a disk is wrapped around the disk, is given an acceleration of a = (10t) m/s², where t is in seconds. Starting from rest, determine the angular displacement, angular velocity, and angular acceleration of the disk when t = 3 s. a = (10) m/s 0.5 m

Answers

Answer 1

When t = 3 s, the angular displacement is 1696 radians, the angular velocity is 1130.67 radians/second, and the angular acceleration is 376.89 radians/second².

At what time does the disk reach an angular velocity of 20 rad/s?

To solve this problem, we need to use the equations that relate linear motion and rotational motion.

First, we need to find the radius of the disk. Let's call it "r". We are given that the disk is wrapped around the disk, so we can assume that the length of the string is equal to the circumference of the disk:

C = 2πr = 0.5 m   (given)

Solving for r, we get:

r = 0.5/(2π) = 0.0796 m (approx)

Now, we can use the following equations:

1. Angular displacement: θ = ωi*t + (1/2)*α*t²

2. Angular velocity: ωf = ωi + α*t

3. Angular acceleration: α = a/r

where:

- θ is the angular displacement (in radians)

- ωi is the initial angular velocity (in radians/second)

- ωf is the final angular velocity (in radians/second)

- α is the angular acceleration (in radians/second²)

- a is the linear acceleration (in meters/second²)

- r is the radius of the disk (in meters)

- t is the time (in seconds)

We are given that the linear acceleration is a = 10t m/s². Therefore, the angular acceleration is:

α = a/r = (10t)/(0.0796) = 125.63t  (in radians/second²)

When t = 3 s, the angular acceleration is:

α = 125.63*3 = 376.89 radians/second²

To find the angular velocity and angular displacement, we need to know the initial angular velocity. Since the disk starts from rest, we have:

ωi = 0

Using equation (2), we can find the final angular velocity:

ωf = ωi + α*t = 0 + 376.89*3 = 1130.67 radians/second

Finally, using equation (1), we can find the angular displacement:

θ = ωi*t + (1/2)*α*t² = 0.5*376.89*(3²) = 1696 radians (approx)

When t = 3 s, the angular displacement is 1696 radians, the angular velocity is 1130.67 radians/second, and the angular acceleration is 376.89 radians/second².

Learn more about Angular velocity

brainly.com/question/13943884

#SPJ11


Related Questions

1. Download the spreadsheet TED Talk Activity 4.xlsx. 2. On the ted_main sheet, insert two new columns to the right of the publish date with a title of "film year" and "publish year." 3. Using the "=YEAR()" formula, extract the year from the film and publish dates. 4. Make sure the new columns are formatted as a number with no decimal places. 5. Select all the data that includes the following fields: Film Year, Publish Year, \# Comments, \# Views (million), Length (minutes), Speaker and Title. Using this highlighted data, insert a pivot table on a new sheet in the workbook. 6. Place "Film Year" in the Row data area, and views, comments, and length in the values area. Set the field settings to the following: a. Average number of views b. Sum of number of comments c. Average length 7. Provide answers to the questions asked below. Please see MS Video: Create and Format Pivot Tables and Pivot Charts. What was the total number of comments for all the years? a. 10.78b. 64660c. 14.76d. 66560

Answers

A spreadsheet is a digital tool used for organizing and analyzing data in rows and columns. It can perform mathematical calculations, create graphs and charts, and automate tasks with formulas and functions.

To complete this task, you need to follow the following steps:

1. Go to the website where you can download the spreadsheet TED Talk Activity 4.xlsx.
2. Download the spreadsheet and open it in Excel.
3. Go to the ted_main sheet and insert two new columns to the right of the publish date with the titles "film year" and "publish year."
4. Using the "=YEAR()" formula, extract the year from the film and publish dates in the respective columns.
5. Make sure the new columns are formatted as numbers with no decimal places.
6. Select all the data that includes the following fields: Film Year, Publish Year, # Comments, # Views (million), Length (minutes), Speaker, and Title.
7. Using this highlighted data, insert a pivot table on a new sheet in the workbook.
8. Place "Film Year" in the Row data area and views, comments, and length in the values area.
9. Set the field settings to the following: a. Average number of views b. Sum of the number of comments c. Average length.
10. To answer the question "What was the total number of comments for all the years?", you need to look at the pivot table and find the value in the "Sum of # Comments" column. The answer is d. 66560.
To answer your question, follow these steps:

1. Open the TED Talk Activity 4.xlsx spreadsheet.
2. In the ted_main sheet, insert two new columns to the right of the publish date, naming them "film year" and "publish year."
3. Use the "=YEAR()" formula to extract the year from the film and publish dates and input them in the respective columns.
4. Format the new columns as numbers with no decimal places.
5. Select the data for Film Year, Publish Year, # Comments, # Views (million), Length (minutes), Speaker, and Title. With this highlighted data, insert a pivot table on a new sheet in the workbook.
6. In the pivot table, place "Film Year" in the Row data area, and views, comments, and length in the values area. Set the field settings as follows:
  a. Average number of views
  b. Sum of the number of comments
  c. Average length
7. Examine the pivot table to find the total number of comments for all the years.

Based on the provided answer choices, the correct option is:
d. 66560

To know more about  analyzing data visit:

https://brainly.com/question/30453013

#SPJ11

in part 1 of this lab, you changed the audit policy to record both successful and unsuccessful login attempts. what drawbacks do you foresee when auditing is enabled for both success and failure?

Answers

Enabling auditing for both successful and unsuccessful login attempts can lead to increased log volume.

How can enabling auditing for both successful and unsuccessful login attempts potentially ?

Another potential drawback is that auditing successful logins may reveal sensitive information, such as the identities of users who have access to sensitive systems or data.

This could lead to increased risk if an attacker gains access to the audit logs and uses this information to target specific users or systems.

Moreover, auditing both successful and unsuccessful login attempts can also generate a lot of false-positive events, which can make it difficult to differentiate between actual security threats and harmless events.

This can lead to alert fatigue and make it challenging to identify real threats in a timely manner.

Overall, while auditing both successful and unsuccessful login attempts can provide a comprehensive view of system activity and improve security monitoring.

It is important to balance the benefits of auditing with the potential drawbacks, such as increased storage requirements, potential exposure of sensitive information, and increased false-positive events.

Learn more about Auditing

brainly.com/question/29979411

#SPJ11

A rectangular coil of area 100 cm carrying a current of 10A lies on a plane 2x-y+z=5 such that magnetic moment of the coil is directed away from the origin. This coil is surrounded by a uniform magnetic field âu+za, Wb/m². Calculate the torque of the coil. (50 points]

Answers

The torque acting on the coil is 0.1(âu + za) N.m.

To calculate the torque acting on the rectangular coil, we need to find the magnetic moment and the magnetic field vector.
Step 1: Convert area to m².
Area = 100 cm² = 0.01 m²
Step 2: Calculate the magnetic moment (M).
M = Current × Area
M = 10 A × 0.01 m²
M = 0.1 A.m²
Step 3: Determine the magnetic field vector (B).
B = âu + za
Step 4: Calculate the dot product (M⋅B) of the magnetic moment and the magnetic field vector.
M⋅B = (0.1) (âu + za)
Step 5: Find the angle (θ) between the magnetic moment and the magnetic field vector. Since the magnetic moment is directed away from the origin, θ = 90°.
Step 6: Calculate the torque (τ) acting on the coil.
τ = M × B × sin(θ)
τ = (0.1) (âu + za) × sin(90°)
τ = 0.1(âu + za)
The torque acting on the coil is 0.1(âu + za) N.m.

To know more about magnetic field visit:

https://brainly.com/question/14848188

#SPJ11

 Assuming that v, = 8 cos (2t -40°) V in the circuit of Fig. 11.37, find the average power delivered to each of the passive elements. 152 292 www 0.25 F Figure 11.37 For Prob. 11.5. ell 3H

Answers

The average power delivered to the resistor is 32 W, to the inductor is 1.333 W, and to the capacitor is 0.222 W.

To find the average power delivered to each of the passive elements in the given circuit, we first need to determine the current flowing through each element.

Using Ohm's law, we can find the impedance of each element as follows:

Z(R) = R
Z(L) = jωL = j(2πf)L = j(2π)(50)(3) = j(300π) Ω
Z(C) = 1/jωC = 1/[j(2πf)(0.25×10^-6)] = -j(4π×10^6) Ω

where ω = 2πf is the angular frequency of the source, and f = 50 Hz is the frequency of the source.

Now, we can find the current through each element by dividing the source voltage by the impedance of each element:

I(R) = V/Z(R) = (8 cos(2t - 40°)) / R
I(L) = V/Z(L) = (8 cos(2t - 40°)) / j(300π)
I(C) = V/Z(C) = (8 cos(2t - 40°)) / -j(4π×10^6)

Next, we need to find the instantaneous power delivered to each element:

P(R) = I(R)^2 R = (8 cos(2t - 40°))^2 R / R = 64 cos^2(2t - 40°) W
P(L) = I(L)^2 Re(Z(L)) = (8 cos(2t - 40°))^2 (300π) / (4π^2 + 90000π^2) = (2400/18001) cos^2(2t - 40°) W
P(C) = I(C)^2 Re(Z(C)) = (8 cos(2t - 40°))^2 (4π×10^6) / (16π^2 + 16×10^12) = (4/9) cos^2(2t - 40°) W

where Re() denotes the real part of a complex number.

Finally, we can find the average power delivered to each element by taking the time average of the instantaneous power over one period (T = 1/f):

Pavg(R) = (1/T) ∫(0 to T) P(R) dt = (1/T) ∫(0 to T) 64 cos^2(2t - 40°) dt = 32 W
Pavg(L) = (1/T) ∫(0 to T) P(L) dt = (1/T) ∫(0 to T) (2400/18001) cos^2(2t - 40°) dt = 1.333 W
Pavg(C) = (1/T) ∫(0 to T) P(C) dt = (1/T) ∫(0 to T) (4/9) cos^2(2t - 40°) dt = 0.222 W

To know more about capacitor visit:-

https://brainly.com/question/17176550

#SPJ11

the recursive binary search algorithm always reduces the problem sized by ]

Answers

The recursive binary search algorithm always reduces the problem size by dividing it in half. In other words, it splits the search space into two halves at each step and only continues searching in the half that could potentially contain the target element.

This approach is what makes binary search so efficient, as it allows the algorithm to eliminate large portions of the search space with each step. For example, if the target element is in the second half of the search space, the algorithm can completely ignore the first half and focus only on the second half. This reduces the number of comparisons required to find the target element, leading to a faster search time.The recursion in the binary search algorithm also allows it to continue reducing the problem size until the target element is found or the search space is empty.

At each step, the algorithm checks if the middle element of the current search space is the target element. If it is not, it recursively searches in the half of the search space that could potentially contain the target element, the recursive binary search algorithm's ability to always reduce the problem size by dividing it in half is what makes it such an efficient searching technique.

To know more about  binary,Visit:-

https://brainly.com/question/29740121

#SPJ11

HD wallets use HMAC-SHA512 to take an extended private key and produce another _____

Answers

HD wallets use HMAC-SHA512 to take an extended private key and produce another extended private key, which can then be used to derive a hierarchy of child private and public keys.

This allows for the creation of a large number of unique addresses for receiving and sending cryptocurrency, without the need for a separate private key for each address. The use of hierarchical deterministic keys also provides an added layer of security, as a single master private key can be used to generate all child keys, rather than requiring multiple private keys to be stored and managed. The hierarchical structure of HD wallets makes it easy to manage large numbers of public addresses and to create backups of the private keys. Overall, HD wallets are a powerful tool for managing cryptocurrencies and ensuring their security.

To learn more about private key
https://brainly.com/question/15346474
#SPJ11

Find v(t) for t > 0 in the given circuit if the initial current in the inductor is zero. Assume I = 6u(t) A.The voltage v(t) = [ ]e–t / [ ] V. Fill in the two [ ].

Answers

The voltage v(t) = [9]e[tex]^(^-^t^/^(^2^L^)[/tex]) / [1+12L/9] V for t >

To find the voltage v(t) for t > 0 in the given circuit, we need to analyze the circuit using Kirchhoff's laws and the equations that describe the behavior of the circuit elements.

The circuit consists of a resistor R = 2 Ω, an inductor L = 1 H, and a voltage source V = 6 u(t) V, where u(t) is the unit step function. We can use Kirchhoff's voltage law (KVL) to write an equation for the voltage across the circuit:

V - L di/dt - IR = 0

where i is the current through the circuit and di/dt is the rate of change of the current. Since the initial current in the inductor is zero, we can assume that i(0) = 0.

Taking the derivative of both sides of the equation with respect to time, we get:

d²i/dt² + (R/L) di/dt + (1/L) i = (1/L) (dV/dt)

This is a second-order linear differential equation with constant coefficients. The homogeneous solution is:

i_h(t) = c₁ e[tex]^(^-^t^/^(^2^L^)[/tex]) + c₂ e[tex]^(^-^R^t^/^(^2^L^)[/tex])

where c₁ and c₂ are constants determined by the initial conditions. Since i(0) = 0, we have:

c₁ + c₂ = 0

or

c₁ = -c₂

The particular solution to the non-homogeneous equation is:

i_p(t) = (1/L) ∫(0 to t) e[tex]^(^-^(^t^-^τ^)^/^(2^L^)[/tex]) (dV/dτ) d[tex]^(^-^(^t^-^τ^)^/^(^2^L^)[/tex])

Since V = 6 u(t) V, we have:

(dV/dτ) = 6 δ(t-τ) V/s, where δ(t-τ) is the Dirac delta function.

Substituting this into the expression for i_p(t), we get:

i_p(t) = (6/L) ∫(0 to t) e^(-(t-τ)/(2L)) δ(t-τ) dτ

The integral evaluates to:

i_p(t) = (6/L) e[tex]^(^-^t^/^(^2^L^)[/tex])

The general solution to the non-homogeneous equation is:

i(t) = i_h(t) + i_p(t) = c₁ e[tex]^(^-^t^/^(^2^L^)[/tex]) + c₂ e[tex]^(^-^R^t^/^(^2^L^)[/tex]) + (6/L) e[tex]^(^-^t^/^(^2^L^)[/tex])

Using the initial condition i(0) = 0 and the fact that i(0) = di/dt(0), we can write:

c₁ + c₂ + 6/L = 0

and

-c₁ R/(2L) - c₂/(2L) - 3/L = 0

Solving these equations for c₁ and c₂, we get:

c₁ = 9/2L, c₂ = -9/2L - 6/L

Substituting these values into the expression for i(t), we get:

i(t) = (9/2L) e[tex]^(^-^t^/^(^2^L^)[/tex]) - (9/2L + 6/L) e[tex]^(^-^R^t^/^(^2^L^)[/tex])

Finally, we can use Ohm's law to find the voltage across the resistor:

v(t) = IR = 2i(t) = 9 e[tex]^(^-^t^/^(^2^L^)[/tex]) - (9 + 12L) e[tex]^(^-^R^t^/^(^2^L^)[/tex])

Therefore, the voltage v(t) = [9]e[tex]^(^-^t^/^(^2^L^)[/tex]) / [1+12L/9] V for t >

Learn more about voltage Link in below

brainly.com/question/13592820

#SPJ11

what is the difference between public and private IP addressesa) public IP addresses are unique and can be accessed from anywhere on the internet while private IP addresses are used only within a local networkb) public IP addresses are shorter and easier to remember than private IP addressesc) public IP addresses are always assigned dynamically while private IP addresses can be assigned dymanically or staticallyd) public IP addresses are assigned by internet service providers (ISPs) while private IP addresses are assigned by routers

Answers

The difference between public and private IP addresses is quite extensive, and it requires a long answer to explain. Public IP addresses are unique and can be accessed from anywhere on the internet, while private IP addresses are used only within a local network.

Another difference between public and private IP addresses is their length and ease of memorization. Public IP addresses are usually shorter and easier to remember than private IP addresses, which can be quite lengthy and complicated.

Additionally, public IP addresses are always assigned dynamically, which means that they can change over time. This is because internet service providers (ISPs) assign public IP addresses to devices on their network dynamically, based on availability and need. Private IP addresses, on the other hand, can be assigned dynamically or statically. Dynamic addressing means that the router assigns IP addresses to devices as they connect to the network, while static addressing means that the IP address is manually assigned to a device and remains the same until it is changed.

To know more about IP address visit:-

https://brainly.com/question/16011753

#SPJ11

determine the reaction at the pin o , when the rod swings to the vertical position.

Answers

The tension in the string will be equal to the weight of the mass at the end of the rod, and this will be the reaction force at the pin O.

To determine the reaction at the pin O when the rod swings to the vertical position, we need to consider the forces acting on the rod at that point. Assuming that the rod is of uniform density and negligible weight, the only forces acting on it will be due to the tension in the string and the gravitational force acting on the mass at the end of the rod.

At the vertical position, the tension in the string will be equal to the weight of the mass at the end of the rod. This is because the mass is in equilibrium, and so the forces acting on it must be balanced. Therefore, the tension in the string will be equal to the weight of the mass, which can be calculated as:

Tension = Mass x Gravity

where Mass is the mass of the object at the end of the rod and Gravity is the acceleration due to gravity.

Once we have determined the tension in the string, we can use this to calculate the reaction at the pin O. This is because the pin O is the point at which the rod is supported, and so it will experience a reaction force due to the tension in the string.

To calculate the reaction at the pin O, we need to consider the forces acting on the rod in the horizontal and vertical directions. In the horizontal direction, there will be no forces acting on the rod, since it is moving in a straight line. However, in the vertical direction, there will be two forces acting on the rod: the tension in the string and the gravitational force acting on the mass.

Using Newton's second law, we can write:

Tension - Weight = Mass x Acceleration

where Weight is the gravitational force acting on the mass, and Acceleration is the acceleration of the mass at the end of the rod. Since the mass is in equilibrium, the acceleration will be zero. Therefore, we can rearrange this equation to give:

Tension = Weight

Substituting the expression for tension that we derived earlier, we get:

Mass x Gravity = Weight

Solving for the weight of the mass, we get:

Weight = Mass x Gravity

Substituting this back into the expression for tension, we get:

Tension = Mass x Gravity

Therefore, the tension in the string will be equal to the weight of the mass at the end of the rod, and this will be the reaction force at the pin O.

Know more about the tension click here:

https://brainly.com/question/15880959

#SPJ11

Consider the nonlifting flow over a circular cylinder of a given radius, where V[infinity] = 20 ft/s. If V[infinity] is doubled, that is, V[infinity] = 40 ft/s, does the shape of the streamlines change? Explain.

Answers

The long answer to your question is that the shape of the streamlines over a circular cylinder will indeed change when the free stream velocity (V[infinity]) is doubled from 20 ft/s to 40 ft/s. This is due to the fact that the flow over a circular cylinder is dependent on the ratio of the cylinder diameter to the free stream velocity, known as the Reynolds number (Re).

At lower Reynolds numbers, the flow is typically laminar and the streamlines are smooth and symmetric. As the Reynolds number increases, the flow becomes turbulent and the streamlines become more chaotic and asymmetric. This can lead to changes in the flow patterns, including vortex shedding and wake formation.

In the case of a circular cylinder, the flow is initially laminar at low Reynolds numbers, but transitions to turbulence as the Reynolds number increases. As the free stream velocity is doubled from 20 ft/s to 40 ft/s, the Reynolds number of the flow will increase proportionally, causing the flow to transition to turbulence at a lower cylinder diameter-to-velocity ratio. This means that the shape of the streamlines will change, becoming more chaotic and asymmetric as the flow becomes turbulent at a lower Reynolds number.

To know more about Reynolds number visit:-

https://brainly.com/question/31748021

#SPJ11

Which of these does not have the effect of increasing the hit rate of a cache?
Group of answer choices
Large cache size.
Large physical memory.
Temporal locality.
Spatial locality.

Answers

The option that does not have the effect of increasing the hit rate of a cache is "Large physical memory." Large cache size, temporal locality, and spatial locality all contribute to increasing cache hit rate, whereas large physical memory mainly affects the overall system performance and not the cache hit rate directly.

The answer is "Large physical memory" as it does not have the effect of increasing the hit rate of a cache. While a large physical memory may allow for more data to be stored in the cache, it does not directly impact the hit rate. The hit rate of a cache is influenced by the cache size, as a larger cache size allows for more data to be stored and reduces the likelihood of cache misses. Temporal and spatial locality also affect hit rate, as they refer to patterns in data access that make it more likely for data to be found in the cache.

To know more about cache visit :-

https://brainly.com/question/15276918

#SPJ11

Design of Machinery ed. 4 problem 11-5 Table P11-3 shows kinematic and geometric data for several pin-jointed fourbar linkages of the type and orientation shown in Figure P11-2. All have !1 = 0. The point locations are defined as described in the text. For the row(s) in the table assigned, use the matrix method of Section 11.4 (p. 579) and program MATRIX or a matrix solving calculator to solve for forces and torques at the position shown. You may check your solution by opening the solution files from the DVD named P11-05x (where x is the row letter) into program FOURBA

Answers

To solve for forces and torques in the given pin-jointed fourbar linkages using the matrix method, follow these steps:

1. Refer to the kinematic and geometric data provided in Table P11-3 for the assigned row(s).
2. Review Section 11.4 (p. 579) to understand the matrix method for solving forces and torques in fourbar linkages.
3. Use a matrix solving calculator or program MATRIX to set up and solve the system of equations for forces and torques based on the data and method from steps 1 and 2.
4. Verify your solution by comparing it to the solution files named P11-05x (where x is the row letter) from the DVD using the program FOURBAR.

The matrix method, as described in Section 11.4, allows you to analyze the forces and torques in a fourbar linkage using kinematic and geometric data. By setting up the system of equations in matrix form and solving it, you can determine the forces and torques at the specific position of the linkage. Finally, you can verify your solution using the provided solution files and the FOURBAR program to ensure accuracy.

Learn more about matrix method: https://brainly.com/question/31978592

#SPJ11

(6 pts) using a 74x163 and external gate(s), design a modulo-10 counter circuit with the counting sequence 3,4,5,6,…, 12, 3,4,5,6, …

Answers

The external circuitry ensures that the counter resets to 0011 when it reaches 1101, as desired.

What is the purpose of using a modulo-10 counter circuit?

To design a modulo-10 counter circuit with the counting sequence 3,4,5,6,…, 12, 3,4,5,6, … using a 74x163 and external gate(s), we can follow the below steps:

Determine the binary values that correspond to the decimal numbers 3 to 12. We need at least 4 bits to represent these values. Therefore, we have:

3: 0011

4: 0100

5: 0101

6: 0110

7: 0111

8: 1000

9: 1001

10: 1010

11: 1011

12: 1100

Use the 74x163 counter to count from 0011 to 1100 in binary. We need to connect the appropriate clock and reset inputs to the 74x163 counter based on the counting sequence we desire. Since we want the counter to count from 3 to 12, and then repeat the sequence, we need to reset the counter to 0011 when it reaches 1101 (decimal 13) instead of 1111 (decimal 15). We can do this using an AND gate and an inverter.

The external circuitry required for this counter can be designed using an AND gate and an inverter. The output of the 74x163 counter is connected to the AND gate, along with an inverted signal from the QD output of the counter. The output of the AND gate is connected to the reset input of the 74x163 counter. This circuit ensures that the counter resets to 0011 when it reaches 1101 instead of 1111, as desired.

Below is the schematic diagram of the modulo-10 counter circuit using a 74x163 and external gate(s):

```

        +-----+          +-----+      +-----+

CLK ---> |     |          |     |      |     |

        | 163 |----------| 163 |--/SET| 163 |

     +->|     |          |     |      |     |

     |  |     |          |     |      |     |

     |  +-----+          +-----+      +-----+

     |    |                |            |

     |    |                |            |

     |  +-----+          +-----+      +-----+

     +--|     |          |     |      |     |

        | AND |--+-------| D   |--/SET| 163 |

        |     |  |       |     |      |     |

        |     |  +-------| QD  |      |     |

        +-----+          +-----+      +-----+

                               \_________|

                                          |

                                     +-----+

                                     |     |

                                     | INV |

                                     |     |

                                     +-----+

```

In this circuit, the CLK input is connected to the clock input of the 74x163 counter. The QD output of the counter is connected to the D input of the AND gate, and the inverted QD output is connected to the other input of the AND gate. The output of the AND gate is connected to the /SET input of the 74x163 counter.

With this circuit, the 74x163 counter will count from 0011 to 1100 and then reset to 0011, repeating the sequence. The external circuitry ensures that the counter resets to 0011 when it reaches 1101, as desired.

Learn more about Counter circuit

brainly.com/question/14298065

#SPJ11

the ____ operates like an electric check valve; it permits the current to flow through it in only one direction. a) Transistor. b) Diode. c) triode.

Answers

The diode operates like an electric check valve, allowing the current to flow through it in only one direction. A diode is a semiconductor device with two terminals, known as the anode and cathode. It has a p-type semiconductor material on one side and an n-type on the other side.

The p-side is positively charged and the n-side is negatively charged. When a voltage is applied across the diode in the forward bias direction, the positive voltage applied to the anode attracts electrons from the n-side and allows them to flow to the p-side, creating a current flow. However, when the voltage is applied in the reverse bias direction, the negative voltage applied to the anode repels electrons from the p-side, making it difficult for the current to flow in that direction.

This property of the diode makes it useful in many electronic circuits such as rectifiers, voltage regulators, and signal limiters. Diodes can also be used in conjunction with other electronic components, such as capacitors and resistors, to create more complex circuits that perform a wide range of functions.

Transistors and triodes are also electronic components but do not function as one-way valves for current flow.

Hi! Your question is: "The ____ operates like an electric check valve; it permits the current to flow through it in only one direction." The correct term to fill in the blank is b) Diode.

Your answer: The diode operates like an electric check valve; it permits the current to flow through it in only one direction.

To know more about diode visit:

https://brainly.com/question/13800609

#SPJ11

if a waveform crosses the time axis at 90° ahead of another waveform of the same frequency, it is said to lag by 90°. true or false?

Answers

The statement "If a waveform crosses the time axis at 90° ahead of another waveform of the same frequency, it is said to lag by 90°" is false.

In this case, the waveform that crosses the time axis 90° ahead is actually leading the other waveform by 90°, not lagging.

A waveform is a graphical representation of a signal that shows how it varies with time. It is commonly used in various fields, including physics, electronics, acoustics, and telecommunications, to analyze and understand the characteristics of a signal.

In its simplest form, a waveform can be represented by a sine wave, which is a smooth oscillation that repeats itself over time. However, waveforms can take on many different shapes and patterns depending on the nature of the signal.

To know more about waveform crossing the time axis at different angles, visit the link : https://brainly.com/question/31528930

#SPJ11

The driver section of a shock tube contains He at P4 = 8 atm and T4 = 300 K. Y4 = 1.67. Calculate the maximum strength of the expansion wave formed after removal of the diaphragm (minimum P3/P4) for which the incident expansion wave will remain completely in the driver section.

Answers

We'll use the isentropic relation and the conservation of mass, momentum, and energy across the expansion wave. Given the driver section of a shock tube contains He with P4 = 8 atm, T4 = 300 K, and Y4 = 1.67, we want to find the minimum P3/P4.
Step 1: Write the isentropic relation for helium:
P3/P4 = (T3/T4)^(Y4/(Y4-1))
Step 2: As the expansion wave will remain completely in the driver section, T3 = T4 (no temperature change).
P3/P4 = (T3/T4)^(Y4/(Y4-1)) = (1)^(Y4/(Y4-1))
Step 3: Simplify the expression.
Since any number to the power of 0 is 1, P3/P4 = 1.
So, the minimum value of P3/P4 for which the incident expansion wave will remain completely in the driver section is 1. This means that the pressure in the expanded section (P3) should be equal to the initial pressure (P4) to maintain the incident expansion wave within the driver section.

To know more about mass visit:
https://brainly.com/question/19694949

#SPJ11

The pack() function uses ipadx to force external space horizontally. A. True B. False

Answers

The statement "The pack() function uses ipadx to force external space horizontally" is true. The pack() function is a geometry manager in tkinter that is used to organize widgets in a frame or a window. One of the important features of the pack() function is the ability to control the external space between widgets.

The pack() function provides several options to control the external space between widgets, such as padx, pady, ipadx, and ipady. The padx and pady options are used to add padding around the widgets, whereas the ipadx and ipady options are used to add internal padding between the widget and the outer border. The ipadx option, in particular, is used to force external space horizontally. It specifies the amount of padding to be added to the widget's left and right sides. By increasing the value of ipadx, the widget will occupy more horizontal space, and the surrounding widgets will be pushed further away.

The ipadx option is one of the essential tools provided by the pack() function to control the external space between widgets. By using ipadx, the user can adjust the widget's width and the spacing between the widgets, resulting in a well-organized and visually appealing interface.

To learn more about tkinter, visit:

https://brainly.com/question/30765496

#SPJ11

For each of the following functions indicate the class Θ(g(n)) the function belongs to. (Use the simplest g(n) possible in your answers.) Prove your assertions. a. (n2+1)10 c. 2n lg(n +2)2(n 2)2lg e. [log2n] d. 2"+1+3-1

Answers

a. The function (n^2 + 1)^10 belongs to the class Θ(n^20), because (n^2 + 1)^10 ≤ (n^2)^10 = n^20 for all n ≥ 1, and (n^2 + 1)^10 ≥ (n^2)^10/2 = (n^20)/2 for all n ≥ 2.

b. The function 2^n lg(n + 2)^2/(n^2 lg(n))^2 belongs to the class Θ(2^n), because 2^n lg(n + 2)^2/(n^2 lg(n))^2 ≥ 2^n for all n ≥ 1, and 2^n lg(n + 2)^2/(n^2 lg(n))^2 ≤ 2^(n+2) for all n ≥ 2.

c. The function [log2n] belongs to the class Θ(log n), because [log2n] ≤ log2n ≤ [log2n] + 1 for all n ≥ 1.

d. The function 2^(n+1) + 3^(n-1) belongs to the class Θ(3^n), because 2^(n+1) + 3^(n-1) ≤ 3(3^n)/2 for all n ≥ 1, and 2^(n+1) + 3^(n-1) ≥ 3^n for all n ≥ 3.


For each of the following functions, I will indicate the class Θ(g(n)) the function belongs to and provide a brief proof for each:

a. (n^2+1)^10
The function belongs to Θ(n^20). This is because the highest power of n is the dominating factor, and other terms become insignificant as n grows larger.

b. 2n lg((n+2)^2)(n^2)2lg
Assuming "lg" stands for logarithm base 2, this function belongs to Θ(n^3*log(n)). Here, the main factors are n from 2n and n^2 from (n^2)2lg, multiplied by the logarithmic term lg((n+2)^2), which simplifies to 2*log(n+2) ≈ 2*log(n).

c. [log2n]
This function belongs to Θ(log(n)), since the brackets indicate the integer part of the logarithm, which only marginally affects the growth of the function.

d. 2^(n+1)+3^(n-1)
The function belongs to Θ(3^n), as the exponential term 3^(n-1) dominates the growth of the function compared to 2^(n+1).


To know about function visit:

https://brainly.com/question/12431044

#SPJ11

plot the combined source by adding up the three-phase source as following.(use any plotting tool, ex. wolframalpha) a. cos(t), cos(t-60), cos(t 60) b. cos(t), cos(t-120), cos(t 120)

Answers

To plot the combined source of the given three-phase sources, we can use any plotting tool such as WolframAlpha. We need to add up the three-phase sources by taking into account the phase angle differences between them.

In the first case, the three sources are cos(t), cos(t-60), and cos(t+60). The phase angle difference between the first and second source is -60 degrees, and between the first and third source is +60 degrees. To add them up, we need to convert the angles to radians and use the trigonometric identity of cosine addition. The resultant source will be the sum of the three sources.The same process applies to the second case, where the three sources are cos(t), cos(t-120), and cos(t+120). The phase angle differences are -120 degrees and +120 degrees.After plotting the resultant sources, we can observe the characteristics of three-phase power. Three-phase power provides a constant power supply with fewer voltage fluctuations compared to a single-phase power supply. The three sources are 120 degrees out of phase, and the sum of these sources produces a balanced and continuous waveform. In conclusion, by adding up the three-phase sources with the help of a plotting tool, we can observe the balanced waveform produced by three-phase power. The phase angle differences between the sources determine the final waveform.

For such more question on trigonometric

https://brainly.com/question/24349828

#SPJ11

Create a view called "Flight_Rating_V" that includes the following Employee First and Last Name, Earned rating date, Earned rating name for all employees who earned their rating between Jan 1, 2005 and Jan 15, 2015. Your answer should include both the SQL statement for view created along with the contents of the view (You get the contents of the view by Select * from Flight_Rating_V).

Answers

To create a view called "Flight_Rating_V" that includes the following Employee First and Last Name, Earned rating date, Earned rating name for all employees who earned their rating between Jan 1, 2005 and Jan 15, 2015, the following SQL statement can be used:



CREATE VIEW Flight_Rating_V AS
SELECT Employee.First_Name, Employee.Last_Name, Earned_Rating.Earned_Rating_Date, Earned_Rating.Earned_Rating_Name
FROM Employee
INNER JOIN Earned_Rating ON Employee.Employee_ID = Earned_Rating.Employee_ID
WHERE Earned_Rating.Earned_Rating_Date BETWEEN '2005-01-01' AND '2015-01-15';

The above SQL statement creates a view called "Flight_Rating_V" that joins the "Employee" table with the "Earned_Rating" table on the "Employee_ID" column. The view selects only those records where the "Earned_Rating_Date" falls between Jan 1, 2005, and Jan 15, 2015.

To see the contents of the view, the following SQL statement can be used:

SELECT * FROM Flight_Rating_V;

This will display all the records that fall within the specified date range for all employees who earned their rating. The contents of the view will include the Employee First and Last Name, Earned rating date, and Earned rating name.

For such more question on column

https://brainly.com/question/25740584

#SPJ11

Perform the following operations involving eight-bit 2's complement numbers and indicate whether arithmetic overflow occurs. Check your answers by converting to decimal sign- and-magnitude representation. Correct any overflows encountered in problem 2 through sign extension and performing the addition again. Remember: Only in addition of two positive (two negative) numbers there could be an overflow. Remember: No overflow can happen if you add a positive number with a negative number.

Answers

To properly answer the question, I would need the specific operations and numbers involved in each problem. Please provide the operations and numbers you would like me to perform, and I will assist you in determining whether arithmetic overflow occurs and help you check the results in sign-and-magnitude representation.

learn more about eight-bit 2's complement numbers

https://brainly.com/question/30615444?referrer=searchResults

#SPJ11

A mass-spring system with a damper has mass 0.5 , spring constant 60 /m, and damping coefficient 10 /m. Is the system underdamped, critically damped, or overdamped?

Answers

If a mass-spring system with a damper has mass 0.5 , spring constant 60 /m, and damping coefficient 10 /m, then the system is underdamped.

To determine whether the mass-spring-damper system is underdamped, critically damped, or overdamped, we need to calculate the damping ratio (ζ). This requires the following values:

- Mass (m) = 0.5 kg
- Spring constant (k) = 60 N/m
- Damping coefficient (c) = 10 Ns/m

First, let's find the natural frequency (ωn) of the system:

ωn = √(k/m) = √(60/0.5) = √120 ≈ 10.95 rad/s

Now, we'll calculate the critical damping coefficient (cc):

cc = 2 * m * ωn = 2 * 0.5 * 10.95 ≈ 10.95 Ns/m

With the damping coefficient (c) and critical damping coefficient (cc), we can now calculate the damping ratio (ζ):

ζ = c / cc = 10 / 10.95 ≈ 0.913

Now, we can determine the type of damping:

- If ζ < 1, the system is underdamped.
- If ζ = 1, the system is critically damped.
- If ζ > 1, the system is overdamped.

Since ζ ≈ 0.913, the system is underdamped.

Know more about the damping ratio click here:

https://brainly.com/question/30806842

#SPJ11

The length of a roll of fabric is 40 metres, correct to the nearest half-metre.




A piece of length 8. 7 metres, correct to the nearest 10 centimetres,




is cut from the roll.




Work out the maximum possible length of fabric left on the roll.

Answers

To determine the maximum possible length of fabric left on the roll, we need to consider the rounding errors involved in both measurements. the maximum possible length of fabric left on the roll is 31.60 meters.

First, let's convert the length of the roll to the nearest half-meter. Since the length of the roll is given as 40 meters, correct to the nearest half-meter, we can assume that it is between 39.75 meters and 40.25 meters.

Next, let's consider the piece of fabric that is cut from the roll. Its length is given as 8.7 meters, correct to the nearest 10 centimeters. This means that the actual length of the cut piece can range from 8.65 meters to 8.75 meters.

To find the maximum possible length of fabric left on the roll, we need to subtract the minimum possible length of the cut piece from the maximum possible length of the roll:

Maximum length left = Maximum length of the roll - Minimum length of the cut piece

Maximum length left = 40.25 meters - 8.65 meters

Maximum length left = 31.60 meters

To know more about fabric click the link below:

brainly.com/question/15271246

#SPJ11

When you initialize an array but do not assign values immediately, default values are not automatically assigned to the elements. O True O False

Answers

It is false that when you initialize an array but do not assign values immediately, default values are automatically assigned to the elements.

When you declare and create an array in Java, the elements are assigned default values based on their data type. For example, for integer arrays, the default value is 0; for boolean arrays, the default value is false; and for object arrays, the default value is null. This means that if you create an array but do not assign values to its elements immediately, the elements will still have default values.

When you initialize an array but do not assign values immediately, default values are automatically assigned to the elements based on the data type of the array. For example, in Java, default values for numeric data types are 0, for boolean data types it is false, and for object references, it is null.

To know more about elements visit:-

https://brainly.com/question/29428585

#SPJ11

a balanced load is supplied by a 3-phase generator at a line voltage of 208 v (rms). if the complex power extracted by the load is (8 j4) kva, determine z and the magnitude of the line current.

Answers

The impedance (Z) of the load is approximately 960 - j480 Ω, and the magnitude of the line current is approximately 173 A.

To determine the impedance (Z) and magnitude of the line current in a balanced load supplied by a 3-phase generator with a line voltage of 208 V (rms) and a complex power extracted by the load of (8 + j4) kVA, we'll first calculate the total complex power (S) and then find the line current (I) and impedance (Z).

1. Calculate the total complex power (S):
S = 3 * (8 + j4) kVA = (24 + j12) kVA

2. Convert line voltage to phase voltage (Vp):
Vp = V_line / √3 = 208 V / √3 ≈ 120 V

3. Calculate the phase current (Ip):
Ip = S / (3 * Vp) = (24 + j12) kVA / (3 * 120 V) ≈ (0.1 + j0.05) kA

4. Calculate the magnitude of the line current (I):
I = Ip * √3 ≈ (0.1 + j0.05) kA * √3 ≈ 0.173 kA = 173 A

5. Calculate the impedance (Z):
Z = Vp / Ip ≈ 120 V / (0.1 + j0.05) kA ≈ 960 - j480 Ω

Thus, the impedance (Z) of the load is approximately 960 - j480 Ω, and the magnitude of the line current is approximately 173 A.

To know more about magnitude visit

https://brainly.com/question/31784448

#SPJ11

Remove the gas bulb from the hot water and let it cool down for a few minutes. Look at the piston apparatus. The spherical gas bulb (mounted on the ring stand) is connected to it via plastic tubing. The piston/plunger part itself is virtually air-tight, but there are two pathways for gas to get in or out – through the tubes at the bottom that connect to the two white ports (there may already be something connected to one or two of them via external tubes). Connecting one tube to the pressure sensor will stop gas from flowing past it (and allow monitoring of pressure); turning the blue valve on the other tube will similarly allow (blue knob parallel to tube) or prevent (blue line perpendicular to tube)gas from reaching the gas bulb In our case, we want gas to to flow freely between the gas bulb and the piston, with the pressure sensor tube attached.First disconnect the pressure sensor tube from the piston housing, loosen the piston screw (counterclockwise), and and move the piston to approximately the mid-position of its travel range. While maintaining the plunger's mid-position, re-attach the pressure sensor tube and ensure that the piston stays at roughly mid-position.Predict what will happen to the position of the piston:(i) When the gas bulb is immersed in a hot bath (you can use the hot water in stainless steel bucket)(ii) When the gas bulb is immersed in a cold bath (you can use ice water in white plastic bucket)

Answers

when the gas bulb is immersed in a hot bath, the pressure inside the bulb will increase and cause the piston to move in a certain direction. When the bulb is immersed in a cold bath, the pressure inside the bulb will decrease and cause the piston to move in the opposite direction.


In this experiment, you have a gas bulb connected to a piston apparatus, with a pressure sensor tube attached. The piston is adjusted to its mid-position. Here's what you can expect to happen in each scenario: (i) When the gas bulb is immersed in a hot bath, the gas inside the bulb will heat up, causing it to expand. As a result, the increased pressure will push the piston to move upwards from its mid-position. (ii) When the gas bulb is immersed in a cold bath, the gas inside the bulb will cool down and contract. This will cause a decrease in pressure, leading the piston to move downwards from its mid-position.

To know more about pressure visit :-

https://brainly.com/question/30638002

#SPJ11

determine the composition of the vapor phase, given a liquid phase concentration x1 of 0.26 at the given pressure, and the fraction of vapor and liquid that exit the flash tank.

Answers

To determine the composition of the vapor phase, we need to use the vapor-liquid equilibrium data for the given pressure. We also need to know the mole fraction of the liquid phase component, which is given as x1 = 0.26. With this information, we can use the following steps:

Calculate the mole fraction of the vapor phase component using the vapor-liquid equilibrium data for the given pressure.Calculate the total mole fraction in the flash tank using the vapor and liquid fractions.Use the total mole fraction and the mole fraction of the vapor phase component to calculate the mole fraction of the liquid phase component.Subtract the mole fraction of the liquid phase component from 1 to obtain the mole fraction of the vapor phase component.

We can use the vapor-liquid equilibrium data to determine the mole fraction of the vapor phase component. For example, if the equilibrium data gives a mole fraction of 0.4 for the vapor phase component at the given pressure, then we know that the vapor phase contains 0.4 moles of the vapor phase component for every mole of the total mixture.

The total mole fraction in the flash tank can be calculated using the vapor and liquid fractions. For example, if the flash tank produces a vapor fraction of 0.6 and a liquid fraction of 0.4, then the total mole fraction is:

Total mole fraction = (0.6 * mole fraction of vapor phase component) + (0.4 * mole fraction of liquid phase component)

Using the given liquid phase concentration of x1 = 0.26, we can calculate the mole fraction of the liquid phase component as:

Mole fraction of liquid phase component = x1 / (1 - x1)

Finally, we can calculate the mole fraction of the vapor phase component as : Mole fraction of vapor phase component = 1 - mole fraction of liquid phase component

This will give us the composition of the vapor phase in the flash tank.

To know more about equilibrium: https://brainly.com/question/517289

#SPJ11

658. 5 work hours are required for the third production unit and 615. 7 work hours are required for the fourth production unit. Determine the value of n and s

Answers

The value of n is 3 and the value of s is 615.7 for the fourth production unit.5 work hours are required for the third production unit and 615.

From the given information, it is stated that 658.5 work hours are required for the third production unit and 615.7 work hours are required for the fourth production unit. The value of n represents the production unit number, while the value of s represents the work hours required for that specific production unit. Therefore, for the third production unit, n is 3, and the corresponding work hours required (s) are 658.5. For the fourth production unit, n is 4, and the corresponding work hours required (s) are 615.7. It's important to note that without additional information or context, the values of n and s are specific to the third and fourth production units mentioned.

To know more about unit click the link below:

brainly.com/question/28495377

#SPJ11

Given the following data declarations and code (within main), what is printed to the console window? (Do not include "quotations" or "Press any key to continue", simply write anything printed with WriteString) .data yes no BYTE BYTE "Yes", "No",0 .code MOV EAX, 10 CMP EAX, 11 JE _printYes MOV EDX, OFFSET no JMP _finished _printYes: MOV EDX, OFFSET yes _finished: CALL WriteString

Answers

The program will print "Yes" to the console window. This is because the code compares the value in EAX to 11 and if they are equal, it jumps to the label _printYes.

In this case, EAX contains 10 which is not equal to 11 so it continues to the next line which moves the offset of the string "No" into EDX. The program then jumps to the label _finished and calls the WriteString function with the address in EDX as the parameter. Since EDX contains the offset of the string "Yes", the function will print "Yes" to the console window.

Here's a step-by-step explanation:
1. .data declares two BYTE variables: yes and no, with values "Yes" and "No" respectively.
2. In the .code section, MOV EAX, 10 assigns the value 10 to the EAX register.
3. CMP EAX, 11 compares the value in EAX (10) with 11.
4. JE _printYes checks if the values are equal. If they were, it would jump to _printYes. Since 10 is not equal to 11, the code continues to the next line.
5. MOV EDX, OFFSET no assigns the memory address of the "No" string to the EDX register.
6. JMP _finished jumps to the _finished label, skipping the _printYes section.
7. _finished: CALL WriteString calls the WriteString function with the address of the "No" string in the EDX register.
So, the output is "No".

To know more about code visit:-

https://brainly.com/question/31261966

#SPJ11

Consider a coherent orthogonal MFSK system with M = 8 having the equally likely waveforms si(t) = A cos 2nft; i = 1; ...;M; 0

Answers

In a coherent orthogonal MFSK system with M = 8, the waveforms si(t) are equally likely and can be represented as A cos 2nft for i = 1 to M, where f is the carrier frequency and A is the amplitude. These waveforms are orthogonal to each other, meaning that they have no overlap in time or frequency domains. This property is useful in minimizing interference between different signals in a communication system.

In this system, each waveform represents a specific symbol that can be transmitted over the channel. The receiver can then demodulate the received signal to determine the transmitted symbol. The use of MFSK allows for a higher data rate compared to traditional binary FSK systems.

Overall, the coherent orthogonal MFSK system with M = 8 and equally likely waveforms provides a reliable and efficient means of communication, with the orthogonal nature of the waveforms minimizing interference and maximizing data throughput.

In a coherent orthogonal MFSK (Multiple Frequency Shift Keying) system with M = 8, there are eight equally likely waveforms, denoted as si(t) = A cos(2πnft) for i = 1, 2, ..., M. The waveforms are orthogonal, meaning they are independent and do not interfere with each other. This property allows for efficient communication and reduces the probability of errors in signal transmission.

Coherent detection is used in this system, which means that the receiver has knowledge of the signal's phase and frequency. This helps to maintain the orthogonality of the waveforms and improve the system's performance.

To summarize, a coherent orthogonal MFSK system with M = 8 utilizes eight equally likely and orthogonal waveforms, si(t) = A cos(2πnft), for efficient communication. The system employs coherent detection to maintain the waveforms' orthogonality and enhance its overall performance.

For more information on waveform visit:

brainly.com/question/31528930

#SPJ11

Other Questions
In The Austerity Delusion Prof. Blyth notes that Canada "was able to cut and grow in the 1980s," (a) Use the IS curve to briefly explain this result from the perspective of an austerity supporter (b) Use the IS curve to briefly summarize Prof. Blyth's explanation of Canada's ex (c) What role do unions play in the success of the success of the mechanism you perience. discussed in part 2(b) A 0. 05-kg car starts from rest at a height of 0. 95 m. Assuming no friction, what is the kinetic energy of the car when it reaches the bottom of the hill? (Assume g = 9. 81 m/s2. ). Look at the two speeds you calculated for the Pacific plate. Thesewere for different time periods:. 1.9 Ma to 0.43 Ma. 0.375 Ma to 0 MaPropose a reason why these two calculated speeds are different. Which Sung dynasty innovation most helped sea trade flourish?gunpowderthe compassthe Silk Roadthe Grand Canal Of the four water tests performed in this exercise, which is the least important for determining if water is safe to drink? Explain why.Test 1: PhosphateTest 2: NitrateTest 3: pH TestTest 4: Coliform Bacteria a silicon pn junction at t 300 k with zero applied bias has doping concentrations of nd = 5 x 10 15 cm-3 and Nd = 5 x 1016 cm3. n; = 1.5 x 1010 cm. = 11.7. A reverse-biased voltage of VR = 4 V is applied. Determine (a) Built-in potential Vbi (b) Depletion width Wdep (c) Xn and Xp (d) The maximum electric field Emax N-type P-type Ni N. 0 What angular accleration would you expect would you epxect fom a rotating object? Alex works for an institution that protects members from dangers and exploitation. According to Peterson, hiscompany practices the virtue ofa. safety. b. humanity. c. dignity. d. fairness. lifespan development theory that states the difference between the immature and mature being is simply one of amount or complexity Professor Cupinda performed a field study of employee resistance to computers. She gathered data on many different issues. In her research report, she dismissed information that she thought to be less relevant in explaining employee resistance but which later turned out to be relevant. Which logical error did she commit assume a is 100x10^6 which problem would you solve, the primal or the dual Exercise 10.21. Let Xi,X2,X3,... be i.i.d. Bernoulli trials with success probability p and SkXiXk. Let m< n. Find the conditional probability mass function s , e]k) of Sm, given Sn-k. (a) Identify the distribution by name. Can you give an intuitive explanation for the answer? (b) Use the conditional probability mass function to find E[Sm Sn1 The American Opportunity tax creditA. Is available for years of post-secondary educationB. Is fully refundable een if the credit exceeds tha tax liabilityC. Is available for qualifying expenses paid on behalf of the taxpayer and his or her spouse, in addition to those paid for dependentsD. Is 50 percent of the first $1,200 of tuition and fees paid and 100 percent of the next $1,200 Conditions for monopolistic competition Consider the monopolistically competitive market structure, which has some features of a competitive market and some features of a monopoly. Complete the following table by indicating if each attribute characterizes a competitive market, a monopolistically competitive market, both, or neither. Check all that apply Attributes Competitive Market Monopolistically Competitive Market Product differentiation Price taker Free entry Price equals average total cost in the long run How many grams of matter would have to be totally destroyed to run a 100W lightbulb for 2 year(s)? What major organic product would you expect to obtain when acetic anhydride reacts with each of the following?Note: All structures should be drawn with no bonds to hydrogen atoms.(a) NH3 (excess)Ionic product (draw counterion):Neutral organic product: Calculate the freezing point of a 14.75 m aqueous solution of glucose. Freezing point constants can be found in the list of colligative constants. Acme Computers, a computer store, takes unethical steps to divert the customers of Cyber Goods, an adjacent competing store. Acme may be liable fora. appropriation.b. wrongful interference with a business relationship.c. wrongful interference with a contractual relationship.d. none of the above. Let a belong to a ring R. let S= (x belong R such that ax = 0) show that s is a subring of R A grating with 8000 slits space over 2.54 cm is illuminated by light of a wavelength of 546 nm. What is the angle for the third order maximum? 31.1 degree 15.1 degree 26.3 degree 10.5 degree