a certain reaction has an enthalpy of -85.0 kj/mol and an entropy of -96.0 j/k*mol. under what temperature conditions will the reaction be spontaneous?

Answers

Answer 1

The reaction will be spontaneous at temperatures above 885.4 K.

The spontaneity of the reaction can be determined by calculating ΔG for the reaction and then comparing it to the standard free energy change (ΔG°) at the same temperature.

If ΔG is negative, the reaction will be spontaneous. If ΔG is positive, the reaction will be non-spontaneous.

The formula for calculating ΔG is: ΔG = ΔH - TΔS

Where;

ΔG is the change in Gibbs free energy,

ΔH is the change in enthalpy, ΔS is the change in entropy, and T is the temperature in Kelvin.

Here we have the values;

ΔH = -85.0 kJ/mol

ΔS = -96.0 J/K*mol= -0.096 kJ/K*mol

T =?

Substituting these values into the equation:

ΔG = -85.0 kJ/mol - T(-0.096 kJ/K*mol)

= -85.0 kJ/mol + 0.096 kJ/mol*T

To determine the temperature at which the reaction will be spontaneous, we need to find the temperature at which ΔG is equal to zero. So, we can set the equation equal to zero and solve for T.

0 = -85.0 kJ/mol + 0.096 kJ/mol*T = 885.4 K

So, At temperatures above 885.4 K reaction will become spontaneous.

Learn more about the spontaneity of a reaction at: https://brainly.com/question/20358734

#SPJ11


Related Questions

suppose 0.850 l of 0.400 m h2so4 is mixed with 0.800 l of 0.250 m koh . what concentration of sulfuric acid remains after neutralization?

Answers

The concentration of sulfuric acid that remains after neutralization is 0.056 M.

To find out what concentration of sulfuric acid remains after neutralization, you will need to use the balanced equation for the reaction:

H2SO4 + 2KOH → K2SO4 + 2H2O

First, you will need to determine the moles of each reactant in the solution.

Moles can be determined using the formula:

moles = concentration x volume

In this case:

moles of H2SO4 = 0.850 L x 0.400 M = 0.34 mol

moles of KOH = 0.800 L x 0.250 M = 0.2 mol

Since the reaction is a 1:2 ratio, you will need to determine which reactant is limiting the reaction.

To do this, compare the mole ratios of the reactants:

0.34 mol H2SO4 : 0.2 mol KOH = 1.7 : 1

Since the ratio of H2SO4 to KOH is greater than 1:2, KOH is the limiting reactant. Therefore, all of the KOH is used up in the reaction, leaving some H2SO4 unreacted.

To find the amount of H2SO4 remaining, you will need to use the mole ratio of H2SO4 to KOH.

Since 2 moles of KOH react with 1 mole of H2SO4, you can use the mole ratio:

0.2 mol KOH x (1 mol H2SO4 / 2 mol KOH) = 0.1 mol H2SO4 remaining

Finally, you can determine the concentration of the H2SO4 remaining:

concentration = moles / volume

concentration = 0.1 mol / (0.850 L + 0.800 L)

concentration = 0.056 M

Therefore, the concentration of sulfuric acid that remains after neutralization is 0.056 M.

For more such questions on concentration, click on:

https://brainly.com/question/28564792

#SPJ11

in a 55.0-g aqueous solution of methanol, ch4o, the mole fraction of methanol is 0.100. what is the mass of each component?

Answers

The mass of methanol in a 55.0-g aqueous solution of methanol, CH4O, is 5.53 g and the mass of water is 27.91 g. when the mole fraction of methanol is 0.100.

The mass of each component in a 55.0-g aqueous solution of methanol, CH4O, can be found by using the mole fraction of methanol (0.100).

First, calculate the total number of moles of the solution:
55.0 g x (1 mol/32.04 g) = 1.72 moles

Then, calculate the number of moles of methanol:
1.72 moles x (0.100 mole fraction) = 0.172 moles

Finally, calculate the mass of each component:
Methanol mass: 0.172 moles x (32.04 g/mol) = 5.53 g
Water mass: 1.72 moles - 0.172 moles = 1.55 moles x (18.02 g/mol) = 27.91 g

Therefore, the mass of methanol in a 55.0-g aqueous solution of methanol, CH4O, is 5.53 g and the mass of water is 27.91 g.

For more such questions on mass , Visit:

https://brainly.com/question/1838164

#SPJ11

Suppose that an ion has an absorption line at a rest wavelength of 1000.0 nm. this line is shifted to 1000.1 nm in the spectrum of a star. how fast is the star moving? hint: the doppler shift formula is (vrad/c)

Answers

The star is moving by a velocity of 3 *10^{5}.

The formula for the Doppler shift is given by

f2/f1 = (c-v)/c,

where c is the speed of light, v is the velocity of the moving object, and f1 and f2 are the emitted and received frequencies of light, respectively.

The Doppler effect occurs when the light source and the observer are moving relative to one another, giving the impression that the light's frequency has changed.

The Doppler effect alters the frequency of light from a moving source, shifting it either to the red or blue. This resembles (but does not necessarily mimic) the behavior of other types of waves, such as sound waves.

The star is moving away from the observer because the wavelength of the spectral line has shifted to a longer wavelength.

doppler shift

Thus, the velocity is given by the formula

:v/c = (Δλ/λ)

where  is the rest wavelength and  is the change in wavelength.

v/c = (Δλ/λ)v/c = (1000.1 - 1000.0)/1000.0v/c = 0.0001/1000.

0v/c = 1e-7v = (1e-7) × c = 300 × 1e-7 = 3e-5

The star is moving away from the observer at a velocity of[tex]3 *10^{5}[/tex]m/s.

To know more about the doppler effect https://brainly.com/question/15318474

#SPJ11

an atomic transition produces a photon with a wavelength of 410 nm. what is the energy of this photon in ev?

Answers

The energy of a photon with a wavelength of 410 nm is equal to 3.03 eV.

To calculate this, you can use the formula E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength. Plugging in the values, you get E = (6.626x10⁻³⁴J·s)(3.0x10⁸m/s)/(410x10⁻⁹m) = 4.839 × 10-19 J = 3.03 eV.


An atomic transition produces a photon with a wavelength of 410 nm. The energy of this photon is 3.03 eV.

The following formula can be used to calculate the energy of a photon.

Energy = Planck's constant x (speed of light/wavelength).

Here, Planck's constant is (h) = 6.626 × 10⁻³⁴ J s. The speed of light is (c) = 3 × 10⁸m/s (in a vacuum). The wavelength of the photon is (λ) = 410 nm.

So, let's first convert the wavelength to meters (1 nm =10⁻⁹ m).

So, 410 nm = 410 × 10⁻⁹ m = 4.10 × [tex]10^{-7}[/tex]m. Now, we can calculate the energy of the photon using the formula.

Energy = h x (c/λ)

Energy = 6.626 × 10⁻³⁴ J s x (3 × 10⁸ m/s / 4.10 × [tex]10^{-7}[/tex] m)

Energy = 4.839 × [tex]10^{-19}[/tex] J (joules)

One electron volt is equal to 1.6 × [tex]10^{-19}[/tex]J.

So, we can convert the energy from joules to electron volts.

Energy (in eV) = Energy (in J) / (1.6 × [tex]10^{-19}[/tex]J/eV)

Energy (in eV) = 4.839 × [tex]10^{-19}[/tex]J / (1.6 × [tex]10^{-19}[/tex]J/eV)

Energy (in eV) = 3.03 eV

Therefore, the energy of the photon is 3.03 eV.

For more questions related to Planck's constant.

https://brainly.com/question/2289138

#SPJ11

what must be true for precipitation to occur? group of answer choices qsp > ksp qsp < ksp precipitation always occurs with sparingly soluble compounds none of these

Answers

For precipitation to occur, the value of Qsp (the ion product constant) should be greater than the solubility product constant (Ksp).

Precipitation is the conversion of a dissolved substance into a solid, which then settles out of a solution. Precipitation occurs when a liquid solution is cooled or heated, causing it to become super-saturated with one or more solutes. A solution's super-saturation means that it contains more of a solute than it can contain at equilibrium.

A tiny seed crystal of the solute is added to the solution to kick off the precipitation. The seed crystal provides a template for the rest of the solute to nucleate and form a solid. For precipitation to occur, the value of Qsp (the ion product constant) should be greater than the solubility product constant (Ksp). When Qsp is greater than Ksp, the solution is supersaturated and precipitates are formed. If Qsp is less than Ksp, the solution is unsaturated and no precipitation occurs.

Learn more about solution at:

https://brainly.com/question/16159788

#SPJ11

acetic acid has a ka of 1.80x10-5. what is the ph of a buffer solution made from 0.150 m hc2h3o2 and 0.530 m c2h3o2 -?

Answers

Acetic acid has a ka of 1.80x10-5. The pH of a buffer solution made from 0.150 m hc2h3o2 and 0.530 m c2h3o2 is 4.76.

The pH of a buffer solution produced from 0.150 M HC2H3O2 and 0.530 M C2H3O2 is 4.76.

The following are the steps to solve the problem:

Acetic acid is a weak acid with the formula CH3COOH, which is also known as ethanoic acid.

HC2H3O2 is the molecular formula for this substance.

Acetic acid has a Ka of 1.8 x 10-5.

The ionization of acetic acid can be expressed as follows: CH3COOH + H2O ↔ H3O+ + CH3COO-

The ionization constant, Ka, is equal to the product of the concentration of H3O+ and CH3COO- ions divided by the concentration of CH3COOH.

Hence, Ka = ([H3O+] [CH3COO-])/[CH3COOH]

The Henderson-Hasselbalch equation is used to compute the pH of a buffer solution.

pH = pKa + log (base/acid), where pKa = -logKa.

In the equation, the base is C2H3O2-, and the acid is HC2H3O2.

Substituting the values in the equation, pH = -log1.8 x 10-5 + log(0.530/0.150) = 4.76.

Therefore, the pH of a buffer solution produced from 0.150 M HC2H3O2 and 0.530 M C2H3O2 is 4.76.

To know more about pH calculation, refer here:

https://brainly.com/question/1195974#

#SPJ11

starting with a 1.00 l of a buffer that is 0.700 m hf and 0.553 m naf, calculate the ph after the addition of 0.100 mol naoh. ka (hf) 7.1 x 10-4

Answers

The pH after the addition of 0.100 mol NaOH to 1.00 L of a buffer that is 0.700 M HF and 0.553 M NaF. The pH  is 7.031.

To calculate the pH after the addition of 0.100 mol NaOH to 1.00 L of a buffer that is 0.700 M HF and 0.553 M NaF, we can use the Henderson-Hasselbalch equation.

The Henderson-Hasselbalch equation is: pH = pKa + log ([A-]/[HA])

Where [A-] is the concentration of the anion (in this case, NaF) and [HA] is the concentration of the acid (in this case, HF).

pKa for HF is 7.1 x 10-4

Before we add the 0.100 mol NaOH, the pH of the buffer is:

pH = 7.1 x 10-4 + log ([0.553 M NaF]/[0.700 M HF])

= 7.1 x 10-4 + log(0.787)

= 7.1 x 10-4 + -0.103

= 6.997

Now, let's calculate the concentration of NaOH after we add 0.100 mol of it to the buffer. We know that 1 mole of NaOH will produce 1 mole of OH- ions, so the concentration of OH- ions is 0.100 M.

Since the buffer already contains HF and NaF, the total concentration of anions is 0.653 M.

We can now calculate the new pH using the Henderson-Hasselbalch equation:

pH = 7.1 x 10-4 + log([0.653 M anions]/[0.700 M HF])

= 7.1 x 10-4 + log(0.933)

= 7.1 x 10-4 + -0.069

= 7.031

Therefore, the pH of the buffer after the addition of 0.100 mol NaOH is 7.031.

For more such questions on Henderson-Hasselbalch equation , Visit:

https://brainly.com/question/13423434

#SPJ11

1. the pinakbet that your mother cooks is an example of a _

A. solution B. mixture C. solvent D. solute

2. which is NOT a characteristic of heterogeneous mixture?

A. the substances are evenly mixed
B. the substances are completely dissolved in water
C. the substances that are mixed cannot be identified
D. the substances can still be identified from the mixture

Answers

Answer:

1. Ans: B

Explanation: Pinakbet, which contains vegetables such as eggplants and kalabasa, are physically combined. Therefore, the pinakbet is an example of a mixture

2. Ans: A

Explanation: Heterogenous are different building blocks that are mixed UNEVENLY.

when determining the energy effect of a chemical reaction the system is/are and the surroundings is/are

Answers

When determining the energy effect of a chemical reaction, the system is/are reactants and products and the surroundings are everything outside the system.

When determining the energy effect of a chemical reaction, the system and surroundings are involved. The system refers to the reactants and products involved in the chemical reaction, whereas the surroundings refer to everything else outside the system, including the temperature, pressure, and any other factors that can affect the reaction.

The energy effect of a chemical reaction can be determined by calculating the difference between the energy of the products and the energy of the reactants. This difference is known as the energy change or the enthalpy change of the reaction.

If the energy change is positive, it means that the reaction is endothermic, and energy is absorbed from the surroundings. This results in a decrease in the temperature of the surroundings.

On the other hand, if the energy change is negative, it means that the reaction is exothermic, and energy is released into the surroundings. This results in an increase in the temperature of the surroundings.

It is important to note that the energy effect of a chemical reaction can also be affected by external factors such as pressure, temperature, and the presence of a catalyst.


In conclusion, the system is the reactants, and the products and surroundings are factors like temperature and pressure, i.e., everything outside the system.

To know more about reactants, refer here:

https://brainly.com/question/13005466#

#SPJ11

a 24.6 ml sample of 0.389 m ethylamine, c2h5nh2, is titrated with 0.325 m hydroiodic acid. at the equivalence point, the ph is .

Answers

At the equivalence point of a titration between 24.6 mL of 0.389 M ethylamine, C2H5NH2, and 0.325 M hydroiodic acid, the pH is 0.

At the equivalence point of a titration between 24.6 mL of 0.389 M ethylamine, C2H5NH2, and 0.325 M hydroiodic acid, the pH is 0. The equation for the reaction is:


C2H5NH2 + HI → C2H5NH3+ + I-

The number of moles of hydroiodic acid, HI, needed to reach the equivalence point is equal to the number of moles of ethylamine, C2H5NH2. To calculate this, use the following equation:


Moles of HI = Moles of C2H5NH2


Volume of C2H5NH2 x Molarity of C2H5NH2 = Volume of HI x Molarity of HI


24.6 mL x 0.389 M = Volume of HI x 0.325 M


Volume of HI = 24.6 mL x 0.389 M / 0.325 M


Volume of HI = 30.53 mL


At the equivalence point, the pH of the solution is 0.



Learn more about titration here:

https://brainly.com/question/2728613#


#SPJ11

Which of these is not a component of Rutherford’s model of the atom?

Answers

The Rutherford's model lacks an atom's electrical structure and electromagnetic radiation.

What elements make up Rutherford's atomic model?

According to the idea, an atom has a tiny, compact, positively charged center called a nucleus, where almost all of the mass is concentrated, while light, negatively charged particles called Like planets circle the Sun, electrons also travel a great distance around it. Rutherford discovered that an atom's interior is mostly empty.

What does Rutherford's conclusion leave out?

Rutherford's alpha scattering experiment did not come to any conclusions on how quickly positively charged particles travel. The nucleus, or core, of the atom contains the positively charged particles.

To know more about Rutherford's model visit:-

https://brainly.com/question/11749615

#SPJ1

Which would you expect to increase the rate of photosynthesis?

Answers

As you rise from low light intensity to higher light intensity, the rate of photosynthesis will increase because there is more light available to drive the reactions of photosynthesis.

under standard conditions (298 k and 1 atm), which statement is true? refer to the constants for thermodynamic properties under standard conditions. a. diamond converts to graphite spontaneously b. graphite converts to diamond spontaneously c. none of the above

Answers

Under standard conditions (298 K and 1 atm), neither statement is true.

Diamond and graphite are both forms of carbon and are in a state of equilibrium under standard conditions. This means that neither diamond nor graphite will spontaneously convert to the other form.

Therefore, the correct answer is option (c): none of the above.

For more questions like thermodynamic visit the link below:

The thermodynamic equilibrium constant In a chemical equilibrium, K is the appropriate quotient of species activities. Under normal temperatures and pressures, an activity cannot be very many orders of magnitude more than 1.

The definition of thermodynamic properties is "system characteristics that can specify the state of the system." Certain constants, like R, are not attributes since they do not describe the state of a system.

Thermodynamics states that the conversion of diamond to graphite occurs spontaneously and is favourable. Yet, this reaction moves extremely slowly because kinetics, not thermodynamics, regulates it. As a result, diamond is thermodynamically unstable but kinetically stable.

https://brainly.com/question/29508731

#SPJ11

an electrolyte solution . . . question 6 options: a) contains dissolved metals. b) contains non-polar molecules. c) is aqueous. d) contains ions. e) has free electrons in solution.

Answers

An electrolyte solution is one that contains ions. The correct option is d.

An electrolyte solution is one that can conduct an electric current. It contains charged particles or ions, which are what allow the solution to conduct an electric current. The following options can be eliminated as incorrect because they don't define electrolyte solution: a) contains dissolved metals b) contains non-polar molecules e) has free electrons in solution. Therefore, the correct option is (d) contains ions.

Learn more about electrolyte solutions: https://brainly.com/question/14654936

#SPJ11

write a molecular equation for the gas evolution reaction that occurs when you mix aqueous hydrobromic acid and aqueous lithium sulfite.

Answers

The molecular equation for the gas evolution reaction between aqueous hydrobromic acid (HBr) and aqueous lithium sulfite (Li2SO3) is as follows:  2 HBr (aq) + [tex]Li_{2} So_{3}[/tex] (aq) → 2 LiBr (aq) + [tex]H_{2} So_{3}[/tex] (aq)


In this reaction, hydrobromic acid (HBr) reacts with lithium sulfite ([tex]Li_{2} So_{3}[/tex]) to form lithium bromide (LiBr) and sulfurous acid ([tex]H_{2} So_{3}[/tex]). The sulfurous acid is unstable and decomposes into water( [tex]H_{2o[/tex]) and sulfur dioxide gas ([tex]So_{2}[/tex]):

[tex]H_{2} So_{3}[/tex] (aq) → [tex]H_{2} 0[/tex]l) + [tex]So_{2}[/tex] (g)

The overall reaction is:

2 HBr (aq) + [tex]Li_{2} So_{3}[/tex] (aq) → 2 LiBr (aq) + [tex]H_{2} o[/tex] (l) + [tex]So_{2}[/tex] (g)

In this gas evolution reaction, the mixing of the two aqueous solutions results in the formation of a new compound, lithium bromide, which remains dissolved in the solution. The other product, sulfurous acid, decomposes into water and sulfur dioxide gas, which is released as bubbles in the solution. This release of gas is the characteristic feature of gas evolution reactions.

Know more about sulfurous acid      here:

https://brainly.com/question/1084323

#SPJ11

determine the mass percent (to the hundredths place) of h in sodium bicarbonate (nahco3). 14.30 27.36 1.20 57.14 19.05

Answers

The mass percent of hydrogen in sodium bicarbonate (NaHCO3) is 1.20% (to the hundredths place).

To determine the mass percent of hydrogen (H) in sodium bicarbonate (NaHCO3), we need to first calculate the molar mass of NaHCO3, which is:

NaHCO3 = 1(Na) + 1(H) + 1(C) + 3(O)

= 23.00 + 1.01 + 12.01 + (3 x 16.00)

= 84.01 g/mol

The mass of hydrogen in one mole of NaHCO3 is 1.01 g, since there is only one hydrogen atom in each molecule of NaHCO3.

Therefore, the mass percent of hydrogen in NaHCO3 can be calculated as follows:

mass percent H = (mass of H / mass of NaHCO3) x 100%

= (1.01 g / 84.01 g) x 100%

= 1.20%

For more question on sodium bicarbonate click on

https://brainly.com/question/1596599

#SPJ11

the pressure on a balloon holding 433 ml of an ideal gas is increased from 688 torr to 1.00 atm. what is the new volume of the balloon (in ml) at constant temperature?

Answers

Answer:

pressure on a balloon holding 433 ml of an ideal gas is increased from 688 torr to 1.00 atm. what is the newpressure on a balloon holding 433 ml of an ideal gas is increased from 688 torr to 1.00 atm. what is the new volume of the balloon (in ml) at constant temperature

true or false: when two solutions containing ions as solutes are combined and a reaction occurs, it is always a single-replacement reaction.

Answers

The statement that "when two solutions containing ions as solutes are combined and a reaction occurs, it is always a single-replacement reaction" is False.

When two solutions containing ions as solutes are combined and a reaction occurs, it is not always a single-replacement reaction.

The type of reaction that will occur depends on the reactants and the conditions of the reaction.

For example, if two solutions containing different metal ions are mixed together, a double-replacement reaction may occur, in which two ionic compounds are formed.

Similarly, a precipitation reaction may occur if the combination of the two solutions produces an insoluble product.

In general, single-replacement reactions involve one element replacing another element in a compound, and occur when one of the reactants is an elemental solid, such as a metal.

To know more about solutes, refer here:

https://brainly.com/question/7932885#

#SPJ11

one year, a herd of cattle released 8.44 metric tons of ch4 (methane) into the atmosphere. how many metric tons of carbon did this methane contain?

Answers

This herd of cattle released 8.44 metric tons of methane (CH4) into the atmosphere. Methane is composed of one atom of carbon and four atoms of hydrogen, so this 8.44 metric tons of methane contained (8,440 kg) x (12.01/16.05) g/kg = 6,309 kg (6.31 metric tons).

To answer the given question, we need to know the molecular formula of methane, which is CH4. The atomic mass of carbon is 12.01 g/mol and the atomic mass of hydrogen is 1.01 g/mol. Therefore, the molecular mass of methane is:

Molecular mass of CH4 = (1 x 12.01) + (4 x 1.01) = 16.05 g/mol
Now, we need to convert the amount of methane released into metric tons.
1 metric ton = 1,000 kg
8.44 metric tons = 8.44 x 1,000 = 8,440 kg

To convert the mass of methane into mass of carbon, we need to use the ratio of the molecular masses of carbon and methane.

1 mol of CH4 contains 1 mol of carbon
1 mol of CH4 has a mass of 16.05 g
1 mol of carbon has a mass of 12.01 g

Therefore,
16.05 g of CH4 contains 12.01 g of carbon
1 kg of CH4 contains (12.01/16.05) g of carbon

To convert the mass of methane into mass of carbon, we need to multiply it by the ratio of the molecular masses of carbon and methane.
Mass of carbon = (8,440 kg) x (12.01/16.05) g/kg
= 6,309 kg

Therefore, the herd of cattle released 6,309 kg (or 6.31 metric tons) of carbon into the atmosphere through the release of 8.44 metric tons of methane.

For more questions related to metric tons.

https://brainly.com/question/4062096

#SPJ11

the freezing-point depression for a given aqueous solution is 0.34 k. the freezing-point depression constant for water is 1.86 k/m. calculate the molality of solutes in the solution.

Answers

the molality of solutes in the aqueous solution is 0.182 molal.

Freezing-point depression constant for water ([tex]K_f[/tex]) = 1.86 K/mFreezing-point depression of aqueous solution (Δ[tex]T_f[/tex]) = 0.34 KThe molality of solute in the solution = ?The formula to calculate molality is as follows;m = moles of solute/kilograms of solvent.

⇒m = (molality) = (Δ[tex]T_f[/tex]) / ([tex]K_f[/tex] × w2)

Here, Δ[tex]T_f[/tex] = Freezing-point depression[tex]K_f[/tex] = Freezing-point depression constant for waterw2 = Mass of solvent (Water) in Kg

We have to calculate the molality of solutes in the solution by using the freezing-point depression constant and freezing-point depression of the aqueous solution.

Now, Substituting the given values, we get,

⇒ m = (Δ[tex]T_f[/tex]) / ([tex]K_f[/tex] × w2)

⇒ m = 0.34 / (1.86 × w2)

⇒ m = 0.182 molal

Therefore, the molality of solutes in the solution is 0.182 molal.

Learn more about molality: https://brainly.com/question/1370684

#SPJ11

Answer with the Matching-match the letter with the correct item

Answers

Double replacement or metathesis reaction involves the exchange of ions between two compounds.

What are the types of reaction?

Combination or synthesis reaction is a  type of reaction that  involves two or more reactants combining to form a single product. The general format is A + B → AB.

Decomposition reaction involves a single reactant breaking down into two or more products. The general format is AB → A + B.

The matching of the letters are;

1 - C

2 - H

3 - E

4 - F

5 - A

6 - B

7 - I

8 - J

9 - G

10 - D

1) False

2) False

3) True

4) False

5) True

6) True

7) True

Learn more about reaction:https://brainly.com/question/28984750

#SPJ1

how the temperature and vapor pressure are related knowing the enthalpy of vaporization at the boiling temperature

Answers

The temperature and vapor pressure of a substance are related by the Clausius-Clapeyron equation, which states that:

ln(P2/P1) = -(ΔHvap/R) x (1/T2 - 1/T1)

where P1 and P2 are the vapor pressures of the substance at temperatures T1 and T2, respectively, ΔHvap is the enthalpy of vaporization at the boiling temperature, R is the gas constant, and ln represents the natural logarithm.

This equation shows that as the temperature of the substance increases, its vapor pressure also increases, assuming the enthalpy of vaporization remains constant. Conversely, as the temperature decreases, the vapor pressure decreases.

which isotope, when bombarded with nitrogen-15, yields four neutrons and the artificial isotope dubnium-260?

Answers


The isotope that yields four neutrons and the artificial isotope dubnium-260 when bombarded with nitrogen-15 is curium-244.

Curium-244 is a transuranic element of the actinide series. When bombarded with nitrogen-15, a nucleus of curium-244 splits into two smaller nuclei, releasing four neutrons in the process.

This process is called nuclear fission. The nucleus of nitrogen-15 is then combined with the two smaller nuclei to form dubnium-260, which is an artificially produced isotope.

Nuclear fission of curium-244 is a common process used in nuclear power plants. In nuclear power plants, uranium-235 is bombarded with neutrons, causing a chain reaction that produces energy and more neutrons.

The neutrons then bombard other uranium-235 nuclei, continuing the process. By bombarding curium-244 with nitrogen-15, a similar chain reaction is created that produces dubnium-260.

The production of dubnium-260 through nuclear fission of curium-244 can be used for various scientific and industrial purposes.

It can be used in the production of nuclear weapons, nuclear fuel, medical isotopes, and in other research activities.

In addition, it can be used as a catalyst for chemical reactions, to produce high energy radiation for sterilization, and for other industrial processes.

In conclusion, curium-244 yields four neutrons and the artificial isotope dubnium-260 when bombarded with nitrogen-15.

This process, known as nuclear fission, can be used in a variety of scientific and industrial applications.

to know more about isotope refer here

https://brainly.com/question/13063428#

#SPJ11

what is the total mass in grams of precipitate that can be produced by mixing a solution made from 300g of solid barium chlorate dissolved in 760 ml of a soloution and 540ml of 0.67m lithium sulfate soloution

Answers

The total mass of precipitate (BaSO4) that can be produced is 175.6 grams.

What is total mass?

Total mass refers to the weight of the shell, its service and structural apparatus, and the largest cargo permitted to be carried

To determine the mass of precipitate that can be produced when solutions of barium chlorate and lithium sulfate are mixed, we need to first write and balance the chemical equation for the reaction:

Ba(ClO3)2 (aq) + Li2SO4 (aq) → BaSO4 (s) + 2LiClO3 (aq)

The balanced equation shows that for every one mole of barium chlorate that reacts, one mole of barium sulfate is produced. Therefore, we need to calculate the number of moles of barium chlorate in the solution to determine the maximum amount of barium sulfate that can be formed.

First, we need to calculate the number of moles of barium chlorate in the solution:

Mass of solid barium chlorate = 300 g

Molar mass of barium chlorate = 2 x atomic mass of Ba + 6 x atomic mass of Cl + 6 x atomic mass of O = 2(137.33 g/mol) + 6(35.45 g/mol) + 6(16.00 g/mol) = 398.22 g/mol

Number of moles of barium chlorate = mass / molar mass = 300 g / 398.22 g/mol = 0.753 mol

Next, we need to calculate the maximum amount of barium sulfate that can be formed from this amount of barium chlorate:

According to the balanced equation, 1 mole of Ba(ClO3)2 produces 1 mole of BaSO4

Therefore, the maximum number of moles of BaSO4 that can be formed is also 0.753 mol

Finally, we can calculate the mass of BaSO4 that can be formed using its molar mass:

Molar mass of BaSO4 = atomic mass of Ba + atomic mass of S + 4 x atomic mass of O = 137.33 g/mol + 32.06 g/mol + 4(16.00 g/mol) = 233.39 g/mol

Mass of BaSO4 = number of moles x molar mass = 0.753 mol x 233.39 g/mol = 175.6 g

Therefore, the total mass of precipitate (BaSO4) that can be produced is 175.6 grams.

Learn more about total mass

https://brainly.com/question/17552181

#SPJ1

elect any and all of these compounds that can undergo an addition and elimination reaction mechanism. OH OCH, A B C D E

Answers

Compounds that can undergo an addition and elimination reaction mechanism are OH and OCH3 since they are the ones that have a nucleophilic site or a leaving group.

The compounds that can undergo an addition and elimination reaction mechanism are listed below: OH - It is a hydroxyl group and is a nucleophile, which means it has an electron pair available for donation. OCH3 - Methoxy group, also known as OCH3, is a leaving group.

Addition reactions occur when two or more reactants combine to form a single product. They typically involve unsaturated compounds like alkenes or alkynes, which have double or triple carbon-carbon bonds. Elimination reactions, on the other hand, involve the removal of elements from a reactant to create a more unsaturated product, typically forming a double bond.

OH: This group represents an alcohol functional group. Alcohols can undergo elimination reactions, such as dehydration, to form alkenes.
OCH: This seems to be an incomplete functional group, as it is missing a carbon or hydrogen. If it's meant to represent an ether functional group (OCH3 or OCH2R, where R is an alkyl group), ethers generally do not undergo addition or elimination reactions.

In conclusion, without further information about compounds A, B, C, D, and E, we can only determine that a compound containing an OH functional group (an alcohol) can undergo elimination reactions, while the given OCH functional group does not undergo addition or elimination reactions.

To know more about nucleophilic site, refer here:

https://brainly.com/question/24297177#

#SPJ11

how can you tell by looking at a graph which reaction (forward or reverse) is favored (i.e. faster when the concentrations of reactants and products are equal)?

Answers

The forward reaction is favored when the graph shows that the reactant concentration is higher than the product concentration.

To determine which reaction is favored, examine the graph and look at the concentrations of reactants and products at equilibrium. If the reactant concentration is higher, the forward reaction is favored. Conversely, if the product concentration is higher, the reverse reaction is favored.

A graph can help you visualize the reactants and products of a reaction at equilibrium. The y-axis of the graph typically indicates the concentration of the reactants or products, and the x-axis of the graph indicates the reaction rate.

At equilibrium, the reaction rate is 0, meaning that the reactants and products are neither increasing nor decreasing in concentration. By looking at the concentrations of the reactants and products at equilibrium on the graph, you can determine which reaction is favored.

If the reactant concentration is higher than the product concentration, then the forward reaction is favored. This means that the forward reaction occurs more quickly than the reverse reaction when the concentrations of the reactants and products are equal.

Conversely, if the product concentration is higher than the reactant concentration, then the reverse reaction is favored.

To know more about forward reaction click on below link:

https://brainly.com/question/8592296#

#SPJ11

explain how you used your titration data to determine the volume of naoh used to reach the equivalence point of your titration. comment on the extent of agreement with the predicted volume you calculated above.g

Answers

To determine the volume of NaOH used to reach the equivalence point of the titration using the titration data, we need to find the point where the acid and base are neutralized.

At this point, the moles of acid and base are equal, and this is called the equivalence point.To find the volume of NaOH used at the equivalence point, we can use the following

Steps:1. Plot the titration data on a graph of pH versus volume of NaOH added.

Steps:2. Identify the point where the pH changes abruptly. This is the equivalence point.

Steps:3. Determine the volume of NaOH added at the equivalence point by reading the volume from the graph.

Steps:4. Compare the volume of NaOH used at the equivalence point of the titration with the predicted volume calculated above.The extent of agreement with the predicted volume can be assessed by calculating the percent error.

The percent error is calculated using the formula:

                                      Percent error = [(experimental value - theoretical value) / theoretical value] x 100

If the percent error is small, then the agreement is good. If the percent error is large, then there is a significant difference between the predicted and experimental values.

Learn more about equivalence point of the titration here, https://brainly.com/question/31181892

#SPJ11

what is the [hcoo-]/[hcooh] ratio in an acetate buffer at ph 4.50? (the pka for formic acid is 3.80.) [hcoo-]/[hcooh]

Answers

The ratio of [HCO₃⁻] to [HCO₂H] in an acetate buffer is 5.01.

The ratio of [HCO₃⁻] to [HCO₂H] (formic acid) in an acetate buffer at pH 4.50 is determined by the Henderson-Hasselbalch equation:

pH = pKa + log ([HCO₃⁻]/[HCO₂H]).
[HCO₃⁻]/[HCO₂H] = 10^(pH-pKa)
= 10^(4.50 - 3.80)
= 5.01


To further understand the buffering capacity of an acetate buffer, we must first understand the role of formic acid and bicarbonate in an acetate buffer.

Formic acid is an organic acid and bicarbonate is a salt of carbonic acid. Both of these species can form and break down as needed to maintain the pH of the buffer.

As the pH of the buffer is increased, the formic acid will break down, forming more bicarbonate.

On the other hand, as the pH of the buffer is decreased, more formic acid will form, resulting in fewer bicarbonate ions.


The buffering capacity of an acetate buffer is dependent on the relative concentrations of formic acid and bicarbonate ions, and these concentrations can vary depending on the pH of the buffer.

In summary, the ratio of [HCO₃⁻] to [HCO₂H] is found to be 5.01 in an acetate buffer at pH 4.50.

To know more about acetate buffer, refer here:

https://brainly.com/question/16970860#

#SPJ11

the electronic configuration of O2−is2s22p6.

Answers

Yes, it is true that the electronic configuration of O2- is 1s2 2s2 2p6.

What is meant by electronic configuration?

Arrangement of electrons in orbitals around atomic nucleus is called electronic configuration and describes how electrons are distributed in its atomic orbitals.

When oxygen atom gains two electrons to form an O2- ion, the two electrons occupy the lowest energy level available, which is the 2s orbital. Therefore, the electronic configuration of O2- is the same as that of neon (1s2 2s2 2p6), which has a full outermost shell of electrons. This noble gas configuration makes the O2- ion stable and less likely to react with other elements.

To know more about electronic configuration, refer

https://brainly.com/question/26084288

#SPJ1

2.37-l container is filled with 186 g argon. (a) if the pressure is 10.0 atm, what is the temperature? webassign will check your answer for the correct number of significant figures. k (b) if the temperature is 225 k, what is the pressure?

Answers

(a) If the pressure is 10.0 atm, the temperature is 62.0 K.

(b) if the temperature is 225 k, the pressure is 36.3 atm.

a) In order to calculate the temperature, we need to use the ideal gas law, PV = nRT, where P is the pressure, V is the volume of the container, n is the number of moles of argon, R is the ideal gas constant, and T is the temperature.

We can calculate the number of moles, n, by using the molar mass of argon, which is 39.948 g/mol.

We have n = 186 g / 39.948 g/mol = 4.656 mol.

So we can plug in our values and solve for T:

T = (10.0 atm)(2.37 L) / (4.666 mol)(0.08206 L·atm/mol·K) = 62.0 K.

b) To calculate the pressure, we can again use the ideal gas law, PV = nRT. We know the values of n, R, and T from the previous question.

Since the volume of the container is given, we can plug in these values to solve for P:

P = (4.666 mol)(0.08206 L·atm/mol·K)(225 K) / 2.37 L = 36.3 atm.

Learn more about ideal gas law here: https://brainly.com/question/27870704.

#SPJ11

Other Questions
how to summerise this poem; I wish I loved youbut now it's latewhole body worn out my brain loosemy emotions depressedAll l have are old memories left at heartOhhh! love . Help please i need help on this genetic change in bacteria can be brought about by group of answer choices mutation. conjugation. transduction. transformation . reproduction. Briefly summarize the Fourth, Fifth, Eighth, and Fourteenth U.S. Constitutional Amendments. which term describes the process by which people learn, and come to accept, the ways of a group or a society? The graphs of line a and b are shown in this coordinate gridMatch each line with it's equation. Drag each equation to the corresponding box for each line the difference between the net operating income (noi) and the equity before-tax cash flow (ebtcf) is: according to deloria and lytle, what assumption was inherent in the general allotment (dawes) act? further, cities and counties with a population of at least 500k residents are allowed to add an additional 1%, provided that they use this revenue for what purpose? when considering the demographic and situational characteristics of the audience, it demonstrates that as a speaker: group of answer choices you are able to guess their religious affiliation. you plan to use any means necessary to persuade the audience. you are avoiding controversial topics. you chose a topic that was of your own interest. you are keeping the audience in mind throughout the speech making process. non-nutrient compounds in plant-derived foods that can aid in inhibiting inflammatory responses are: sunji has been playing chess for the past five years and has become quite good. if sunji had had an mri before he began playing chess and follow up five years later, the mri would likely reveal measurable change in brain regions involved in perceiving, remembering, and logical reasoning. this change is the result of: Find the ratio of the perimeter of ABC to the perimeter of XYZ. Please help 30 points I've been struggling Identify the Slope and y - intercept from the graph Slope (m) = b =Write the equation of the line in Slope-Intercept form function p is in the form y = ax 2+c. if the values of a and c are both less than 0. which graph could represent p? if two people with blood type a, both with ao genotype, have children, what proportion of their children would be expected to have blood type 0? Add pedigree generation and individual numbers following standard pedigree nomenclatureb. Explain symbols for the following subjects: I-2 II-6 and II-7 III-2 III-4 III-6 and III-7 III-10 III-11 IV-1 The community of Estula receives regular shipments of arms to help fight the cartels.True or False PLEASE HELP!!!!How did Dr. Bass become a witness to history? (Consider what events Dr. Bass was a witness to, to help you answer the question.) Why do you think it is important for people to speak out about historical events that they witness? for eyewitness to butchenwald the area of the figure