The time taken by the car to achieve the final speed is 6.25 seconds.
What is the equation of motion?The equations of motion can be defined as the equation that represents the relationship between the time, velocity, acceleration, and displacement of a moving object.
The mathematical expressions for the equations of motions can be written as:
[tex]v= u+at\\S=ut+(1/2)at^2\\v^2-u^2=2aS[/tex]
Given, the initial speed of the car, u = 15 m/s
The final speed of the given car, v = 25m/s
The distance covered by car, S = 125 m
From the third equation of motion: v² = u²+ 2aS
(25)² = (15)² + 2×a× 125
a = 1.6 m/s²
From the first equation of motion we can find the time to achieve the final speed:
v = u+ at
25 = 15 + (1.6) × t
t = 6.25 sec
Therefore, 6.25 seconds will be taken by the car to catch the final speed.
Learn more about the equation of motion, here:
brainly.com/question/16982759
#SPJ5
A long wire carries a current 5 A from west to east. A magnetic compass pointing North is placed underneath the wire at a distance of 2 mm. What is the deflection of the compass when it is placed under the wire?
Answer:
no deflection
Explanation:
current is flowing from west to east. As the magnetic field of a long wire carrying current is circular, its direction will be north below the wire and south above the wire (according to the right hand rule). So, when the compass is placed underneath the wire, it will still point towards the north direction.
15 points.
An object of mass 100 kg is observed to accelerate at a rate of 15
m/s/s. Calculate the force required to produce this acceleration.
Answer:
its 0.5 for all i beleive
Explanation:
I WILL GIVE BRAILYEST!!! What is the mass of an object moving at a velocity of 5 m/s if the momentum of the object is 50 kg•m/s?
a. 250 kg
c. 10 Kg
b. .002 Kg
d. 45 Kg
Answer:
a. 250kg I think it's the right answer. hope it helps:)
Answer:
C.10
Explanation:
because when you divide 50 divided by 5 = 10
Use the drop-down menus to complete each sentence.
A plant grows toward a sunny window. This response is an example of
✔ phototropism
.
Sometimes a plant grows around a tree for support. This response is an example of
✔ thigmotropism
.
The roots of a plant grow toward a water source. This response is an example of
✔ hydrotropism
.
The roots of a plant grow down into the soil. This response is an example of
✔ gravitropism
.
the answers are already there
Answer:
The correct answer is - phototropism, thigmotropism, hydrotropism, and gravitropism in order ( already match correctly).
Explanation:
phototropism is a phenomenon in which plants grow towards the light or sun which is accomplished by the hormone auxin in the cells far from the light.
Thigotropism is a type of plant growth that occurs around the tree to support itself which is a touch stimuli response.
The movement of the plant in the direction of the source of the water is known as hydrotropism. In which stimuli is humidity or the water concentration.
The movement of the plant or roots of the plants towards the soil or earth is known as gravitropism here gravity is the stimuli.
Answer:
Use the drop-down menus to complete each sentence.
A plant grows toward a sunny window. This response is an example of
phototropism
.
Sometimes a plant grows around a tree for support. This response is an example of
thigmotropism
.
The roots of a plant grow toward a water source. This response is an example of
hydrotropism
.
The roots of a plant grow down into the soil. This response is an example of
gravitropism
.
Explanation:
A seated musician plays a C4 note at 262 Hz . How much time Δ does it take for 346 air pressure maxima to pass a stationary listener?
Answer:
t = 1.32 s
Explanation:
We are given;. Frequency of C4 note; F_c = 262 Hz
In conversions, we know that 1 Hz = 1 cycle/s
Thus, F_c = 262 cycles/s
Now, we want to find out how much time it takes for 346 air pressure maxima to pass a stationary listener.
346 air pressure maxima denotes that the air pressure maxima is 346 cycles.
Thus, time will be;
t = 346 cycles/262 cycles/s
t = 1.32 s
The time taken for the musical note to pass the stationary listener is 1.32 s.
The given parameters:
frequency of the C4 note, f = 262 Hzair pressure maximum, n = 346The frequency of a sound wave is defined as the number of cycles completed per second by the wave.
[tex]F = \frac{n}{t}[/tex]
where;
t is the time to compete the maximum cycleThe time taken for the musical note to pass the stationary listener is calculated as follows;
[tex]262 = \frac{n}{t} \\\\t = \frac{n}{262} \\\\t = \frac{346}{262} \\\\t = 1.32 \ s[/tex]
Thus, the time taken for the musical note to pass the stationary listener is 1.32 s.
Learn more here:https://brainly.com/question/15613196
what are the laws of newton
Answer:
Explanation:
These are the laws of Newton
Answer:
the first law, an object will not change its motion unless a force acts upon it. the 2nd one, the force of an object is equal to its mass times it acceleration. the 3rd one is when 2 objects interact, they apply forces to each other of equal magnitude and opposite direction.