a force sensor provides the following voltage outputs for force inputs from 0 to 5 n. what is the sensitivity of this sensor in v/n?

Answers

Answer 1

This question is asking for the sensitivity of a force sensor, which is the voltage output (V) perforce input (N). The force sensor provides the following voltage outputs for force inputs from 0 to 5 N: 0.4 N.


To determine the sensitivity of a force sensor in volts per newton, the following formula may be used: Sensitivity = (Vmax - Vmin) / Fmax - FminWhere: Vmax is the maximum voltage output of the sensor. F max is the maximum force input of the sensor. Vmin is the minimum voltage output of the sensor.

Fmin is the minimum force input of the sensor. The question provides a force sensor's voltage output for force inputs ranging from 0 to 5 N, but the values for Vmax, Vmin, Fmax, and Fmin must be determined before using the formula. The question does not provide these values.

However, the sensitivity can be estimated by selecting the values closest to Vmax, Vmin, Fmax, and Fmin in the data provided. Sensitivity = (1.5 V - 0 V) / 5 N - 0 NSensitivity = 0.4 V/NThe sensitivity of the force sensor is 0.4 V/N.

Read more about voltage :

https://brainly.com/question/1176850

#SPJ11


Related Questions

how long must a 0.70- mm -diameter aluminum wire be to have a 0.42 a current when connected to the terminals of a 1.5 v flashlight battery?

Answers

To determine the length of an aluminum wire required to carry a certain current, one must use the formula: r = (ρL) / (πr²), where r is the radius of the wire, ρ is the resistivity of the wire, and L is the length of the wire is 48.54 m.

What is the length of the wire?

A 0.70 mm diameter aluminum wire has a radius of 0.35 mm or 0.00035 m. The resistivity of aluminum is 2.82 × 10⁻⁸Ωm. The formula for current is:

I = V / R

where, V is voltage, and R is resistance. We can rearrange this to:

R = V / I

Plugging in the given values of 0.42 A and 1.5 V gives R = 3.571 Ω. The resistance of a wire is given by:

R = ρL / A

where, A is the cross-sectional area of the wire, and ρ is its resistivity.

We know the resistivity of aluminum and the radius of the wire, so we can calculate the cross-sectional area of the wire:

A = πr² = 3.1416 × (0.00035 m)² = 3.848 x 10⁻⁷ m². Substituting all the values in the formula for the resistance of the wire and solving for L gives:

L = RA / ρ = (3.571 Ω) × (3.848 x 10⁻⁷ m²) / (2.82 × 10⁻⁸ Ωm) = 48.54 m.

Therefore, the aluminum wire must be 48.54 m long to have a current of 0.42 A when connected to the terminals of a 1.5 V flashlight battery.

Read more about length here:

https://brainly.com/question/28322552

#SPJ11

Suppose you are standing on a skateboard or on in-line skates and you toss a backpack full of heavy books toward your friend. What do you think will happen to
you and why? Explain your answer in terms of Newton's third law of motion.

Answers

Answer: According to Newton's third law of motion, when you toss a backpack full of heavy books towards your friend while standing on a skateboard or in-line skates, there will be an equal and opposite reaction force acting on you, causing you to move in the opposite direction, which may be backward due to the conservation of momentum.

the words on the pages of a textbook and the wave of a hand your friend makes when she sees you on the street are both examples of .

Answers

The words on the pages of a textbook and the wave of a hand your friend makes when she sees you on the street are both examples of physical phenomena.

The words on the pages of a textbook and the wave of a hand your friend makes when she sees you on the street are both examples of physical phenomena. Physical phenomena are observable events or occurrences that can be described using the scientific method. These phenomena can be observed using our senses, such as sight, touch, sound, taste, and smell, or measured using instruments, such as thermometers, scales, or cameras. For example, the wave of a hand is a physical phenomenon because it is an observable event that can be seen and measured. Similarly, the words on the pages of a textbook are physical phenomena because they are observable and can be seen and read.

For more questions related to physical phenomena.

https://brainly.com/question/30827263

#SPJ11

Two large parallel metal plates carry opposite charges. They are separated by 10 cm and p. D of 500 volts is applied on them. What is the magnitude of electric field strength between them? compute the work done by the field on a change of 2x10^-9 as it moves from higher to lower part?

Answers

(a) The magnitude of electric field in the region between the plates is [tex]\mathbf{9 , 2 5 0}$ $\mathrm{V} / \mathrm{m}$.[/tex]

(b) The magnitude of the force the field exerts on a particle with the given charge i[tex]s $2.22 \times 10^{-5} \mathrm{~N}$.[/tex]

(c) The work done by the field on the particle as it moves from the higher potential plate to the lower is[tex]$8.88 \times 10^{-7} \mathrm{~J}$.[/tex]

(d) the change of the potential energy is[tex]$8.88 \times 10^{-7} \mathrm{~J}$.[/tex]

(a) The magnitude of electric field in the region between the plates is calculated as;

[tex]$$\begin{aligned}& E=\frac{V}{d} \\& E=\frac{370}{40 \times 10^{-3}} \\& E=9,250 \mathrm{~V} / \mathrm{m}\end{aligned}$$[/tex]

(b) The magnitude of the force the field exerts on a particle with the given charge is calculated as follows;

[tex]$$\begin{aligned}& F=E q \\& F=9,250 \times 2.4 \times 10^{-9} \\& F=2.22 \times 10^{-5} \mathrm{~N}\end{aligned}$$[/tex]

(c) The work done by the field on the particle as it moves from the higher potential plate to the lower is calculated as follows;

[tex]$$\begin{aligned}& W=F d \\& W=2.22 \times 10^{-5} \times 40 \times 10^{-3} \\& W=8.88 \times 10^{-7} \mathrm{~J}\end{aligned}$$[/tex]

(d) the change of the potential energy is calculated as;

[tex]$$\begin{aligned}& \Delta U=q \Delta V \\& \Delta U=q\left(V_1-V_2\right)\end{aligned}$$$$\text { DeltaU }=2.4 \times 10^{-9}(370)$$$$\Delta U=8.88 \times 10^{-7} \mathrm{~J}$$[/tex]

Learn more about electric field

https://brainly.com/question/15170044

#SPJ4

Full Question: Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a distance of 40.0 mm, and the potential difference between them is 370 V

A. What is the magnitude of the electric field (assumed to be uniform) in the region between the plates?

B. What is the magnitude of the force this field exerts on a particle with a charge of 2.40 nC ?

C. Use the results of part (b) to compute the work done by the field on the particle as it moves from the higher-potential plate to the lower.

D. Compare the result of part (c) to the change of potential energy of the same charge, computed from the electric potential.

what is the equation to find the equivalent resistance, req, of two resistors in series, r1 and r2? group of answer choices

Answers

The equivalent resistance of resistors in series is always greater than the individual resistances. This is because the total resistance of the circuit is the sum of the resistances, and therefore the electric current has to overcome more resistance to flow through the circuit as compared to when a single resistor is used.

To find the equivalent resistance, req, of two resistors in series, r1 and r2, the following equation is used:

Req = R1 + R2

Where Req is the equivalent resistance of the series circuit,

R1 is the resistance of the first resistor,

R2 is the resistance of the second resistor.

Resistors in a circuit are the components that oppose the flow of electric current. When two resistors are connected in series, they are connected end to end so that the electric current flows through one resistor before flowing through the second one.In a series circuit, the equivalent resistance, req, is calculated as the sum of the individual resistances of the resistors connected in series.

Therefore, to find the equivalent resistance of two resistors in series, R1 and R2, we add the resistance values of the two resistors, as shown in the formula above.

for such more question on equivalent resistance

https://brainly.com/question/1851488

#SPJ11

a 30kg mass is placed on a 15cm spring and compressed to 12cm how much work is required to compress spring from 12cm to 10 cm

Answers

The final answer are work required to compress the spring from 12 cm to 10 cm is 19.6 J.

The spring's energy and the work it does are both proportional to the amount it stretches or compresses. According to Hooke's Law, the force needed to stretch or compress a spring is proportional to the amount it is stretched or compressed.

Given the spring constant and the total energy stored in the spring, one may figure out how much energy is necessary to compress the spring from a particular point to another using this method. What is the work required to compress the spring from 12 cm to 10 cm?

The work required to compress the spring from 12 cm to 10 cm is calculated using the following formula; W=1/2 k (x_2^2 - x_1^2) where W is the work done by the spring ,k is the spring constant,x1 is the initial position, andx2 is the final position.

Determine the spring constant using the formula, F=kx k=\frac{F}{x}k=\frac{mg}{x} k=\frac{30*9.8}{0.15} k=1960\ N/m Since the spring is being compressed, the value of x2 is smaller than x1.

To find the value of work done by the spring when compressed from x1 to x2, the difference between the potential energies corresponding to these positions is taken.

Thus, the work done by the spring is: W=1/2 k (x_2^2 - x_1^2) W=1/2 (1960) (0.12^2 - 0.10^2) W=19.6\ J

Thus, the work required to compress the spring from 12 cm to 10 cm is 19.6 J.

To know more about spring refer here:

https://brainly.com/question/14670501#

#SPJ11

which is the correct unit to represent time?

d) 7m
b) 7m/h
c) 7 s

Answers

c) is the correct unit to represent time

Which traits are controlled by polygenic inheritance? Select four options.
red hair
hazel eyes
blood type
length of corn ears
birth weight
fur color of palomino horses

Answers

Answer:

All options except fur color of palomino horses and blood type

Answer:

A, B, D, and E

Explanation:

in august of 2006, the iau (international astronomical union) published an official definition what it means to be a planet. what criteria is needed for that classification? why is pluto no longer considered a full fledged planet?

Answers

In August of 2006, the International Astronomical Union (IAU) published an official definition of what it means to be a planet.

The criteria required for that classification are:

The object must be in orbit around the sun.The object must be spherical or nearly spherical.The object must have cleared the neighborhood around its orbit.

Pluto is no longer considered a full-fledged planet because it has not satisfied the third condition mentioned above. According to the IAU, Pluto has not cleared the neighborhood around its orbit.

That is, Pluto shares its orbit with numerous other objects in the Kuiper Belt region and therefore does not have a clear path around the sun. This led to the IAU redefining Pluto as a dwarf planet in 2006, which means that it is still classified as a planet but is no longer considered a full-fledged planet.

For more question on International Astronomical Union click on

https://brainly.com/question/13015020

#SPJ11

Jack and Jill are maneuvering a 3200 kg boat near a dock. Initially the boat's position is <2, 0, 3> m and its speed is 1.6 m/s. As the boat moves to position <6, 0, 1> m, Jack exerts a force of <-440, 0, 220> N, and Jill exerts a force of <150, 0, 300> N.
How much work does Jack do?
WJack = J
How much work does Jill do?
WJill = 0 J (correct)
What is the final speed of the boat?
vf = m/s

Answers

Jack does -1967.4 J of work on the boat.

There are four steps to get the final value:

First, we can use the work-energy principle

This states that the net work done on an object is equal to its change in kinetic energy.

We can also use Newton's second law, which relates the net force on an object to its acceleration:

F = ma

where F is the net force acting on the boat,

m is its mass, and

a is its acceleration.

To calculate the net force, we need to add up the individual forces exerted by Jack and Jill:

F= Fjack+ Fjill

where Fjack is the force exerted by Jack, and Fjill is the force exerted by Jill.

The net force can be calculated as:

F = <-440, 0, 220> + <150, 0, 300>

  = <-290, 0, 520> N

Second, The boat's acceleration can be calculated using Newton's second law:

F= ma

a = F / m

a = <-290, 0, 520>  / 3200

a = <-0.0906, 0, 0.1625> m/s^2

Third, The boat's final velocity can be calculated using its initial velocity, its acceleration, and the displacement:

vf^2 = vi^2 + 2ad

where vi is the initial velocity,

a is the acceleration,

d is the displacement, and

vf is the final velocity.

The displacement can be calculated as:

d = |<6, 0, 1>  - <2, 0, 3>

  = |<4, 0, -2>

  = sqrt(4^2 + 0^2 + (-2)^2)

  = 4.47 m

Plugging in the values, we get:

vf^2 = (1.6 )^2 + 2 * (-0.0906 ) * 4.47

= 1.89

= 1.37 m/s

Therefore, the final speed of the boat is 1.37 m/s.

Fourth, To calculate the work done by Jack, we can use the formula:

W = F * d

where F is the force exerted by Jack, and

d is the displacement of the boat.

Plugging in the values:

W = <-440, 0, 220>  * 4.47

W = -1967.4 J

Therefore, Jack does -1967.4 J of work on the boat.

For more reference to work done please refer to:

https://brainly.com/question/13662169

Two loud speakers are 1.60 m apart. A person stands 3.00 m from one speaker and 3.50 m from other speaker.
What is the lowest frequency at which destructive interference will occur at this point if the speakers are in phase?

Answers

Answer:

f = 343 Hz

Step by step explanation:

For destructive interference to occur, the sound waves from the two speakers must be out of phase by half a wavelength. This means that the path difference between the two waves must be an odd multiple of half the wavelength.

In this case, the path difference between the two waves is given by:
Δx = d₂ - d₁
where d₂ is the distance from the second speaker to the person, and d₁ is the distance from the first speaker to the person.

Substituting the given values, we get:
Δx = 3.5 m - 3.0 m
Δx = 0.5 m

For destructive interference to occur, the path difference must be an odd multiple of half the wavelength, i.e.:
Δx = (2n + 1)λ/2
where n is an integer.

Solving for the wavelength, we get:
λ = 2Δx/(2n + 1)

The lowest frequency occurs when n is the smallest possible value, i.e. n = 0. Substituting this value, we get:
λ = 2Δx/1
λ = 2(0.5 m)
λ = 1.00 m

The frequency of the sound wave is given by:
f = c/λ
where c is the speed of sound in air (approximately 343 m/s).

Substituting the values, we get:
f = 343 m/s/1.00 m
f = 343 Hz

Therefore, the lowest frequency at which destructive interference will occur at the given point is 343 Hz.

a ball is thrown upward from the ground with an initial speed of 35 m/s; at the same instant, another ball is dropped from a building 5.0 m high. after how long will the balls be at the same height?

Answers

The time taken by both balls to be at the same height is 1.02 seconds.

The time taken by two balls to be at the same heightGiven,Initial speed of the ball that is thrown upward from the ground, u = 35 m/s,Initial height of the ball that is dropped from a building, h = 5.0 m,Finding out the time taken by both balls to be at the same height,Time taken by ball that is thrown upward from the ground, t = ?

For the first ball (that is thrown upward from the ground), the acceleration, a = -9.8 m/s² (negative because it's going against the gravity).Using the formula of motion,S = ut + 1/2 at²where,S = height of the ball above the ground, t = time taken by the ball to reach that height, and u = initial speed of the ball that is thrown upward from the ground.

Here, h = S and u = 35 m/s, and a = -9.8 m/s². Then putting the values we get,h = ut + 1/2 at²5 = (35)t + 1/2 (-9.8)t²5 = 35t - 4.9t²----------------(1)Also, for the second ball (that is dropped from a building), the time taken to reach the ground can be found using the formula, h = 1/2gt². Here, h = 5.0 m.

Therefore,5 = 1/2 × (-9.8) × t²5 = -4.9t²t² = -5/-4.9t² = 1.02t = √1.02

Therefore, the time taken by both balls to be at the same height is 1.02 seconds.

Learn more about Speed

brainly.com/question/17661499

#SPJ11

g what is the relationship between the wavelength of light, its color, and the energy of its photons?

Answers

Shorter wavelengths of light correspond to higher frequencies, and higher frequencies of light correspond to more energy in the photons. This means that the color of light is related to the energy of its photons: the higher the frequency of light, the higher the energy of its photons and the closer the color is to the blue end of the visible light spectrum.

The relationship between the wavelength of light, its color, and the energy of its photons is as follows:

The energy of a photon is directly proportional to its frequency and inversely proportional to its wavelength. In simpler terms, the shorter the wavelength of light, the greater the energy of its photons, while the longer the wavelength of light, the less energy its photons possess. The relationship between the wavelength of light and its color is also direct in that different colors are a result of light waves of different wavelengths.

The color spectrum ranges from red (longest wavelength) to violet (shortest wavelength), with colors in between, such as orange, yellow, green, blue, and indigo. This spectrum represents the visible part of the electromagnetic spectrum, with ultraviolet and infrared light having shorter and longer wavelengths, respectively. The energy of photons from these parts of the spectrum follows the same pattern as visible light, with ultraviolet photons possessing more energy than visible light photons and infrared photons possessing less energy than visible light photons.

For more such questions on wavelengths , Visit:

https://brainly.com/question/10728818

#SPJ11

how much water should be taken up by a plant when the air around it is completely saturated with water - 100 percent humidity.

Answers

The amount of water that a plant should take up when the air around it is completely saturated with water, i.e. 100 percent humidity, is the maximum amount of water the plant is capable of taking up from the environment. This is because there is no water left in the air for the plant to absorb.

What is humidity?

Humidity refers to the amount of moisture present in the air. The humidity in the air is an important factor for the growth of plants. Humidity refers to the amount of moisture present in the air. The humidity in the air is an important factor for the growth of plants. In addition, the amount of water vapor present in the air determines how much water a plant can take up. As a result, humidity can play an important role in plant water uptake.

When the air around the plant is completely saturated with water, it means that the air has reached its maximum capacity for water vapor. The relative humidity, in this case, is 100%. When the air is completely saturated with water, it becomes difficult for the plant to take up any more water from the environment, as there is no water left in the air to absorb.

Therefore, the amount of water that a plant can take up is limited by the amount of water vapor present in the air.

Read more about water :

https://brainly.com/question/1313076

#SPJ11

a 25 kg iron block that is initially at 350 c is dropped into an insulated tank that contains 100 kg of water at 18 c. no water changes phase or leaves the tank in the process. determine the total entropy change during this process. the cp,water

Answers

The total entropy change during this process is, -16.4 J/°C.

To determine the total entropy change during this process, we need to consider both the entropy change of the iron block and the entropy change of the water in the tank. We can assume that the entire process is adiabatic (i.e., no heat transfer occurs between the system and the surroundings), so the total entropy change of the system is zero.

The entropy change of the iron block can be calculated as,

ΔS_iron = m × Cp_iron × ln(T_f / T_i)

where m is the mass of the iron block, Cp_iron is the specific heat capacity of iron, T_f is the final temperature of the iron block, and T_i is the initial temperature of the iron block.

Assuming that the final temperature of the iron block is the same as the temperature of the water in the tank (i.e., 18°C), we can calculate the entropy change of the iron block as,

ΔS_iron = 25 kg × 0.45 J/g°C × ln(18°C / 350°C)

≈ -16.4 J/°C

The entropy change of the water in the tank can be calculated as,

ΔS_water = m × Cp_water × ln(T_f / T_i)

where m is the mass of the water in the tank, Cp_water is the specific heat capacity of water, T_f is the final temperature of the water, and T_i is the initial temperature of the water.

Assuming that the iron block and the water reach a final temperature of 18°C, we can calculate the entropy change of the water as,

ΔS_water = 100 kg × 4.18 J/g°C × ln(18°C / 18°C)

= 0 J/°C

Therefore, the total entropy change during this process is,

ΔS_total = ΔS_iron + ΔS_water

≈ -16.4 J/°C + 0 J/°C

≈ -16.4 J/°C

To know more about entropy change, here

brainly.com/question/29485944

#SPJ4

6. object x of mass m travels toward object y of mass 2m in such a way that they collide. the table contains data about the velocities of object x and object y immediately before the collision and immediately after the collision. what are the change in momentum of the two-object system from immediately before the collision to immediately after the collision?

Answers

The change in momentum of the two-object system from immediately before the collision to immediately after the collision is m(v-V) + 2m(V-v).

The change in momentum of the two-object system from immediately before the collision to immediately after the collision can be determined using the following equation:

Change in Momentum = Final Momentum - Initial Momentum.

The initial momentum of object x is given by the formula: Mass x Velocity = mv, where m is the mass of object x and v is the velocity of object x immediately before the collision. The initial momentum of object y is given by 2mv, where 2m is the mass of object y and v is the velocity of object y immediately before the collision. The final momentum of object x is given by m(v-V) where m is the mass of object x, v is the velocity of object x immediately before the collision and V is the velocity of object x immediately after the collision. The final momentum of object y is given by 2m(V-v) where 2m is the mass of object y, V is the velocity of object y immediately after the collision and v is the velocity of object y immediately before the collision. The change in momentum = m(v-V) + 2m(V-v).

Therefore, the change in momentum of the two-object system from immediately before the collision to immediately after the collision is given by m(v-V) + 2m(V-v).

To know more about change in momentum click here:

https://brainly.com/question/30157362

#SPJ11

The formula for speed is Total Distance / Total Time. Based on the data table below, what is the
average speed after 2 minutes? Please show all calculations.
Time (min.) Distance (m)
0
1
2
3
0
50
75
90

Answers

Answer:

To find the average speed after 2 minutes, we need to calculate the total distance covered in 2 minutes and divide it by 2.

Total Distance after 2 minutes = 75m

Total Time after 2 minutes = 2 minutes

Average Speed after 2 minutes = Total Distance / Total Time

Average Speed after 2 minutes = 75m / 2 min = 37.5 m/min

Therefore, the average speed after 2 minutes is 37.5 m/min.

I Hope This Helps!

CQ6.07 Given: L = 26 mH (milli H) The inductor current i changes 9.1 A/ms (Amps per milli sec) for a short while. What is the voltage across the inductor during this period? VL = ?? V

Answers

The voltage across the inductor during the period when the current changes at 9.1 A/ms with an inductance of 26 mH is 236.6 V.

An inductor is an electrical component that stores energy in a magnetic field when a current passes through it. An inductor is a device that opposes any change in the current flowing through it. The inductor is represented by the symbol L and is measured in henries (H).

The difference in electrical potential between two points in a circuit is known as voltage. The unit of voltage is volts (V).

The voltage across an inductor can be calculated using the formula:

[tex]v = L(di/dt)[/tex]

where v is the voltage, L is the inductance, and [tex]di/dt[/tex] is the rate of change of current.

Substituting the given values, we get:

[tex]v = 26\  mH \times (9.1 \ A/ms)[/tex]

Note that the units for inductance and rate of change of current must be consistent, so we convert the inductance to henries (H) and the rate of change of current to amps per second (A/s):

[tex]v = 0.026\  H \times (9100 \ A/s)[/tex]

[tex]v = 236.6 \ V[/tex]

Therefore, the voltage across the inductor during this period is 236.6 V.

Learn more about inductance:

https://brainly.com/question/30216563

#SPJ11

c) the rubber band is stretched under a constant tension. will it shrink when you warm the rubber band under the constant tension? do your analysis.

Answers

c) The rubber band is stretched under a constant tension. when you warm the rubber band under the constant tension it will expand instead of shrinking.

If you warm the rubber band while keeping it under constant tension, it will expand instead of shrinking. This occurs due to the fact that the rubber band's atoms begin to vibrate more as a result of the heat. This vibrating motion produces more space between the atoms, causing the rubber band to expand.

The original condition of the rubber band under constant tension is when a rubber band is stretched, it has an intrinsic tendency to restore its original size and shape when the tension is released. It implies that if the rubber band is heated, it will also restore its original size and shape once the tension is released. It will take the same size as it had before being stretched.

Learn more about vibrating motion at:

https://brainly.com/question/28040762

#SPJ11

the space station rotates in order to simulate earth's gravity - so that the normal force on an astronaut at the outer edge would be the astronaut's weight on earth. what is the period of the rotation, t (time for one complete revolution) needed to achieve this?

Answers

The space station rotates in order to simulate earth's gravity so that the normal force on an astronaut at the outer edge would be the astronaut's weight on earth. The period of rotation needed to achieve this is: 29.27 minutes

The Space Station is a microgravity environment that is constantly in freefall around the Earth, but it is not affected by gravity. As a result, the astronauts in the Space Station float and move around in the Station. However, by rotating the Space Station, a simulated gravity effect can be created that is comparable to gravity on Earth.

This is due to the centrifugal force that is generated as a result of the rotation. The period of rotation required to generate the required centrifugal force can be calculated.

The centrifugal force generated by the rotation of the Space Station is equal to the force of gravity acting on the astronauts on Earth. Therefore, the formula used to calculate the period of rotation is given:
T = 2π √(R/g)

Where T is the period of rotation, R is the radius of the Space Station, and g is the acceleration due to gravity on Earth. The value of g is 9.8m/s², and the radius of the Space Station is approximately 420 kilometers.
T = 2π √(420,000 / 9.8)
T = 1,756.22 seconds

The period of rotation of the Space Station required to generate a centrifugal force equivalent to the force of gravity on Earth is approximately 1,756.22 seconds or approximately 29.27 minutes.

To know more about gravity refer here:

https://brainly.com/question/14874038#

#SPJ11

What type of element gains electrons in ionic bonding, and what type of charge will it create?

Answers

Explanation:

Nonmetals tend to gain electrons and become anions. For example, in Fig. 2.22 A, a neutral oxygen atom (O), with eight protons and eight electrons, gains two electrons. This gives it two more negative charges than positive charges and an overall charge of 2–.

how does the volume change when you increase the length of the side from 1 cm to 2 cm, to 3 cm, and then to 4 cm?

Answers

The final answer length of the side changes from 2 cm to 3 cm, the volume increases by a factor of 3.375 (27 divided by 8). And when the length of the side changes from 3 cm to 4 cm, the volume increases by a factor of 2.37 (64 divided by 27).

The volume of a cube changes when you increase the length of the side from 1 cm to 2 cm, to 3 cm, and then to 4 cm. A cube is a three-dimensional shape with six identical square faces. When all the faces of a cube are equal in length, it is referred to as a square cube.

Each edge of a cube is the same length, so we can figure out the volume of a cube by multiplying the length, width, and height together.

The volume of a cube is given by V = s^3, where s is the length of one edge of the cube. The volume changes as the length of the side changes. Here's how it changes as the side length increases from 1 cm to 4 cm:

When s = 1 cm, V = 1^3 = 1 cm³
When s = 2 cm, V = 2^3 = 8 cm³
When s = 3 cm, V = 3^3 = 27 cm³
When s = 4 cm, V = 4^3 = 64 cm³

We can see that as the length of the side of the cube increases, the volume increases rapidly. The volume of the cube grows much faster than the length of one of its sides. For example, when the length of the side changes from 1 cm to 2 cm, the volume increases by a factor of 8.

When the length of the side changes from 2 cm to 3 cm, the volume increases by a factor of 3.375 (27 divided by 8). And when the length of the side changes from 3 cm to 4 cm, the volume increases by a factor of 2.37 (64 divided by 27).

To know more about volume refer here:

https://brainly.com/question/13191643#

#SPJ11

how much thermal energy in calories is absorbed by 750.0g of water when its temperature increases from 15.4c t 86.3c

Answers

750.0 g of water at a temperature of 15.4°C will absorb 9,117.2 calories of thermal energy to increase its temperature to 86.3°C. This can be calculated by using the specific heat formula:
Q = m * c * ΔT
where:

Q = thermal energy (calories)

m = mass of water (g)

c = specific heat (calories/g°C)

ΔT = change in temperature (°C)

Therefore:
Q = 750.0 g * 4.184 calories/g°C * (86.3°C - 15.4°C)
Q = 9,117.2 calories
Thermal energy is the energy generated in the form of heat. It is a type of kinetic energy that is produced by moving particles that makeup matter. The movement of molecules generates heat energy in the form of kinetic energy. The faster the molecules move, the more thermal energy is generated.

Read more about the topic of thermal energy:

https://brainly.com/question/19666326

#SPJ11

discuss the shape of the voltage and current waveforms. which appears more sinusoidal and why would you expect it to be that way?

Answers

The voltage waveform is more sinusoidal than the current waveform.

This is because the voltage source is assumed to be an ideal source, which means that the voltage is supplied without loss or fluctuation while the current waveform is distorted due to the loads present in the circuit. When a voltage waveform is applied to a circuit with inductance and capacitance, the resulting current waveform will be distorted and will not be sinusoidal. The current waveform is affected by the presence of capacitance and inductance in the circuit, which cause the current to lag behind the voltage. The current waveform becomes more distorted as the load resistance increases.

More on voltage and current waveform: https://brainly.com/question/30054547

#SPJ11

a 4.0 kg body has two times the kinetic energy of an 8.5 kg body. calculate the ratio of the speeds of these bodies.

Answers

The ratio of the speeds of these bodies is 2.06

The kinetic energy of an object is equal to 1/2mv^2.
For the 4.0 kg body, the kinetic energy is 1/2 (4.0 kg)v^2
For the 8.5 kg body, the kinetic energy is 1/2 (8.5 kg)u^2

Given that the kinetic energy of the 4.0 kg body is twice the kinetic energy of the 8.5 kg body, we can set up the following equation:

1/2 (4.0 kg)v^2 = 2 * (1/2 (8.5 kg)u^2)

Simplifying the equation, we have:

2 (4.0 kg)v^2 = (8.5 kg)u^2

Solving for the ratio of the speeds, we get:

v^2/u^2 = (8.5 kg)/(2 (4.0 kg)) = 4.25

Therefore, the ratio of the speeds of the two bodies is equal to the square root of 4.25, which is approximately equal to 2.06.

So, the 4.0 kg body is moving at approximately 2.06 times the speed of the 8.5 kg body.

To know more about kinetic energy click here:

https://brainly.com/question/999862

#SPJ11

a ball with a mass of 2.20 kg is moving with velocity (6.60i-2.40j) m/s. find the net work on the ball if its velocity changes to (8i 4.00j)m/s

Answers

The net work on the ball if its velocity changes to (8i 4.00j)m/s is 27.60 Joules.

Using the work-energy principle, we know that the net work done on the ball is equal to the change in its kinetic energy.

To find the change in kinetic energy, we need to calculate the ball's final velocity and its initial velocity, and then use the formula:

Change in Kinetic Energy = (1/2) x mass x (final velocity)² - (1/2) x mass x (initial velocity)²

The net work done on the ball is 27.60 Joules.

So, when the ball changes its velocity from (6.60i-2.40j) m/s to (8i+4.00j) m/s, the net work done on it is 27.60 Joules.

To practice more questions about 'net work done':

https://brainly.com/question/30668135

#SPJ11

a 60 kg dancer applies a horizontal force of -800 n on the dance floor. the dancer's acceleration will be

Answers

The acceleration of the dancer who applies a horizontal force of -800 N on the dance floor will be 13.33 m/s².

The formula used to calculate acceleration is as follows:F = m × a

where,F is the force,m is the mass, and,a is the acceleration

Substituting the given values in the above formula, we get:

-800 N = 60 kg × a

We can solve this equation for a, which will give us the acceleration of the dancer.

a = (-800 N) / (60 kg) = -13.33 m/s²

Therefore, the acceleration of the dancer will be 13.33 m/s².

To learn more about acceleration:

https://brainly.com/question/12550364#
#SPJ11

Seventh grade QQ.4 Commas with coordinate adjectives 5L5
Insert one comma to separate the coordinate adjectives.
Typical golf caddie responsibilities include carrying clubs, cleaning balls,
calculating distances and scores, and even replacing the divots-pieces of
grass and dirt that have been cut loose by the swift forceful strikes of golf
clubs.

Answers

Answer:

Typical golf caddie responsibilities include carrying clubs, cleaning balls,

calculating distances and scores, and even replacing the divots - pieces of

grass and dirt that have been cut loose by the swift, forceful strikes of golf

clubs.

which has a greater (magnitude of) linear momentum: a 1000 kg truck moving at 30 mph, or a 500 kg car moving at 60 mph?

Answers

Answer : A 1000 kg truck moving at 30 mph has a greater magnitude of linear momentum than a 500 kg car moving at 60 mph, due to the larger mass of the truck and the lower velocity of the truck.

The magnitude of linear momentum for an object is equal to the product of its mass and velocity. Therefore, a 1000 kg truck moving at 30 mph has a linear momentum of 30,000 kg-m/s, while a 500 kg car moving at 60 mph has a linear momentum of 30,000 kg-m/s as well. As the magnitudes of linear momentum for both the truck and car are equal, the truck has a greater linear momentum than the car.

This is because the truck has a larger mass than the car and is moving at a lower velocity. In other words, the higher mass of the truck counteracts its lower velocity, resulting in an overall greater linear momentum. This can be illustrated with the equation p = mv, where p is linear momentum, m is mass, and v is velocity.

Know more about linear momentum here:

https://brainly.com/question/27988315

#SPJ11

calculate the time it takes for the voltage across the resistor to reach 10.0 v after the switch is closed.

Answers

The time it takes for the voltage across the resistor to reach 10.0 v after the switch is closed is 0.5 seconds.

The difference in electric potential between two places is known as voltage, often referred to as electric pressure, electric tension, or (electric) potential difference. It translates into the amount of work required to move a test charge between two points in a static electric field. Volt is the name of the voltage-derived unit in the International System of Units.

A capacitor, for example, or an electromotive force can build up electric charge and increase the voltage between two places (e.g., electromagnetic induction in generator, inductors, and transformers).

Electrochemical reactions (such as those in batteries and cells), the pressure-induced piezoelectric effect, and the thermoelectric effect can all produce potential differences on a macroscopic level.

To calculate the time it takes for the voltage across the resistor to reach 10.0V after the switch is closed, you can use the formula

t = RC,

where R is the resistance in Ohms and C is the capacitance in Farads.

Using the given values, the time it will take to reach 10.0V is

t = 10 Ω * 0.05F

= 0.5 seconds.

Therefore, the time it takes for the voltage across the resistor to reach 10.0 v after the switch is closed is 0.5 s.

For more such questions on voltage , Visit:

https://brainly.com/question/1176850

#SPJ11

Other Questions
the u.s. supreme court has often approved government restrictions on speech or the press. such restrictions are legal as long as those limits: in one study, researchers showed infants moving circles, moving circles with scrambled facial features, and moving circles with regular facial features. the researchers measured eye gazes at the objects and found that infants tracked the: Reflections; rotations and translations are transformations that change the what? what led to the development of the aviation industrya. the development of texas wwII aircraft training facilitiesb. the placement of the johnson space centerc. the petrochemicals industryd. texas location and climate HELPPPP will give brainliest!!!(do not change the wording)Correct any run-on sentences or comma splices by making the sentences compound or complex. If a sentence is neither a run-on or a comma splice, label it C for correct. (HINT: only one of the sentences is correct.) You can only use a semicolon ONCE to combine two independent clauses, and you can only separate the independent clauses into separate sentences using a period and capitalizing the next letter ONCE in this exercise.1) School can be stressful, I like to relax.2) One of my hobbies is baking cookies they are fun to make and delicious to eat!3) I dont want to gain a lot of weight, I have to be careful not to eat them all.4) My pets try to help they like to eat any leftover dough.5) A lot of the ingredients are not healthy for them I have to be sure to clean up after myself.6) Instead, I make and bake separate batches of doggie biscuits for my pampered pets!7) It takes a lot of time and effort to make the homemade biscuits, I believe my pets like them best!8) I enjoy making freshly baked snacks for my family and my pets they enjoy eating them. Mathematics 20 points!Please Say A) B) C) D) as your answer sarah is sitting next to a person in class who is chewing gum loudly. at first she tried to ignore it, but now it is interfering with her ability to focus on the lecture material for an exam. there are no extra seats for her to move to. what should she do? when providing discharge instructions to a child who was admitted to the hospital following stridor, wheezing, and urticaria after taking penicillin, which nursing action is priority? where do you find the full book "robo en la noche" for free? which activities would the nurse perform to meet the client's safety and security needs based on maslow's hierarchy of needs? select all that apply. one, some, or lin enjoys roller skating with her friends. what would be an environmental factor associated with roller skating for lin? Vikash promised.... Us a share ... The profit the marks on a statistics midterm test are normally distributed with a mean of 78 and a standard deviation of 6. what is the probability that a class of 36 has an average midterm mark that is more than 77.83? the australian sheep dog is a breed renowned for its intelligence and work ethic. it is estimated that 45% of adult australian sheep dogs weigh 65 pounds or more. a sample of 12 adult dogs is studied. what is the mean number of dogs who weigh 65 lb or more? dialectics involving a relational unit and other relational units or people within their social networks are . a. external and internal b. external c. internal, then external d. internal does the southern hemisphere experience hotter summers and colder winters? i ask this because the earth's perihelion is in winter for the northern hemisphere (around january 3rd) osmotic thirst is due to . group of answer choices diminished fluid in the cells dryness of the mouth and throat reduce volume of blood stimulation of pressure receptors which of these was an innovation of giacomo torelli used in an opera called La finta pazza help me please!!!!!!!!!!!!!!!!!!!!!!!!!!!! ms walker has 15 kilograms of clay she wants to give 3 students an equal amount of clay what is the mass of the clay that each student will get