When a ball of mass m makes a head-on elastic collision with a second ball (at rest) and rebounds in the opposite direction with a speed equal to one-fourth its original speed, then mass of the second ball having v/3 is velocity after collision is 9m/4.
What is momentum ?Momentum is defined as mass times velocity of body. it is denoted by p and its SI unit is Kg.m/s. It has both magnitude and direction. it is a vector quantity. it tells about the moment of the body. it is denoted by p and expressed in kg.m/s. mathematically it is written as p = mv. A body having zero velocity or zero mass has zero momentum. its dimensions is [M¹ L¹ T⁻¹]. Momentum is conserved throughout the motion.
initial momentum = final momentum
Given,
mass of first body m₁ = m
initial velocity of first body = v₁' = v
final velocity of first body = v₁'' =v/4
mass of second body m₂ = ?
initial velocity of second body = v₂' = 0
final velocity of second body = v₂'' = v/3
According to conservation of momentum,
initial momentum = final momentum
m₁v₁' + m₂v₂' = m₁v₁'' + m₂v₂''
putting al above values
m₁v + 0 = m₁v/4 + m₂v/3
m₁v - m₁v/4 = m₂v/3
m (1 - 1/4)v = m₂v/3
3m/4 = m₂/3
m₂ = 9m/4
Hence mass of the second body is 9m/4.
To know more about momentum, click :
https://brainly.com/question/30677308
#SPJ3
a plane passes over Point A with a velocity of 8,000 m/s north. Forty seconds later it passes over Point B with a velocity of 10,000 m/s north. Which is the plane's acceleration from A to B ?
Acceleration = (change in velocity) / (time for the change)
Change in velocity = (ending velocity) - (starting velocity)
Change in the plane's velocity = (10,000 m/s north) - (8,000 m/s north)
Change in the plane's velocity = 2,000 m/s north
Time for the change = 40 seconds
Acceleration = (2,000 m/s north) / (40 seconds)
Acceleration = 50 m/s² north
Sam heaves a 16lb shot straight upward, giving it a constant upward acceleration from rest of 35 m/s^2 for 64.0 cm. He releases it 2.20m above the ground. You may ignore air resistance.
(a) What is the speed of the shot when Sam releases it?
(b) How high above the ground does it go?
(c ) How much time does he have to get out of its way before it returns to the height of the top of his head, 1.83 m above the ground?
Answer:
6.69 m/s
4.483 m
1.42s
Explanation:
Given that:
Initial Velocity, u = 0
Final velocity, v =?
Acceleration, a = 35m/s²
1.) using the relation :
v² = u² + 2as
v² = 0 + 2(35) * 64*10^-2m
v² = 70 * 0.64
v = sqrt(44.8)
v = 6.693
v = 6.69 m/s
B.) height from the ground, h0 = 2.2
How high ball went , h:
Using :
v² = u² + 2as
Upward motion, g = - ve
0 = 6.69² + 2(-9.8)*(h - 2.2)
0= 6.69² - 19.6(h - 2.2)
44.7561 + 43.12 - 19.6h = 0
19.6h = 44.7561 - 43.12
h = 87.8761 / 19.6
h = 4.483 m
C.)
vt - 0.5gt² = h - h0
6.69t - 0.5(9.8)t²
6.69t - 4.9t² = 1.83 - 2.2
-4.9t² + 6.69t + 0.37 = 0
Using the quadratic equation solver :
Taking the positive root:
1.4185 = 1.42s
g Incandescent bulbs generate visible light by heating up a thin metal filament to a very high temperature so that the thermal radiation from the filament becomes visible. One bulb filament has a surface area of 30 mm2 and emits 60 W when operating. If the bulb filament has an emissivity of 0.8, what is the operating temperature of the filament
Answer:
2577 K
Explanation:
Power radiated , P = σεAT⁴ where σ = Stefan-Boltzmann constant = 5.6704 × 10⁻⁸ W/m²K⁴, ε = emissivity of bulb filament = 0.8, A = surface area of bulb = 30 mm² = 30 × 10⁻⁶ m² and T = operating temperature of filament.
So, T = ⁴√(P/σεA)
Since P = 60 W, we substitute the vales of the variables into T. So,
T = ⁴√(P/σεA)
= ⁴√(60 W/(5.6704 × 10⁻⁸ W/m²K⁴ × 0.8 × 30 × 10⁻⁶ m²)
= ⁴√(60 W/(136.0896 × 10⁻¹⁴ W/K⁴)
= ⁴√(60 W/(13608.96 × 10⁻¹⁶ W/K⁴)
= ⁴√(0.00441 × 10¹⁶K⁴)
= 0.2577 × 10⁴ K
= 2577 K
Which of the following is a mixture?
a air
biron
Chydrogen
d nickel
Answer:
it will option option A hope it helps
A solid sphere of radius R = 5 cm is made of non-conducting material and carries a total negative charge Q = -12 C. The charge is uniformly distributed throughout the interior of the sphere.
What is the magnitude of the electric potential V at a distance r = 30 cm from the center of the sphere, given that the potential is zero at r = [infinity] ?
Answer:
V= -3.6*10⁻¹¹ V
Explanation:
Since the charge is uniformly distributed, outside the sphere, the electric field is radial (due to symmetry), so applying Gauss' Law to a spherical surface at r= 30 cm, we can write the following expression:[tex]E* A = \frac{Q}{\epsilon_{0} } (1)[/tex]
At r= 0.3 m the spherical surface can be written as follows:[tex]A = 4*\pi *r^{2} = 4*\pi *(0.3m)^{2} (2)[/tex]
Replacing (2) in (1) and solving for E, we have:[tex]E = \frac{Q}{4*\pi *\epsilon_{0}*r^{2} } = \frac{(9e9N*m2/C2)*(-12C)}{(0.3m)^{2} y} (3)[/tex]
Since V is the work done on the charge by the field, per unit charge, in this case, V is simply:V = E. r (4)Replacing (3) in (4), we get:[tex]V =E*r = E*(0.3m) = \frac{(9e9N*m2/C2)*(-12C)}{(0.3m)} = -3.6e11 V (5)[/tex]
V = -3.6*10¹¹ Volts.The electrical potential module will be [tex]-3.6*10^-^1^1 V[/tex]
We can arrive at this answer as follows:
To answer this, we owe Gauss's law. This is because the charge is evenly distributed across the sphere. This will be done as follows:[tex]E*A=\frac{Q}{^E0} \\\\\\A=4*\pi*r^2[/tex]
Solving these equations will have:[tex]E=\frac{Q}{4*\pi*^E0*r^2} \\E= \frac{(9e9N*m2/c2)*(-12C)}{(0.3m)^2y}[/tex]
As we can see, the electric potential is carried out on the field charge. In this case, using the previous equations, we can calculate the value of V as follows:[tex]V=E*r\\V=E*0.3m= \frac{(9e9N*m^2/C2)*(-12C)}{0.3m} \\V= -3.6*10^-^1^1 V.[/tex]
More information about Gauss' law at the link:
https://brainly.com/question/14705081
A particle has a velocity that is 90.% of the speed of light. If the wavelength of the particle is 1.5 x 10^-15 m, calculate the mass of the particle
Answer:
[tex]m=1.63\times 10^{-27}\ kg[/tex]
Explanation:
The velocity of a particle is 90% of the speed of light.
The wavelength of the particle is [tex]1.5\times 10^{-15}\ m[/tex]
We need to find the mass of the particle.
The formula for the wavelength of a particle is given by :
[tex]\lambda=\dfrac{h}{mv}[/tex]
h is Planck's constant
v is 90% of speed of light
m is mass of the particle
[tex]m=\dfrac{h}{\lambda v}\\\\m=\dfrac{6.63\times 10^{-34}}{1.5\times 10^{-15}\times 0.9\times 3\times 10^8}\\\\m=1.63\times 10^{-27}\ kg[/tex]
So, the mass of the particle is [tex]1.63\times 10^{-27}\ kg[/tex].
The _______ changes light energy into nerve signals using receptors called rods and cones. A. retina B. lens C. iris D. pupil
Answer:
A. Retina
Explanation:
A chocolate chip cookie is an example of a (2 points) a homogeneous mixture b heterogeneous mixture c suspension d colloid
Answer:
I think it is heterogeneous mixture. have a good day
Answer:
heterogeneous mixture
Explanation:
i took the test
What energy store is in the human
BEFORE he/she lifts the hammer?
I believe the answer would be protentional because they have the potential energy in them to lift the hammer.
A 35 kg box initially sliding at 10 m/s on a rough surface is brought to rest by 25 N
of friction. What distance does the box slide?
Answer:
the distance moved by the box is 70.03 m.
Explanation:
Given;
mass of the box, m = 35 kg
initial velocity of the box, u = 10 m/s
frictional force, F = 25 N
Apply Newton's second law of motion to determine the deceleration of the box;
-F = ma
a = -F / m
a = (-25 ) / 35
a = -0.714 m/s²
The distance moved by the box is calculated as follows;
v² = u² + 2ad
where;
v is the final velocity of the box when it comes to rest = 0
0 = 10² + (2 x - 0.714)d
0 = 100 - 1.428d
1.428d = 100
d = 100 / 1.428
d = 70.03 m
Therefore, the distance moved by the box is 70.03 m.
A 2028 kg Oldsmobile traveling south on Abbott Road at 14.5 m/s is unable to stop on the ice covered intersection for a red light at Saginaw Street. The car collides with a 4146 kg truck hauling animal feed east on Saginaw at 9.7 m/s. The two vehicles remain locked together after the impact. Calculate the velocity of the wreckage immediately after the impact. Give the speed for your first answer and the compass heading for your second answer. (remember, the CAPA abbreviation for degrees is deg) -1.75
Answer:
v = 8.1 m/s
θ = -36.4º (36.4º South of East).
Explanation:
Assuming no external forces acting during the collision (due to the infinitesimal collision time) total momentum must be conserved.Since momentum is a vector, if we project it along two axes perpendicular each other, like the N-S axis (y-axis, positive aiming to the north) and W-E axis (x-axis, positive aiming to the east), momentum must be conserved for these components also.Since the collision is inelastic, we can write these two equations for the momentum conservation, for the x- and the y-axes:We can go with the x-axis first:[tex]p_{ox} = p_{fx} (1)[/tex]
⇒ [tex]m_{tr} * v_{tr}= (m_{olds} + m_{tr}) * v_{fx} (2)[/tex]
Replacing by the givens, we can find vfx as follows:[tex]v_{fx} = \frac{m_{tr}*v_{tr} }{(m_{tr} + m_{olds)} } = \frac{4146kg*9.7m/s}{2028kg+4146 kg} = 6.5 m/s (3)[/tex]
We can repeat the process for the y-axis:[tex]p_{oy} = p_{fy} (4)[/tex]
⇒[tex]m_{olds} * v_{olds}= (m_{olds} + m_{tr}) * v_{fy} (5)[/tex]
Replacing by the givens, we can find vfy as follows:[tex]v_{fy} = \frac{m_{olds}*v_{olds} }{(m_{tr} + m_{olds)} } = \frac{2028kg*(-14.5)m/s}{2028kg+4146 kg} = -4.8 m/s (6)[/tex]
The magnitude of the velocity vector of the wreckage immediately after the impact, can be found applying the Pythagorean Theorem to vfx and vfy, as follows:[tex]v_{f} = \sqrt{v_{fx} ^{2} +v_{fy} ^{2} }} = \sqrt{(6.5m/s)^{2} +(-4.8m/s)^{2}} = 8.1 m/s (7)[/tex]
In order to get the compass heading, we can apply the definition of tangent, as follows:[tex]\frac{v_{fy} }{v_{fx} } = tg \theta (8)[/tex]
⇒ tg θ = vfy/vfx = (-4.8m/s) / (6.5m/s) = -0.738 (9)
⇒ θ = tg⁻¹ (-0.738) = -36.4º
Since it's negative, it's counted clockwise from the positive x-axis, so this means that it's 36.4º South of East.What is displacement?
a. The distance an object travels.
b. The distance between the starting point and the ending point of an object's
journey.
C. The amount of time it takes an object to travel to a destination.
d. The path in which an object travels.
Answer:
displacement is the distance between the starting point and the ending point of an object's journey
The radius of the Sun is 6.96 x 108 m and the distance between the Sun and the Earth is roughtly 1.50 x 1011 m. You may assume that the Sun is a perfect sphere and that the irradiance arriving on the Earth is the value for AMO, 1,350 W/m2. Calculate the temperature at the surface of the Sun.
Answer:
5766.7 K
Explanation:
We are given that
Radius of Sun , R=[tex]6.96\times 10^{8} m[/tex]
Distance between the Sun and the Earth, D=[tex]1.50\times 10^{11}m[/tex]
Irradiance arriving on the Earth is the value for AMO=[tex]1350W/m^2[/tex]
We have to find the temperature at the surface of the Sun.
We know that
Temperature ,T=[tex](\frac{K_{sc}D^2}{\sigma R^2})^{\frac{1}{4}}[/tex]
Where [tex]K_{sc}=1350 W/m^2[/tex]
[tex]\sigma=5.67\times 10^{-8}watt/m^2k^4[/tex]
Using the formula
[tex]T=(\frac{1350\times (1.5\times 10^{11})^2}{5.67\times 10^{-8}\times (6.96\times 10^{8})^2})^{\frac{1}{4}}[/tex]
T=5766.7 K
Hence, the temperature at the surface of the sun=5766.7 K
which of the following is used to answer scientific questions?
A. Experiments
B. Intuition
C. Opinion polls
D. Imagination
Energy from the Sun is transferred from the Earth’s surface to the atmosphere, resulting in
atmospheric convection currents that produce winds. How do physical properties of the air
contribute to convection currents?
a -The warmer air sinks because it is more dense than cooler air.
b -The warmer air rises because it is more dense than cooler air.
c- The warmer air sinks because it is less dense than cooler air.
d -The warmer air rises because it is less dense than cooler air.
what is momentum of a train that is 60,000 kg that is moving at velocity of 17m/s?
explain your answer
He throws a second ball (B2) upward with the same initial velocity at the instant that the first ball is at the ceiling. c. How long after the second ball is thrown do the two balls pass each other? d. When the balls pass each other how far are they above the juggler’s hands? e. When they pass each other what are their velocities?
Answer:
hello your question has some missing parts
A juggler performs in a room whose ceiling is 3 m above the level of his hands. He throws a ball vertically upward so that it just reaches the ceiling.
answer : c) 0.39 sec
d) 2.25 m
e) 1.92 m/sec
Explanation:
The initial velocity of the first ball = 7.67 m/sec ( calculated )
Time required for first ball to reach ceiling = 0.78 secs ( calculated )
Determine how long after the second ball is thrown do the two balls pass each other
Distance travelled by first ball downwards when it meets second ball can be expressed as : d = 1/2 gt^2 = 9.8t^2 / 2
hence d = 4.9t^2 ----- ( 1 )
Initial speed of second ball = first ball initial speed = 7.67 m/sec
3 - d = 7.67t - 4.9t ---- ( 2 )
equating equation 1 and 2
3 = 7.67t therefore t = 0.39 sec
Determine how far the balls are above the Juggler's hands ( when the balls pass each other )
form equation 1 ;
d = 4.9 t^2 = 4.9 *(0.39)^2 = 0.75 m
therefore the height the balls are above the Juggler's hands is
3 - d = 3 - 0.75 = 2.25 m
determine their velocities when the pass each other
velocity = displacement / time
velocity = d / t = 0.75 / 0.39 sec = 1.92 m/sec
A salmon jumps up a waterfall 2.4 m high. With what minimum speed did the salmon leave the water below to reach the top?
Answer:
6.86 m/s
Explanation:
The minimal velocity needed is when we have only vertical motion, then i will think in the problem only in one axis.
I suppose that the only force, in this case, is the gravitational force acting on the fish.
Then the gravitational equation of the fish will be:
a(t) = -9.8m/s^2
For the velocity equation we need to integrate over time to get:
v(t) = (-9.8m/s^2)*t + v0
Where v0 is the initial velocity of the fish and is what we want to find.
For the position equation we need to integrate over time again to get:
p(t) = (1/2)*(-9.8m/s^2)*t^2 + v0*t + p0
p0 is the initial position of the fish, and because he starts one the water, the initial position is p0 = 0 m
Then the equation is:
p(t) = (1/2)*(-9.8 m /s^2)*t^2 + v0*t
p(t) = (-4.9 m/s^2)*t^2 + v0*t
We know that the maximum height is 2.4m
The value of time at which the fish gets his maximum height is when the velocity of the fish is equal to zero, then we first need to solve:
v(t) = (-9.8m/s^2)*t + v0 = 0
t = v0/9.8m/s^2
Now we replace this in the position equation to get the maxmimum height, which is equal to 2.4m
2.4m = p( v0/9.8m/s^2) = (1/2)*(-9.8 m /s^2)*(v0/9.8m/s^2)^2 + v0*(v0/9.8m/s^2)
2.4m = (1/2)(-v0)^2(-9.8 m /s^2) + v0^2/(9.8m/s^2))
2.4m = (1 - 1/2)*v0^2/(9.8m/s^2)
2.4m = 0.5*v0^2/(9.8m/s^2)
2.4m/0.5 = v0^2/(9.8m/s^2)
4.8m*(9.8m/s^2) = v0^2
√(4.8m*(9.8m/s^2)) = v0 = 6.86 m/s
6 A test of a driver's perception/reaction time is being conducted on a special testing track with level, wet pavement and a driving speed of 50 mi/h. When the driver is sober, a stop can be made just in time to avoid hitting an object that is first visible 385 ft ahead. After a few drinks under exactly the same conditions, the driver fails to stop in time and strikes the object at a speed of 30 mi/h. Determine the driver's perception/reaction time before and after drinking. (Assume practical stopping distance.)
Answer:
a. 10.5 s b. 6.6 s
Explanation:
a. The driver's perception/reaction time before drinking.
To find the driver's perception time before drinking, we first find his deceleration from
v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m
So, a = v² - u²/2s
substituting the values of the variables into the equation, we have
a = v² - u²/2s
a = (0 m/s)² - (22.35 m/s)²/2(117.35 m)
a = - 499.52 m²/s²/234.7 m
a = -2.13 m/s²
Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver = -2.13 m/s² and t = reaction time
So, t = (v - u)/a
Substituting the values of the variables into the equation, we have
t = (0 m/s - 22.35 m/s)/-2.13 m/s²
t = - 22.35 m/s/-2.13 m/s²
t = 10.5 s
b. The driver's perception/reaction time after drinking.
To find the driver's perception time after drinking, we first find his deceleration from
v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m
So, a = v² - u²/2s
substituting the values of the variables into the equation, we have
a = v² - u²/2s
a = (13.41 m/s)² - (22.35 m/s)²/2(117.35 m)
a = 179.83 m²/s² - 499.52 m²/s²/234.7 m
a = -319.69 m²/s² ÷ 234.7 m
a = -1.36 m/s²
Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver = -1.36 m/s² and t = reaction time
So, t = (v - u)/a
Substituting the values of the variables into the equation, we have
t = (13.41 m/s - 22.35 m/s)/-1.36 m/s²
t = - 8.94 m/s/-1.36 m/s²
t = 6.6 s
A ball having mass 2 kg is connected by a string of length 2 m to a pivot point and held in place in a vertical position. A constant wind force of magnitude 13.2 N blows from left to right. Pivot Pivot F F (a) (b) H m m L L If the mass is released from the vertical position, what maximum height above its initial position will it attain? Assume that the string does not break in the process. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m
Complete Question
A ball having mass 2 kg is connected by a string of length 2 m to a pivot point and held in place in a vertical position. A constant wind force of magnitude 13.2 N blows from left to right. Pivot Pivot F F (a) (b) H m m L L If the mass is released from the vertical position, what maximum height above its initial position will it attain? Assume that the string does not break in the process. The acceleration of gravity is 9.8 m/s 2 . Answer in units of m.What will be the equilibrium height of the mass?
Answer:
[tex]H_m=1.65m[/tex]
[tex]H_E=1.16307m[/tex]
Explanation:
From the question we are told that
Mass of ball [tex]M=2kg[/tex]
Length of string [tex]L= 2m[/tex]
Wind force [tex]F=13.2N[/tex]
Generally the equation for [tex]\angle \theta[/tex] is mathematically given as
[tex]tan\theta=\frac{F}{mg}[/tex]
[tex]\theta=tan^-^1\frac{F}{mg}[/tex]
[tex]\theta=tan^-^1\frac{13.2}{2*2}[/tex]
[tex]\theta=73.14\textdegree[/tex]
Max angle =[tex]2*\theta= 2*73.14=>146.28\textdegree[/tex]
Generally the equation for max Height [tex]H_m[/tex] is mathematically given as
[tex]H_m=L(1-cos146.28)[/tex]
[tex]H_m=0.9(1+0.8318)[/tex]
[tex]H_m=1.65m[/tex]
Generally the equation for Equilibrium Height [tex]H_E[/tex] is mathematically given as
[tex]H_E=L(1-cos73.14)[/tex]
[tex]H_E=0.9(1+0.2923)[/tex]
[tex]H_E=1.16307m[/tex]
* Psychology
Match the types of psychoactive drugs to their functions,
depressants
stimulants
amphetamines
hallucinogens
to excite neural activity and temporarily
elevate awareness
to increase dopamine activity and produce
schizophrenic-like paranoid symptoms
>
to inhibit the function of the central nervous
system and neural activity
to distort perceptions and effects on thinking
Answer:
See explanation below
Explanation:
Psychoactive drugs are drugs that affect the central nervous system. They alter cognitive function by changing mood and consciousness.
Examples;
Depressants: Inhibit the function of the central nervous system and neural activity.
Stimulants: Excite neural activity and temporarily elevate awareness.
Amphetamines: Increase dopamine activity and produce schizophrenic-like symptoms.
Hallucinogens: Distort perceptions and effects on thinking.
A drug is any substance that alters how the body functions.
What is a drug?A drug is any substance that alters how the body functions. There are different types of drugs that affect different parts of the body.
We shall now explain the following classifications of drugs;
depressants - to inhibit the function of the central nervousstimulants - elevate awarenesshallucinogens - to distort perceptions and effects on thinkingamphetamines - schizophrenic-like paranoid symptomsLearn more about drugs: https://brainly.com/question/6022349
How does speed and mass effect kinetic energy ?
Answer:
in fact, kinetic energy is directly proportional to mass: if you double the mass, then you double the kinetic energy. Second, the faster something is moving, the greater the force it is capable of exerting and the greater energy it possesses. ... Thus a modest increase in speed can cause a large increase in kinetic energy.
Explanation:
Answer: The more mass of an object has, the more Kinetic energy it has.
Explanation:
Kinetic energy is comparable to mass. If you double the mass then you double the kinetic energy. The faster the object is moving the greater the energy possesses. A large increase in speed can have a large increase in kinetic energy.
Anyone can help me out with this question ? Just number 2,
Answer:
- 21⁰C .
Explanation:
Speed of jet = 2.05 x 10³ km /h
= 2050 x 1000 / (60 x 60 ) m /s
= 569.44 m / s
Mach no represents times of speed of sound , the speed of jet
1.79 x speed of sound = 569.44
speed of sound = 318.12 m /s
speed of sound at 20⁰C = 343 m /s
Difference = 343 - 318.12 = 24.88⁰C
We know that 1 ⁰C change in temperature changes speed of sound
by .61 m /s
So a change in speed of 24.88 will be produced by a change in temperature of
24.88 / .61
= 41⁰C
temperature = 20 - 41 = - 21⁰C .
According to Newton's law of universal gravitation, which statements are true?
As we move to higher altitudes, the force of gravity on us decreases.
O As we move to higher altitudes, the force of gravity on us increases,
O As we gain mass, the force of gravity on us decreases.
O Aswe gain mass, the force of gravity on us increases.
DAs we move faster, the force of gravity on us increases.