1.48 x 10⁷

T = 0.166 x 10⁻⁷s

T = 1.66 x 10⁻⁸s

Therefore, the time interval is 1.66 x 10⁻⁸s

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.
Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?
Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?
Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar.

Answers

Answer:

a) 6738.27 J

b) 61.908 J

c)  [tex]\frac{4492.18}{v_{car} ^{2} }[/tex]

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]mr^{2}[/tex]

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

[tex]I[/tex] =  [tex]\frac{1}{2}[/tex][tex]*11*1.1^{2}[/tex] = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = [tex]Iw^{2}[/tex] = 6.655 x [tex]31.82^{2}[/tex] = 6738.27 J

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]mr^{2}[/tex] =  [tex]\frac{1}{2}[/tex][tex]*16*2.8^{2}[/tex] = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = [tex]Iw[/tex] = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

[tex](I_{1} +I_{2} )w[/tex]

where the subscripts 1 and 2 indicates the values first and second  flywheels

[tex](I_{1} +I_{2} )w[/tex] = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = [tex]Iw^{2}[/tex] = 6.655 x [tex]3.05^{2}[/tex] = 61.908 J

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = [tex]\frac{1}{2}mv_{car} ^{2}[/tex]

where m is the mass of the car

[tex]v_{car}[/tex] is the velocity of the car

Equating the energy

2246.09 =  [tex]\frac{1}{2}mv_{car} ^{2}[/tex]

making m the subject of the formula

mass of the car m = [tex]\frac{4492.18}{v_{car} ^{2} }[/tex]

A person is nearsighted with a far point of 75.0 cm. a. What focal length contact lens is needed to give him normal vision

Answers

Complete Question

The  complete question is  shown on the first uploaded image  

Answer:

a

  [tex]f= -75 \ cm = - 0.75 \ m[/tex]

b

  [tex]P = -1.33 \ diopters[/tex]

Explanation:

From the question we are told that

    The  image distance is  [tex]d_i = -75 cm[/tex]

The value of the image is negative because it is on the same side with the corrective glasses

    The  object distance is  [tex]d_o = \infty[/tex]

The  reason object distance  is because the object father than it being picture by the eye

General focal length is mathematically represented as

              [tex]\frac{1}{f} = \frac{1}{d_i} - \frac{1}{d_o}[/tex]

substituting values

             [tex]\frac{1}{f} = \frac{1}{-75} - \frac{1}{\infty}[/tex]

=>         [tex]f= -75 \ cm = - 0.75 \ m[/tex]

Generally the power of the corrective lens is  mathematically represented as

        [tex]P = \frac{1}{f}[/tex]

substituting values

       [tex]P = \frac{1}{-0.75}[/tex]

        [tex]P = -1.33 \ diopters[/tex]

Search Results Web results A car of mass 650 kg is moving at a speed of 0.7

Answers

Answer:

W = 1413.75 J

Explanation:

It is given that,

Mass of car, m = 650 kg

Initial speed of the car, u = 0.7 m/s

Let a man pushes the car, increasing the speed to 2.2 m/s, v = 2.2 m/s

Let us assume to find the work done by the man. According to the work energy theorem, work done is equal to the change in kinetic energy.

[tex]W=\dfrac{1}{2}m(v^2-u^2)\\\\W=\dfrac{1}{2}\times 650\times ((2.2)^2-(0.7)^2)\\\\W=1413.75\ J[/tex]

So, the work done by the car is 1413.75 J.

You are at the carnival with you your little brother and you decide to ride the bumper cars for fun. You each get in a different car and before you even get to drive your car, the little brat crashes into you at a speed of 3 m/s.
A. Knowing that the bumper cars each weigh 80 kg, while you and your brother weigh 60 and 30 kg,respectively, write down the equations you need to use to figure out how fast you and your brother are moving after the collision.
B. After the collision, your little brother reverses direction and moves at 0.36 m/s. How fast are you moving after the collision?
C. Assuming the collision lasted 0.05 seconds, what is the average force exerted on you during the collision?
D. Who undergoes the larger acceleration, you or your brother? Explain.

Answers

Answer:

a) The equation is [tex](m_{b}+m_{c} )u_{b} = (m_{y}+m_{c} )v_{y} + (m_{b}+m_{c} )v_{b}[/tex]

b) Your velocity after collision is 2.64 m/s

c) The force you felt is 7392 N

d) you and your brother undergo an equal amount of acceleration

Explanation:

Your mass [tex]m_{y}[/tex] = 60 kg

your brother's mass [tex]m_{b}[/tex] = 30 kg

mass of the car [tex]m_{c}[/tex] = 80 kg

your initial speed [tex]u_{y}[/tex] = 0 m/s (since you've not started moving yet)

your brother's initial velocity [tex]u_{b}[/tex] = 3 m/s

your final speed [tex]v_{y}[/tex] after collision = ?

your brother's final speed [tex]v_{b}[/tex] after collision = ?

a) equations you need to use to figure out how fast you and your brother are moving after the collision is

[tex](m_{y}+m_{c} )u_{y} + (m_{b}+m_{c} )u_{b} = (m_{y}+m_{c} )v_{y} + (m_{b}+m_{c} )v_{b}[/tex]

but [tex]u_{y}[/tex] = 0 m/s

the equation reduces to

[tex](m_{b}+m_{c} )u_{b} = (m_{y}+m_{c} )v_{y} + (m_{b}+m_{c} )v_{b}[/tex]

b) if your little brother reverses with velocity of 0.36 m/s it means

[tex]v_{b}[/tex] = -0.36 m/s (the reverse means it travels in the opposite direction)

then, imputing values into the equation, we'll have

[tex](m_{b}+m_{c} )u_{b} = (m_{y}+m_{c} )v_{y} + (m_{b}+m_{c} )v_{b}[/tex]

(30 + 80)3 = (60 + 80)[tex]v_{y}[/tex] + (30 + 80)(-0.36)

330 = 140[tex]v_{y}[/tex] - 39.6

369.6 = 140[tex]v_{y}[/tex]

[tex]v_{y}[/tex] = 369.6/140 = 2.64 m/s

This means you will also reverse with a velocity of 2.64 m/s

c) your initial momentum = 0  since you started from rest

your final momentum = (total mass) x (final velocity)

==>  (60 + 80) x 2.64 = 369.6 kg-m/s

If the collision lasted for 0.05 s,

then force exerted on you = (change in momentum) ÷ (time collision lasted)

force on you = ( 369.6 - 0) ÷ 0.05 = 7392 N

d) you changed velocity from 0 m/s to 2.64 m/s in 0.05 s

your acceleration is (2.64 - 0)/0.05 = 52.8 m/s^2

your brother changed velocity from 3 m/s to 0.36 m/s in 0.05 s

his deceleration is (3 - 0.36)/0.05 = 52.8 m/s

you and your brother undergo an equal amount of acceleration. This is because you gained the momentum your brother lost

Four 50-g point masses are at the corners of a square with 20-cm sides. What is the moment of inertia of this system about an axis perpendicular to the plane of the square and passing through its center

Answers

Answer:

moment of inertia I ≈ 4.0 x 10⁻³ kg.m²

Explanation:

given

point masses = 50g = 0.050kg

note: m₁=m₂=m₃=m₄=50g = 0.050kg

distance, r, from masses to eachother = 20cm = 0.20m

the distance, d, of each mass point from the centre of the mass, using pythagoras theorem is given by

= (20√2)/ 2 = 10√2 cm =14.12 x 10⁻² m  

moment of inertia is a proportion of the opposition of a body to angular acceleration about a given pivot that is equivalent to the entirety of the products of every component of mass in the body and the square of the component's distance from the center

mathematically,

I = ∑m×d²

remember, a square will have 4 equal points

I = ∑m×d² = 4(m×d²)

I = 4 × 0.050 × (14.12 x 10⁻² m)²

I = 0.20 × 1.96 × 10⁻²

I =  3.92 x 10⁻³ kg.m²

I ≈ 4.0 x 10⁻³ kg.m²

attached is the diagram of the equation

A person standing 180m from the foot of a high building claps hi
hand and hears the echo 0.03minutes later. What is the speed
sound in air at that temperature?
A) 331m/s
B) 240m/s C) 200m/s D) 300m/s

Answers

Answer:

C) 200 m/s

Explanation:

The sound travels a total distance of 360 m in 0.03 minutes.

v = (360 m) / (0.03 min × 60 s/min)

v = 200 m/s

How many electrons circulate each second through the cross section of a conductor, which has a current intensity of 4A.

Answers

Answer:

2.5×10¹⁹

Explanation:

4 C/s × (1 electron / 1.60×10⁻¹⁹ C) = 2.5×10¹⁹ electrons/second

Wiley Coyote has missed the elusive road runner once again. This time, he leaves the edge of the cliff at 52.4 m/s with a purely horizontal initial trajectory. If the canyon is 141 m deep, how far from the base of the cliff does the coyote land

Answers

Answer:

280.86 m

Explanation:

Range is defined as the distance covered in the horizontal direction. In projectile, range is expressed as x = vt where;

x is the range

v is the velocity of the runner

t is the time taken

Before we can get the range though, we need to find the time taken t using the relationship S = ut + 1/2gt²

if u = 0

S = 1/2gt²

2S = gt²

t² = 2S/g

t = √2S/g

t = √2(141)/9.8

t = √282/9.8

t = 5.36secs

The range x = 52.4*5.36

x =280.86 m

Hence, the coyort lies approximately 280.86 m from the base of the cliff

An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the new acceleration would be _____ m/s/s.

Answers

Hahahahaha. Okay.

So basically , force is equal to mass into acceleration.

F=ma

so when F=ma , we get acceleration=6m/s/s

Force is doubled.

Mass is 1/3 times original.

2F=1/3ma

Now , we rearrange , and we get 6F=ma

So , now for 6 times the original force , we get 6 times the initial acceleration.

So new acceleration = 6*6= 36m/s/s

A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 30 cmcm and 1200 turns of wire. When running, the solenoid produced a field of 1.4 TT in the center. Given this, how large a current does it carry?

Answers

Answer:

The current is  [tex]I = 2042\ A[/tex]

Explanation:

From the question we are told that

    The length of the solenoid is  [tex]l = 2.2 \ m[/tex]

    The  radius is  [tex]r_i = 30 \ cm = 0.30 \ m[/tex]

    The number of turn is [tex]N = 1200 \ turns[/tex]

    The  magnetic field is  [tex]B = 1.4 \ T[/tex]

The  magnetic field produced  is mathematically represented as

         [tex]B = \frac{\mu_o * N * I }{l }[/tex]

making [tex]I[/tex] the subject

       [tex]I = \frac{B * l}{\mu_o * N }[/tex]

Where  [tex]\mu_o[/tex] is the permeability of free space with values [tex]\mu_o = 4\pi *10^{-7} N/A^2[/tex]

 substituting values

        [tex]I = \frac{1.4 * 2.2 }{4\pi *10^{-7} * 1200 }[/tex]

        [tex]I = 2042\ A[/tex]

A skater spins at 3rev/s when she stretches her arms outward. If she keeps her fists on her chest she can spin at 4.5rev/s and her body inertia is 3kg.m2. What is her body inertia when she stretches her arms outward?

Answers

Answer:

Body inertia I = 4.5 kg/m^2

Explanation:

Here, we want to calculate the body inertia when the arms are stretched outwards.

We know from the question that angular momentum is conserved

Thus;

I * 3 = 4.5 * 3

I = 4.5 kg/m^2

When separated by distance d, identically charged point-like objects A and B exert a force of magnitude F on each other. If you reduce the charge of A to one-half its original value, and the charge of B to one-tenth, and reduce the distance between the objects by half, what will be the new force that they exert on each other in terms of force F

Answers

Answer:

F = F₀ 0.2

Explanation:

For this exercise we apply Coulomb's law with the initial data

     F₀ = k q_A q_B / d²

indicate several changes

q_A ’= ½ q_A

q_B ’= 1/10 q_B

d ’= ½ d

let's substitute these new values ​​in the Coulomb equation

          F = k q_A ’q_B’ / d’²

          F = k ½ q_A 1/10 q_B / (1/2 d)²

          F = (k q_A q_B / d2) ½ 1/10 2²

          F = F₀ 0.2

A piece of electronic equipment that is surrounded by packing material is dropped so that it hits the ground with a speed of 4 m/s. After impact, the equipment experiences an acceleration of a = 2kx, where k is a constant and x is the compression of the packing material. If the packing material experiences a maximum compression of 20 mm, determine the maximum acceleration of the equipment.

Answers

Answer:

Maximum acceleration is 800m/s^2

Explanation:

See attached file

Suppose that a 117.5 kg football player running at 6.5 m/s catches a 0.43 kg ball moving at a speed of 26.5 m/s with his feet off the ground, while both of them are moving horizontally.
(a) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in the same direction.
(b) Calculate the change in kinetic energy of the system, in joules, after the player catches the ball.
(c) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in opposite directions.
(d) Calculate the change in kinetic energy of the system, in joules, in this case.

Answers

Answer:

a) 6.57 m/s

b) 53.75 J

c) 6.37 m/s

d) -98.297 J

Explanation:

mass of player = [tex]m_{p}[/tex] = 117.5 kg

speed of player = [tex]v_{p}[/tex] = 6.5 m/s

mass of ball = [tex]m_{b}[/tex] = 0.43 kg

velocity of ball = [tex]v_{b}[/tex] = 26.5 m/s

Recall that momentum of a body = mass x velocity = mv

initial momentum of the player = mv = 117.5 x 6.5 = 763.75 kg-m/s

initial momentum of the ball = mv = 0.43 x 26.5 = 11.395 kg-m/s

initial kinetic energy of the player = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.5^{2}[/tex] =  2482.187 J

a) according to conservation of momentum, the initial momentum of the system before collision must equate the final momentum of the system.

for this first case that they travel in the same direction, their momenta carry the same sign

[tex]m_{p}[/tex][tex]v_{p}[/tex] + [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v

where v is the final velocity of the player.

inserting calculated momenta of ball and player from above, we have

763.75 + 11.395 = (117.5 + 0.43)v

775.145 = 117.93v

v = 775.145/117.93 = 6.57 m/s

b) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.57^{2}[/tex] = 2535.94 J

change in kinetic energy = 2535.94 - 2482.187 = 53.75 J  gained

c) if they travel in opposite direction, equation becomes

[tex]m_{p}[/tex][tex]v_{p}[/tex] - [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v

763.75 - 11.395 = (117.5 + 0.43)v

752.355 = 117.93v

v = 752.355/117.93 = 6.37 m/s

d) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.37^{2}[/tex]  = 2383.89 J

change in kinetic energy = 2383.89 - 2482.187 = -98.297 J

that is 98.297 J  lost

A student builds a rocket-propelled cart for a science project. Its acceleration is not quite high enough to win a prize, so he uses a larger rocket engine that provides 39% more thrust, although doing so increases the mass of the cart by 13%. By what percentage does the cart's acceleration increase?

Answers

Answer:

Explanation:

a = F / m

where a is acceleration , F is thrust and m is mass

taking log and differentiating

da / a = dF / F - dm / m

(da / a)x 100 = (dF / F)x100 - (dm / m) x100

percentage increase in a = percentage increase in F - percentage increase in m

= percentage increase in acceleration a   = 39 - 13 = 26 %

required increase = 26 %.

Determine the position in the oscillation where an object in simple harmonic motion: (Be very specific, and give some reasoning to your answer.) has the greatest speed has the greatest acceleration experiences the greatest restoring force experiences zero restoring force g

Answers

Answer:

Explanation:

The greatest speed is attained at middle point or equilibrium point or where displacement from equilibrium point is zero .

When the object remains at one of the extreme point it experiences greatest acceleration but at that point velocity is zero . Due to acceleration , its velocity goes on increasing till it come to equilibrium point . At this point acceleration becomes zero . After that its velocity starts decreasing because of negative acceleration . Hence at middle point velocity is maximum .

The greatest acceleration is attained at maximum displacement or at one of the two extreme end .

Greatest restoring force too will be at position where acceleration is maximum because acceleration is produced by restoring force .

Restoring force is proportional to displacement or extension against restoring force . So it will be maximum when displacement is maximum .

Zero restoring force exists at equilibrium position or middle point or at point where displacement is zero . It is so because acceleration at that point is zero .

Uses of pressure and the uses of density​

Answers

Answer:

Pressure is  a scalar quantity defined as per unit area.

Density is the objects ,times its  the acceleration due to gravity.

Explanation:

Pressure is the alternative object increases the area of contact decrease .

Pressure is the force component  to the surface used to calculate pressure.

pressure is that collisions of the gas to container as the per unit time .

pressure is an physical important quantity to play the solid and  fluid .

Pressure is the expressed in a number of units depend the context use, pressure exerted by the liquid alone.

Density is the  objects, times, volume of the object that times acceleration objects.

Density is the used to the system complex objects and materials.

Density  force is the weight of a region or objects static fluid.

"A power of 200 kW is delivered by power lines with 48,000 V difference between them. Calculate the current, in amps, in these lines."

Answers

Answer:

9.6×10⁹ A

Explanation:

From the question above,

P = VI.................... Equation 1

Where P = Electric power, V = Voltage, I = current.

make I the subject of the equation

I = P/V............. Equation 2

Given: P = 200 kW = 200×10³ W, V = 48000 V.

Substitute these vales into equation 2

I = 200×10³×48000

I = 9.6×10⁹ A.

Hence the current in the line is 9.6×10⁹ A.

Calculate the power of the eye in D when viewing an object 5.70 m away. (Assume the lens-to-retina distance is 2.00 cm. Enter your answer to at least one decimal place.)

Answers

Answer:

Power=50.17dioptre

Power=50.17D

Explanation:

P=1/f = 1/d₀ + 1/d₁

Where d₀ = the eye's lens and the object distance= 5.70m=

d₁= the eye's lens and the image distance= 0.02m

f= focal length of the lense of the eye

We know that the object can be viewed clearly by the person ,then image and lens of the eye's distance needs to be equal with the retinal and the eye lens distance and this distance is given as 0.02m

Therefore, we can calculate the power using above formula

P= 1/5.70 + 1/0.02

Power=50.17dioptre

Therefore, the power the eye's is using to see the object from distance is 5.70D

A bowling ball of mass 5 kg rolls down a slick ramp 20 meters long at a 30 degree angle to the horizontal. What is the work done by gravity during the roll, in Joules

Answers

Answer:

The work done by gravity during the roll is 490.6 J

Explanation:

The work (W) is:

[tex] W = F*d [/tex]

Where:

F: is the force

d: is the displacement = 20 m

The force is equal to the weight (W) in the x component:

[tex]F = W_{x} = mgsin(\theta)[/tex]

Where:

m: is the mass of the bowling ball = 5 kg

g: is the gravity = 9.81 m/s²    

θ: is the degree angle to the horizontal = 30°        

[tex]F = mgsin(\theta) = 5 kg*9.81 m/s^{2}*sin(30) = 24.53 N[/tex]    

Now, we can find the work:

[tex]W = F*d = 24.53 N*20 m = 490.6 J[/tex]      

Therefore, the work done by gravity during the roll is 490.6 J.

I hope it helps you!

Other Questions
A bag contains two red marbles, two green ones, one lavender one, five yellows, and six orange marbles. HINT [See Example 7.] How many sets of four marbles include one of each color other than lavender? The random variable x is the number of houses sold by a realtor in a single month at the Sendsom's Real Estate office. Its probability distribution is as follows:Houses Sold (x) Probability P(x)0 0.241 0.012 0.123 0.164 0.015 0.146 0.117 0.21Find the mean of the given probability distribution.A. = 3.35B. = 3.50C. = 3.60D. = 3.40 How did the Vietnam and Korean wars differ?A. The Korean War was fought almost entirely by Korean soldiers, butthe Vietnam War was fought largely by Soviets.B. The Vietnam War was a colonial revolution, but the Korean Warwas a Cold War proxy war.C. The Soviet Union provided military support in the Vietnam War butnot in the Korean War.D. The United Nations supported the actions of the United States inthe Korean War but not in the Vietnam War. What is the range of the function f(x)=3/4|x|-3 Please I need help!Write the equation of the line that passes through the points (7, -4) and ( 1, 3), first in point-slope form, and then inslope intercept formThe slope of the line isWhen the point (7, -4) is used, the point-stope form of the line isThe slope intercept form of the line is Which of the following sentences means "I kick it to you"?A. Te lo pateo.B. Me lo pateas.C. Nos los pateis.D. Se lo pateamos. Faustina _____ con los pies. camina. caminas. camine. camino. Describe in general a process desert plants might need to carry out in order to maintain homeostasis. (4 points) All plants need water; think about how plants in an area without much water might be able to live. Scenario: The Internet Explorer 8 browser is being used to display a web page with an audio player but the audio element displays nothing on the page. Read the following code snippet and select the reason for the incorrect display from the choices below.width="160" height="150">Sparky the Dog (.mov)A. The controls attribute should be controls="yes"B. There are too many source elements.C. The file extension .ogg is incorrect.D. The MIME type values are incorrect. All of the following would be visible on a karyotype exceptaneuploidy.polysomy.trisomy.homologous chromosomes. Which phrase describes a feature of an earthquakes epicenter?starting point of an earthquakeplace around the center of an earthquake region directly above the focuspoint about 100 kilometers deep in the lithosphere Urgent help I need it right now!!!! Write a caption to appear in a museum next to Vincent van Goghs Portrait of Dr. Gachet. In the caption, explain the mood the artwork through an examination of the elements of art, as well as the overall aesthetic value of the work. 10. Read the following word problem, then choose which linear equation models the problem. The length of a rectangle is six feet more than twice the width. The rectangles perimeter is 84 feet. Find the width and length of the rectangle. A. 2w + 6 + w = 84B. 2(2w + 6) + 2w = 84C. 2(2w +6) (2w) = 84D. (2w + 6) (w) = 84 Which is a diagonal through the interior of the cube? Side A H Side B E Side C H Side F G Suppose that purely competitive firms producing cashews discover that P exceeds MC. a. Is their combined output of cashews too little, too much, or just right to achieve allocative efficiency? b. In the long run, what will happen to the supply of cashews and the price of cashews? 1. Supply will increase and the price of cashews will increase. 2. Supply will increase and the price of cashews will decrease. 3. Supply will decrease and the price of cashews will decrease. 4. Supply will decrease and the price of cashews will increase. A strontium hydroxide solution is prepared by dissolving 10.60 gg of Sr(OH)2Sr(OH)2 in water to make 47.00 mLmL of solution.What is the molarity of this solution? Express your answer to four significant figures and include the appropriate units. Who did Genghis Khan use to suceed him? Help please will give brainliest *asap* Classify the following organisms into their respective kingdoms (i) Yeast (ii) Penicillium (iii) Rhizobium (iv) Mushroom (v) Amoeba (vi) fish Help! Pls pls pls! Fast!