Answer:
true if I'm wrong I'm so sorry:/
which geometric solid is formed by rotating the rectangle about line m?
Answer:
rectangular prism
Step-by-step explanation:
check by rotating the shape in images
By visual inspection, determine the best-fitting regression model for the
scatterplot.
Need help ASAP please
Answer:
its a! sorry im so late
Step-by-step explanation:
1. an alloy contains zinc and copper in the ratio of 7:9 find weight of copper of it had 31.5 kgs of zinc.
2. compare the following ratios
i) 2:3 and 4:5
ii) 11:19 and 19:21
iii) ½ : ⅓ and ⅓ : ¼
iv ) 1⅕ : 1⅓ and ⅖ : 3/2
v) if a : b = 6:5 and b:c = 10:9, find a:c
vi) if x : y = ⅙:⅛ and y : z = ⅛: ⅒, find X : z
sorry many questions
Answer:
Step-by-step explanation:
Question (1). An alloy contains zinc and copper in the ratio of 7 : 9.
If the weight of an alloy = x kgs
Then weight of copper = [tex]\frac{9}{7+9}\times (x)[/tex]
= [tex]\frac{9}{16}\times (x)[/tex]
And the weight of zinc = [tex]\frac{7}{7+9}\times (x)[/tex]
= [tex]\frac{7}{16}\times (x)[/tex]
If the weight of zinc = 31.5 kg
31.5 = [tex]\frac{7}{16}\times (x)[/tex]
x = [tex]\frac{16\times 31.5}{7}[/tex]
x = 72 kgs
Therefore, weight of copper = [tex]\frac{9}{16}\times (72)[/tex]
= 40.5 kgs
2). i). 2 : 3 = [tex]\frac{2}{3}[/tex]
4 : 5 = [tex]\frac{4}{5}[/tex]
Now we will equalize the denominators of each fraction to compare the ratios.
[tex]\frac{2}{3}\times \frac{5}{5}[/tex] = [tex]\frac{10}{15}[/tex]
[tex]\frac{4}{5}\times \frac{3}{3}=\frac{12}{15}[/tex]
Since, [tex]\frac{12}{15}>\frac{10}{15}[/tex]
Therefore, 4 : 5 > 2 : 3
ii). 11 : 19 = [tex]\frac{11}{19}[/tex]
19 : 21 = [tex]\frac{19}{21}[/tex]
By equalizing denominators of the given fractions,
[tex]\frac{11}{19}\times \frac{21}{21}=\frac{231}{399}[/tex]
And [tex]\frac{19}{21}\times \frac{19}{19}=\frac{361}{399}[/tex]
Since, [tex]\frac{361}{399}>\frac{231}{399}[/tex]
Therefore, 19 : 21 > 11 : 19
iii). [tex]\frac{1}{2}:\frac{1}{3}=\frac{1}{2}\times \frac{3}{1}[/tex]
[tex]=\frac{3}{2}[/tex]
[tex]\frac{1}{3}:\frac{1}{4}=\frac{1}{3}\times \frac{4}{1}[/tex]
= [tex]\frac{4}{3}[/tex]
Now we equalize the denominators of the fractions,
[tex]\frac{3}{2}\times \frac{3}{3}=\frac{9}{6}[/tex]
And [tex]\frac{4}{3}\times \frac{2}{2}=\frac{8}{6}[/tex]
Since [tex]\frac{9}{6}>\frac{8}{6}[/tex]
Therefore, [tex]\frac{1}{2}:\frac{1}{3}>\frac{1}{3}:\frac{1}{4}[/tex] will be the answer.
IV). [tex]1\frac{1}{5}:1\frac{1}{3}=\frac{6}{5}:\frac{4}{3}[/tex]
[tex]=\frac{6}{5}\times \frac{3}{4}[/tex]
[tex]=\frac{18}{20}[/tex]
[tex]=\frac{9}{10}[/tex]
Similarly, [tex]\frac{2}{5}:\frac{3}{2}=\frac{2}{5}\times \frac{2}{3}[/tex]
[tex]=\frac{4}{15}[/tex]
By equalizing the denominators,
[tex]\frac{9}{10}\times \frac{30}{30}=\frac{270}{300}[/tex]
Similarly, [tex]\frac{4}{15}\times \frac{20}{20}=\frac{80}{300}[/tex]
Since [tex]\frac{270}{300}>\frac{80}{300}[/tex]
Therefore, [tex]1\frac{1}{5}:1\frac{1}{3}>\frac{2}{5}:\frac{3}{2}[/tex]
V). If a : b = 6 : 5
[tex]\frac{a}{b}=\frac{6}{5}[/tex]
[tex]=\frac{6}{5}\times \frac{2}{2}[/tex]
[tex]=\frac{12}{10}[/tex]
And b : c = 10 : 9
[tex]\frac{b}{c}=\frac{10}{9}[/tex]
Since a : b = 12 : 10
And b : c = 10 : 9
Since b = 10 is common in both the ratios,
Therefore, combined form of the ratios will be,
a : b : c = 12 : 10 : 9
One liter of paint is needed to cover all 6 sides of a cubical block. How many liters will be needed to cover all 6 sides of a second cubical block whose edge is twice as long as an edge on the first block?
Will mark brainlist
Answer:
4 liters
Step-by-step explanation:
Let's assume that the side lengths of the cubical block are 2 inches.
This means that one of the sides area is 4 in².
Multiplying this by 6 (for there are 6 sides) gets us 24 in².
So one liter of paint covers 24 in².
Now if the side lengths (edge) of the second block is doubled, that means that the side lengths are [tex]2\cdot2 = 4[/tex] inches.
So the area of one side is 16 in².
Multiplying this by 6 (as there are 6 sides) gets us 96 in².
To find how many liters of paint this will take, we divide 96 by 24.
[tex]96\div24=4[/tex]
So 4 liters of paint will be needed for the second cubical block.
Hope this helped!
anyone plss heeelp me...i only need answer 6c..
Answer:
6c1; [tex]Area = 81.12m^2[/tex]
6cii: See Explanation
Step-by-step explanation:
Given
[tex]A = 3p^2[/tex]
[tex]0 \leq p \leq 6[/tex]
Where A represents Area and P represents Width
Required
Solve 6c
Please note that because you only need 6c, I'll solve using calculations;
Solving 6ci:
Area of the cage, when width is 5.2m
Substitute 5.2m for p in[tex]A = 3p^2[/tex]
[tex]A = 3 * 5.2m^2[/tex]
[tex]A = 3 * 27.04m^2[/tex]
[tex]A = 81.12m^2[/tex]
Hence, the area of the cage is 81.12m²
Solving 6cii:
Area of the cage, when width is 40m
From the range of value of p: [tex]0 \leq p \leq 6[/tex], 40m is out of range of the values of p
However, if the range is extended; the value of Area is as follows;
Substitute 40m for p
[tex]A = 3 * 40m^2[/tex]
[tex]A = 3 * 1600m^2[/tex]
[tex]A = 4,800m^2[/tex]
How does the graph of y = a(x – h)2 + k change if the value of h is doubled? The vertex of the graph moves to a point twice as far from the x-axis. The vertex of the graph moves to a point twice as far from the y-axis. The vertex of the graph moves to a point half as far from the x-axis. The vertex of the graph moves to a point half as far from the y-axis.
Answer:
The vertex of the graph moves to a point twice as far from the y-axis.
Step-by-step explanation:
How does the graph of y = a(x – h)2 + k change if the value of h is doubled?
The vertex of the graph moves to a point twice as far from the x-axis.
The vertex of the graph moves to a point twice as far from the y-axis.because the role of h is to indicate the distance of the vertex from the y-axis.
The vertex of the graph moves to a point half as far from the x-axis.
The vertex of the graph moves to a point half as far from the y-axis.
Transformation involves changing the position of a function.
When h is doubled in [tex]\mathbf{y = a(x - h)^2 + k}[/tex], the vertex of the graph moves to a point twice as far from the y-axis.
The function is given as:
[tex]\mathbf{y = a(x - h)^2 + k}[/tex]
When the value of h is doubled, the new function becomes:
[tex]\mathbf{y' = a(x - 2h)^2 + k}[/tex]
Rewrite as:
[tex]\mathbf{y' = a(x - h- h)^2 + k}[/tex]
The above equation means that:
Function y will be translated to the right by h units
Assume the vertex is:
[tex]\mathbf{Vertex = (2,5)}[/tex]
The new vertex will be:
[tex]\mathbf{Vertex = (4,5)}[/tex]
Comparing the vertices, it means that:
The new function will have its vertex twice as far from the y-axis
Hence, option (b) is correct.
Read more about transformation at:
https://brainly.com/question/13801312
DatGuy! Sekkrit! Wishing! Anyone? Find the discriminant of 3x²+5x-2 = 0
Answer:
49
Step-by-step explanation:
[tex]3x^2+5x-2 = 0[/tex]
Apply discriminant formula : [tex]D = b^2- 4ac[/tex]
[tex]D=discriminant\\b=5\\a=3\\c=-2[/tex]
[tex]D = b^2- 4ac[/tex]
Plug in the values for a, b, and c.
[tex]D = 5^2- 4(3)(-2)[/tex]
Evaluate.
[tex]D = 25- 12(-2)[/tex]
[tex]D = 25- - 24[/tex]
[tex]D=25+24[/tex]
[tex]D=49[/tex]
Answer:
49
Step-by-step explanation:
3x²+5x-2 = 0
This is in the form
ax^2 + bx + c=0
a=3 b=5 c = -2
The discriminant is
b^2 -4ac
5^2 -4(3) (-2)
25 + 24
49
The discriminant is 49
This is used for the next few questions: The rating for the new scary movie has a scale of 0 to 10. The average response was that the regular movie attendant enjoyed the movie with 8.3 points and a standard deviation of 0.5 points. What is the percent of people who gave the movie a rating between 6.8 and 8.8? (Write the number as a percent only without a percent sign.)
Answer:
The percentage that of people who gave the movie a rating between 6.8 and 8.8
P(6.8≤X≤8.8) = 83.9≅ 84 percentage
Step-by-step explanation:
Step(i):-
Mean of the Population = 8.3 points
Standard deviation of the Population = 0.5 points
Let 'X' be the random variable in normal distribution
Let X = 6.8
[tex]Z = \frac{x-mean}{S.D} = \frac{6.8-8.3}{0.5} = -3[/tex]
Let X = 8.8
[tex]Z = \frac{x-mean}{S.D} = \frac{8.8-8.3}{0.5} = 1[/tex]
The probability that of people who gave the movie a rating between 6.8 and 8.8
P(6.8≤X≤8.8) = P(-3≤Z≤1)
= P(Z≤1)- P(Z≤-3)
= 0.5 + A(1) - ( 0.5 -A(-3))
= A(1) + A(3) (∵A(-3)=A(3)
= 0.3413 +0.4986 (∵ From Normal table)
= 0.8399
Conclusion:-
The percentage that of people who gave the movie a rating between 6.8 and 8.8
P(6.8≤X≤8.8) = 83.9≅ 84 percentage
Choose the best estimate for the division problem below.
38.064/6.12
A. 9
B. 4.
c. 6
Answer:
c.6
Step-by-step explanation:
I would estimate 6.12 to 6 and 38.064 because I know 36 is a common denominator of 6. 36/6=6
Hope this helps.
find three examples of corporate logos. do they incorporate symmetry? if so, and what kind? your response should be 3-5 sentences long
Answer:
Symmetry is the property of an object to retain its shape even if it is turned or turned.
The three corporate logos are McDonald, Shell, Snapcaht
McDonald company logo is symmetrical and it is a reflective symmetry.
Shell logo is symmetrical and it is also reflective symmetry.
Snaphcat logo is symmetrical and it is also reflective symmetry.
find the slope and y intercept of the line y=7/5x-3 5/7; 3 3; 7/5 7/5;-3 -3; 7/5
Step-by-step explanation:
Equation of a line is y = mx + c
where
m is the slope
c is the y intercept
From the question
y = 7/5x - 3
Comparing with the above formula
Slope / m = 7/5c/ y intercept = - 3Hope this helps you
The value of the slope of the line is 7/5 and the y-intercept is -3
Given the line equation :
y = 7/5x - 3The general form of the equation is :
y = bx + cslope = b ; intercept = cComparing the equations :
b = 7/5 c = -3Hence, the slope and y-intercept are 7/5 and -3
Learn more on slopes :https://brainly.com/question/25987747
#SPJ6
02.06A LC) Which number is not in scientific notation? 02.06A
the answer is (A) you cant have 11 it should be 1.1 x 10^22
The cosine function reaches a value of 0 when x is equal to
Answer:
Step-by-step explanation:
The values of the cosine function are represented by the axis OX of the goniometric circumference (circumference centered at the origin and of radius 1). Therefore the cosine is zero for the 90º and 270º angles.
Find the fraction half way between 1/7 and 1/5
Answer:
6/35
Step-by-step explanation:
add ¹/7+¹/5 =12/35
divide 12/35 by 2
=6/35
For f(x) = 2x + 1 and g(x) = x2 – 7, find (f – g)(x).
Answer:
-x^2 +2x +8
Step-by-step explanation:
f(x) = 2x + 1
g(x) = x^2 – 7,
(f – g)(x) = 2x +1 - ( x^2 -7)
Distribute the minus sign
= 2x+1 - x^2 +7
Combine like terms
= -x^2 +2x +8
Answer:
its not true. Answer is (f + g)(x) = x2 + 2x - 6
Step-by-step explanation:
Trust me. Good luck.
Please answer this in two minutes
Answer:
366.6 mm²
Step-by-step explanation:
Step 1: find XY using the Law of sines.
Thus,
[tex] \frac{XY}{sin(W)} = \frac{WY}{sin(X)} [/tex]
m < W = 180 - (70+43) (sum of angles in a triangle)
W = 180 - 113 = 67°
WY = 24 mm
X = 43°
XY = ?
[tex] \frac{XY}{sin(67)} = \frac{24}{sin(43)} [/tex]
Cross multiply:
[tex] XY*sin(43) = 24*sin(67) [/tex]
[tex] XY*0.68 = 24*0.92 [/tex]
Divide both sides by 0.68 to solve for XY
[tex] \frac{XY*0.68}{0.68} = \frac{24*0.92}{0.68} [/tex]
[tex] XY = 32.47 [/tex]
XY ≈ 32.5 mm
Step 2: find the area using the formula, ½*XY*WY*sin(Y).
Area = ½*32.5*24*sin(70)
Area = ½*32.5*24*0.94
= 32.5*12*0.94
Area = 366.6 mm² (nearest tenth)
|3x+9|= 30
Answer: x=7, -13
Answer:
[tex]\boxed{x=7, \: x=-13}[/tex]
Step-by-step explanation:
[tex]|3x+9|= 30[/tex]
Solve for absolute value.
There are two possibilities.
One possibility:
[tex]3x+9=30\\3x=21\\x=7[/tex]
Second possibility:
[tex]3x+9=-30\\3x=-39\\x=-13[/tex]
Find the missing side length of the right triangle shown. Round to the nearest tenth, if
necessary.
Answer:
? = 26 in
Step-by-step explanation:
Using Pythagoras' identity in the right triangle.
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is
?² = 24² + 10² = 576 + 100 = 676 ( take the square root of both sides )
? = [tex]\sqrt{676}[/tex] = 26
Answer:
26 inch
Step-by-step explanation:
unknown side can be found using Pythagorean theorem
a*a+b*b=c*c
24*24+10*10=c*c
576+100=c*c
√676=c
c=26inche
what is the slope of the line that goes through the points (-1 4) and (14 -2)?
Answer:
Slope is -0.4 or 2/5
Step-by-step explanation:
x , y x^2,y^2
(-1,4) (14,-2)
y^2-y^1/x^2-x^1
-2-4/14-(-1)
-6/15
=-2/5 or -0.4.
Hope this helps. If right pls give me brainliest thank you.
Answer:
it is -2/5
Step-by-step explanation:
Find the value of x.
08*
ος
Ο Α. 58ο
Ο Ο Ο
Ο Β. 32ο
C. 669
D. 68ο
Answer:
x = 66°
Step-by-step explanation:
Hello,
This question involves use of rules or theorems of angles in a right angled triangle
<DAB + <BAC = 180°
Sum of angles on a straight line = 180°
98° + <BAC = 180°
<BAC = 180° - 98°
<BAC = 82°
Now, we can use <BAC to find x because some of angles in a triangle is equal to 180°
32° + 82° + x = 180°
Sum of angles in a triangle = 180°
114° + x = 180°
x = 180° - 114°
x = 66°
Angle x = 66°
PLEASE HELPPPPPP 65 points
Answer:
x + 2y ≤ 12
x + 2y = 12
Step-by-step explanation:
The teachers can not give more than 12 hours of homework so this is the answer. those are the 2 equations you can use. It under 12 hours or equal to 12 hours.
Answer:
Part A: x + 2y ≤ 12.
Part B: y = -1/2x + 6.
Part C: (0, 0).
Step-by-step explanation:
Part A: The total hours of homework have to be 12 hours, and it has to be either 12 hours or less. So, we have ≤ 12.
They take 1 math course with x hours of homework, so in total, that is 1 * x = x hours of math homework.
They take 2 science courses with y hours of homework, so in total, that is 2 * y = 2y hours of science homework.
The inequality would then be x + 2y ≤ 12.
Part B: x + 2y = 12
2y = -x + 12
y = -1/2x + 6
You can use the Math is Fun: Function Grapher and Calculator to find the graph of the line, shown below.
Part C: Since the inequality uses a ≤ symbol, we know that the shading will be underneath the line. An appropriate point below the line includes (0, 0). We will test out whether it works as a point included in the inequality.
x + 2y ≤ 12
0 + 2 * 0 ≤ 12
0 + 0 ≤ 12
0 ≤ 12
Since this is a true statement, (0, 0) holds true for the inequality.
Hope this helps!
Use the screen shot to find the x
Answer:
69
Step-by-step explanation:
A triangle has a 180 degree angle so you do 180-111=69
Answer: x=24
Step-by-step explanation:
lets say 94 is ∠ a
41 is ∠ b
___ ∠ c
111∠ d
x ∠ e
so with that you will figure out that ∠ c is to find X
108-94-41= 45
so ∠ c is 45
now you can ∠a ∠ b∠ c
with that yo take
108-111-45=24
So X=24
In a different plan for area codes the first digit could be any number from 3 through 6 the second digit was either 5,6,7 or 8 and the third digit could be any number except 5. With this plan how many different area codes are possible?
Answer:
144 codes are possible
Step-by-step explanation:
Okay for the first digit, we shall be selecting one out of 3,4,5,6.
Meaning we are selecting one out of four choices
The number of ways this can be done is 4C1 ways = 4 ways
For the second digit, we have 5,6,7 or 8, we are still selecting 1 out of 4 selections and the number of ways we can do this is also 4 ways
And lastly , we can choose any digit for the last number expect 5 , so from 0 to 9, we are removing 1 which means we are left with 9 choices
So the number of different area codes possible are ; 9 * 4 * 4 = 144 codes
Please help me.. I'm very confused about this
Answer:
C
Step-by-step explanation:
1:draw a very simple Cartesian plane for the graph
2:label the quadrants 1-4 from top right round to bottom right as 4
3:then apply x>0 (1,2) is top right and y<0 is bottom right (-1,-2)
find the value of x and y if the distance of the point (x,y) from (-2,0) and (2,0) are both 14 units.
Answer:
[tex] (0, 8\sqrt{3}) [/tex] and [tex] (0, -8\sqrt{3}) [/tex] are both 14 units from points (-2, 0) and (2, 0).
Step-by-step explanation:
distance formula
[tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
We want the distance, d, from points (-2, 0) and (2, 0) to be 14.
Point (-2, 0):
[tex] 14 = \sqrt{(x - (-2))^2 + (y - 0)^2} [/tex]
[tex] \sqrt{(x + 2)^2 + y^2} = 14 [/tex]
Point (2, 0):
[tex] 14 = \sqrt{(x - 2)^2 + (y - 0)^2} [/tex]
[tex] \sqrt{(x - 2)^2 + y^2} = 14 [/tex]
We have a system of equations:
[tex] \sqrt{(x + 2)^2 + y^2} = 14 [/tex]
[tex] \sqrt{(x - 2)^2 + y^2} = 14 [/tex]
Since the right sides of both equations are equal, we set the left sides equal.
[tex] \sqrt{(x + 2)^2 + y^2} = \sqrt{(x - 2)^2 + y^2} [/tex]
Square both sides:
[tex] (x + 2)^2 + y^2 = (x - 2)^2 + y^2 [/tex]
Square the binomials and combine like terms.
[tex] x^2 + 4x + 4 + y^2 = x^2 - 4x + 4 + y^2 [/tex]
[tex] 4x = -4x [/tex]
[tex] 8x = 0 [/tex]
[tex] x = 0 [/tex]
Now we substitute x = 0 in the first equation of the system of equations:
[tex] \sqrt{(x + 2)^2 + y^2} = 14 [/tex]
[tex] \sqrt{(0 + 2)^2 + y^2} = 14 [/tex]
[tex] \sqrt{4 + y^2} = 14 [/tex]
Square both sides.
[tex] y^2 + 4 = 196 [/tex]
[tex] y^2 = 192 [/tex]
[tex] y = \pm \sqrt{192} [/tex]
[tex] y = \pm \sqrt{64 \times 3} [/tex]
[tex] y = \pm 8\sqrt{3} [/tex]
The points are:
[tex] (0, 8\sqrt{3}) [/tex] and [tex] (0, -8\sqrt{3}) [/tex]
There are four inequalities that define the region R.
One of these is y
Find the other three inequalities,
Answer:
[tex]y\geq 0\\y\geq \frac{3}{2}x-3\\ y\leq -x+3[/tex]
Step-by-step explanation:
The region R is surrounded by 4 lines, the first one is y=x+1, the second one is y=0 or the axis x, and the third and fourth one need to be calcualted.
To find the equation of a line through the points (x1,y1) and (x2, y2) we can use the following equation:
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
Then, our third line is going to be the line that passes through the points (2,0) and (4,3), so the equation is:
[tex]y=\frac{3-0}{4-2}(x-2)\\y=\frac{3}{2}x-3[/tex]
Our fourth line is the line that passes through the points (3,0) and (0,3), so the equation is:
[tex]y=\frac{3-0}{0-3}(x-3)\\y=-x+3[/tex]
Then we can say that the other three inequalities are:
[tex]y\geq 0\\y\geq \frac{3}{2}x-3\\ y\leq -x+3[/tex]
What is the result of adding these two equations?
62 + 2y = -2
3x - 2y = -5
Answer:
x = -7/9; y = 4/3.
Step-by-step explanation:
I will assume that the top equation is 6x + 2y = -2, and the bottom one is 3x - 2y = -5.
If you add the two...
(6x + 3x) + (2y + (-2y)) = (-2 + (-5))
9x + 0 = -7
9x = -7
x = -7/9
6(-7/9) + 2y = -2
-42/9 + 2y = -18/9
2y = 24/9
y = 24/18
y = 12/9
y = 4/3
Hope this helps!
If the family decreases the clothing budget by 3 percent, what amount will it have to spend on clothing?
nearest dollar
$266
$466
$645
$665
Answer: $466
Step-by-step explanation:
Answer:
b.$466
Step-by-step explanation:
If a number is added to the numerator of StartFraction 11 Over 36 EndFraction and twice the number is added to the denominator of StartFraction 11 Over 36 EndFraction , the resulting fraction is equivalent to one third . Find the number.
Answer:
The number is 3
Step-by-step explanation:
The fraction is 11/36
let
x = no. added to the numerator
2x = no. added to denominator
We have,
x+11/2x+36=1/3
Cross multiply
3(x+11) = (2x + 36)
3x + 33 = 2x + 36
Collect like terms
3x - 2x = 36 - 33
x=3
The number is 3
Check:
3+11/6+36=1/3
14/42=1/3
Question 1
52 + 2 × (9) + 6 =
Answer:
76Step-by-step explanation:
Use BODMAS rule:
B = Bracket
O = Of
D = Division
M = Multiplication
A = Addition
S = Subtraction
Now, let's Solve,
[tex]52 + 2 \times (9) + 6[/tex]
First, we have to multiply the numbers:
[tex] = 52 + 18 + 6[/tex]
Add the numbers:
[tex] = 76[/tex]
Hope this helps...
Good luck on your assignment...