The maximum voltage induced in the loop is 82.05 volts. The EMF is negative.
The maximum voltage induced in the loop can be calculated using the formula:
EMF = -NΔΦ/Δt
Where EMF is the induced electromotive force, N is the number of turns in the loop, ΔΦ is the change in magnetic flux, and Δt is the time interval over which the change occurs.
In this case, the loop has an area of 0.08 m2 and is rotating at a constant angular speed of 87 rev/s, which corresponds to an angular velocity of 544.89 rad/s. The magnetic field is perpendicular to the axis of rotation, so the change in magnetic flux is given by:
ΔΦ = B*A*cos(θ)*Δt
Where B is the magnetic field strength, A is the area of the loop, θ is the angle between the magnetic field and the normal to the loop (which is 90 degrees in this case), and Δt is the time interval over which the change occurs.
Since the loop is rotating at a constant speed, the time interval over which the change occurs is equal to the time it takes for the loop to complete one revolution, which is:
Δt = 1/87 s
Plugging in the given values, we get:
ΔΦ = (0.08 T)*(0.08 m2)*(1)*(1/87 s) = 0.000921 Tm2/s
Next, we can calculate the induced EMF using the formula:
EMF = -NΔΦ/Δt
Plugging in the given values, we get:
EMF = -(1017)*(0.000921 Tm2/s)/(1/87 s) = -82.05 V
Since the EMF is negative, this means that the induced voltage is in the opposite direction to the direction of the current flow in the loop.
For more such questions on EMF.
https://brainly.com/question/14300059#
#SPJ11
Describe what happens as the hair dryer takes in cool air from one end and blows out warm air from other end TYYYY
When the hair dryer is turned on, it draws in cool air from its back end and passes it over a heating element, which increases the temperature of the air.
What happens when a hair dryer intakes cool air from one end and expels warm air from the other?Cool air is taken in and is heated using a heating element as described. The heated air is then forced out through the front end of the dryer by a fan. As the warm air blows over the hair, it causes the water molecules in the hair to evaporate, thus drying the hair. The hair dryer also helps to style hair by blowing it in different directions, causing it to move and create volume.
Learn more about hair dryers here:
https://brainly.com/question/29086609
#SPJ1
The majority of Venus's surface is:
A. volcanic plains with flowing lava.
B large, flat mesas with tiny valleys.
C. thick, soupy clouds of hydrogen.
D. frozen dunes of dust and sand.
Answer:
C.
Explanation:
When Venus surface get bit cold when weather hits the planet gets soupy clouds and etc.
is it ok to keep my ac running and just stop the car's engine to save gas and keep cool while waiting for my husband?
It is not recommended to keep the AC running while the engine is off, as this can drain the car battery and may lead to mechanical issues in the long run. It is better to turn off the AC and open the windows or step out of the car to cool off while waiting for your husband.
Idling the engine for extended periods of time can also waste gas and contribute to air pollution. When you stop your car's engine, the air conditioning (AC) system will also stop working, as it requires the engine to be running to function properly. To save gas and keep cool while waiting for your husband, you may consider:
1. Turn off your car's engine to save gas.
2. Open the windows slightly to allow for airflow.
3. Use a portable battery-operated fan to keep yourself cool.
4. Park your car in a shaded area, if possible, to reduce heat buildup inside the vehicle.
5. Wear light, breathable clothing to stay comfortable in warmer temperatures.
Remember that running the AC without the engine is not possible, so it's essential to find alternative ways to stay cool while conserving fuel.
More on car engine: https://brainly.com/question/29980491
#SPJ11
a parallel plate capacitor has a capacitance c0. a second parallel plate capacitor has plates with twice the cross sectional area and twice the separation. the capacitance of the second capacitor is:
The capacitance of the second parallel plate capacitor is 2c0 which is twice that of the first capacitor.
The capacitance of a parallel plate capacitor is given by the formula C = εA/d, where C is the capacitance, ε is the permittivity of the material between the plates, A is the area of each plate, and d is the separation between the plates.
If the second capacitor has plates with twice the cross sectional area, this means that A is multiplied by 2. Similarly, if the separation is twice as much, then d is also multiplied by 2.
Therefore, the capacitance of the second capacitor is:
C = ε(2A)/(2d)
C = (εA/d) x 2
C = 2c0
So the capacitance of the second parallel plate capacitor is twice that of the first capacitor.
More on capacitance: https://brainly.com/question/17176550
#SPJ11
thermal expansion may cause an equipment or piping system overpressure when the liquid is blocked-in
Thermal expansion is a phenomenon in which materials expand when they are heated and contract when they are cooled. This can be a problem in industrial equipment or piping systems that contain liquids, especially when the liquid is blocked-in and cannot move freely.
When the temperature of the liquid increases due to an external heat source, such as a nearby furnace or the sun, the liquid will expand and cause an increase in pressure within the equipment or piping system. This increase in pressure can lead to overpressure, which can be dangerous and can potentially cause equipment failure or system rupture.
It is important to account for thermal expansion when designing industrial equipment and piping systems to ensure that they can safely withstand the changes in pressure caused by temperature fluctuations.
Learn more about equipment ,
https://brainly.com/question/30230359
#SPJ4
. for schrodinger's equation of the h2 molecule, the kinetic energy has contributions from a. electrons only b. nuclei only c. both electrons and nuclei d. only one electron and one nucleus
The kinetic energy in Schrödinger's equation for the H2 molecule includes contributions from both electrons and nuclei. Thus the correct option is C.
The kinetic energy term in Schrödinger's equation for the H2 molecule refers to the energy involved in the motion of the particles. The H2 molecule comprises two hydrogen nuclei and two electrons, therefore the electrons and the nuclei both contribute to the kinetic energy.
The nuclei contribute to the kinetic energy by their mobility, whereas the electrons do so through their wave-like behaviour. The H2 molecule's kinetic energy term in Schrödinger's equation includes contributions from both electrons and nuclei, making option C the right response.
Learn more about kinetic energy:
https://brainly.com/question/30285686
#SPJ4
The kinetic energy in Schrödinger's equation for the H2 molecule includes contributions from both electrons and nuclei. Thus the correct option is C
explanation - For Schrödinger's equation of the H2 molecule, the kinetic energy has contributions from both electrons and nuclei. This is because the kinetic energy term in the equation accounts for the motion of all particles in the system, which in this case includes both the electrons and nuclei of the H2 molecule. Therefore, options a, b, and d are incorrect.
To know more about the schrodinger equation, click on this -
brainly.com/question/31441754
#SPJ11
Calculating Average Speed
If you know the total distance an object travels over a certain period of time, you can
calculate the average speed of the object.
To do so, you use the formula ____________________________________________.
water is drawn from a well in a bucket tied to the end of a rope whose other end wraps around a cylinder of mass 50 kg and diameter 25 cm. as you turn this cylinder with a crank, the rope raises the bucket. if the mass of a bucket of water is 20 kg, what torque must you apply to the crank to raise the bucket of water at a constant speed?
m_c (mass of cylinder)=50 kg
d=25 cm so r=12.5 cm = 0.125 m m_b
(mass of bucket)=20 kg
So using the equations: RT = � = I � RT= I � (m_b)g-T= (m_b)aR And from what I understand, this is the same as the tangential acceleration? (m_b)g-T=(m_b) � r = F T= ( i � ) / r (m_b)g -(( i � ) / r ) = m � r � ( ((m_b)r) + (I /R ) ) = (m_b)g Leaving us with the final : � = ((m_b)g)/(((m_b)r) + (I /r)) Using this equation, I found I = 0.390625 and the final answer would be 35 rad/s^2 Sorry for such a long post--this is my first time on the website and I read the rules so hopefully I've done everything correctly! Thank you all!
/
Green laser pointers emit light with a wavelength of 532 nm. Do research on the type of laser used in this type of pointer and describe its operation. Indicate whether the laser is pulsed or continuous.
Pulsed lasers are used in specific applications where short bursts of laser light are needed, such as in laser ranging, lidar, or certain medical procedures.
What is Wavelength?
Wavelength is a term used in physics to describe the distance between two consecutive points of a wave that are in phase, or the distance over which a wave completes one cycle. It is commonly denoted by the Greek letter lambda (λ) and is usually measured in units such as meters (m), nanometers (nm), or angstroms (Å).
Green laser pointers typically use a type of laser known as a diode-pumped solid-state (DPSS) laser to generate laser light at a wavelength of 532 nm, which corresponds to green light in the visible spectrum. DPSS lasers are a type of laser that uses a solid-state crystal or material as the gain medium, which is pumped by a diode laser to achieve laser emission.
Learn more about Wavelength from the given link
https://brainly.com/question/10750459
#SPJ1
1.(1pt) it takes light approximately 8 minutes to reach the earth from the surface of the sun. the distance between jupiter and the sun is five astronomical units (5 au). how long does it take light to travel that distance?
It takes light approximately 40 minutes to travel the distance between Jupiter and the Sun.
One astronomical unit (AU) is the average distance between the Earth and the Sun, which is about 150 million kilometers or 93 million miles. Therefore, the distance between Jupiter and the Sun is 5 times that, or 750 million kilometers.
Since light travels at a speed of about 299,792 kilometers per second, it takes about 2,500 seconds or 41.67 minutes for light to travel from the Sun to Jupiter (750 million kilometers divided by 299,792 kilometers per second).
To learn more about speed of light, here
https://brainly.com/question/394103
#SPJ4
a drawing, provided by the manufacturer, that details permitted interconnections between the intrinsically safe and associated apparatus or between the nonincendive field wiring apparatus or associated nonincendive field wiring apparatus is called a
The drawing provided by the manufacturer, which details the permitted interconnections between intrinsically safe and associated apparatus or between nonincendive field wiring apparatus or associated nonincendive field wiring apparatus, is called a wiring diagram.
A wiring diagram typically includes detailed information about the wiring connections between components, as well as any necessary safety measures such as grounding or shielding. It may also include information about the voltage, current, and power requirements of the system, as well as any limitations or restrictions on the use of particular components or configurations.
This diagram is a critical part of the installation and maintenance process for intrinsically safe and nonincendive electrical systems, as it helps ensure that the correct connections are made and that the system operates safely and effectively.
To learn more about diagram follow the link:
https://brainly.com/question/11729094
#SPJ4
The complete question is:
A drawing, provided by the manufacturer, that details permitted interconnections between the intrinsically safe and associated apparatus or between the nonincendive field wiring apparatus or associated nonincendive field wiring apparatus is called a ______________
the geocentric model of the universe that was widely accepted in scientific and religious circles until the 16th century was that of
The geocentric model of the universe that was widely accepted in scientific and religious circles until the 16th century was that of Ptolemy, also known as the Ptolemaic system.
The geocentric model of the universe, widely accepted in scientific and religious circles until the 16th century, was based on the idea that Earth was at the center of the cosmos.
This model, also known as the Ptolemaic system, was developed by the ancient Greek astronomer Claudius Ptolemy in the 2nd century AD. According to this model, all celestial objects, including the Sun, Moon, and stars, revolved around the Earth in circular or epicyclical paths.
The geocentric model was dominant for over a thousand years due to its alignment with religious beliefs and its ability to explain astronomical observations.
However, the 16th-century work of Nicolaus Copernicus and later astronomers led to the acceptance of the heliocentric model, which placed the Sun at the center of the solar system and was a more accurate representation of the cosmos.
To learn more about : geocentric
https://brainly.com/question/1507151
#SPJ11
Please help I need to answer fast the fate of my graduation depends on it.
First, we need to find the total mass of the system by adding the masses of the two objects: m_total = m1 m2 = 50.0 kg 75.0 kg = 125.0 kg Next, we can plug in the given force and mass values into the equation: F = ma 40.0 N = 125.0 kg * a Solving for a: a = 40.0 N
125.0 kg * a
Solving for a:
a = 40.0 N / 125.0 kg
a = 0.32 m/s^2
Therefore, the acceleration of the system is 0.32 m/s^2.
at a given instant in time, an 8-kg rock that has been dropped from a high cliff, experiences an upward force of air resistance of 12 n.note: this is a multi-part question. once an answer is submitted, you will be unable to return to this part.what is the gravitational force on the rock? use g
The gravitational force on the rock is 78.4 Newtons.
At the given instant, the 8-kg rock experiences a gravitational force which can be calculated using the formula:
F_gravity = m * g
where m is the mass of the rock (8 kg) and g is the acceleration due to gravity (approximately 9.8 m/s²).
F_gravity = 8 kg * 9.8 m/s² = 78.4 N
So, the gravitational force on the rock is 78.4 Newtons.his net force causes the rock to accelerate downwards.
The concept of gravitational force is an important one in physics, as it plays a significant role in many natural phenomena. The force of gravity is responsible for the motion of celestial bodies, and it is also a key factor in determining the weight of objects on earth.
Understanding the principles of gravitational force can help us understand the behavior of objects in motion and can also help us develop technologies that are based on these principles.
Know more about gravitational force here:
https://brainly.com/question/72250
#SPJ11
Power supplies are rated for efficiency based on. drawn to supply sufficient power to the PC. a. volts b. watts c. amperes d. ohms. Study These Flashcards.
B. Power supplies are rated for efficiency based on watts. The efficiency of a power supply is determined by the ratio of its output power (in watts) to its input power (also in watts).
The lesser the effectiveness, the lower power is wasted as heat and the lesser the power given to the computer's factors. In addition to effectiveness, power inventories are rated for maximum affair power, which is generally expressed in watts. This standing represents the loftiest quantum of power that the power force can deliver to the computer's factors.
Other conditions, similar as voltage and amperage conditions for their different affair connections, may be assigned to power inventories. The maximum voltage and current that the power force can produce on each connection are indicated by these conditions. Ohms, on the other hand, are a resistance unit that's infrequently used to grade power force.
Learn more about power at
https://brainly.com/question/30562600
#SPJ4
if a red giant appears the same brightness as a red main sequence star, which one is further away
If a red giant appears the same brightness as a red main sequence star, it is most likely that the red giant is further away.
Here's a step-by-step explanation:
1) Red giants and red main sequence stars are both types of stars that are similar in color, but they have different sizes and luminosities.
2) Red giants are much larger and more luminous than red main sequence stars. They are formed when a star like the sun runs out of fuel and begins to expand and cool.
3)Red main sequence stars, on the other hand, are smaller and less luminous than red giants. They are stars that are still burning hydrogen fuel in their cores.
4) The apparent brightness of a star depends on both its intrinsic luminosity and its distance from Earth. The farther away a star is, the dimmer it appears to us on Earth.
5) If a red giant appears the same brightness as a red main sequence star, this means that the red giant must be much farther away from Earth than the red main sequence star.
6) This is because the red giant is intrinsically much more luminous than the red main sequence star. If both stars were at the same distance from Earth, the red giant would appear much brighter than the red main sequence star.
7) However, since the red giant appears the same brightness as the red main sequence star, this means that the red giant must be much farther away from Earth and therefore appears dimmer.
Overall, by comparing the apparent brightness of a red giant and a red main sequence star, we can determine which star is farther away.
If the red giant appears the same brightness as the red main sequence star, then the red giant is likely to be much farther away.
To know more about fusion reactions :
https://brainly.com/question/4837991
#SPJ11
A bow is drawn so that it has 40 J of potential energy. When fired, the arrow will have a kinetic energy of: Select one: O a. 80) o b. 20) O 0.60) O d. 40)
When a bow is drawn and has 40 J of potential energy, the arrow's kinetic energy when fired will be:
Your answer: d. 40 J
Explanation:
Potential energy is the energy that an object possesses due to its position, configuration, or state of being. It is stored energy that has the potential to do work in the future. The amount of potential energy that an object has depends on its position or configuration relative to other objects or systems. For example, a bow that is pulled back has potential energy that can be released as kinetic energy when it is released.
Kinetic energy, on the other hand, is the energy that an object possesses due to its motion. It is the energy that an object possesses because it is in motion and is able to do work by causing a change in another object's motion or position. The amount of kinetic energy that an object has depends on its mass and its velocity. For example, a moving car has kinetic energy that can be transferred to another object if it collides with it.
When the bow is drawn, it stores potential energy. When fired, this potential energy is converted into kinetic energy for the arrow. In an ideal situation with no energy loss, the arrow's kinetic energy will be equal to the bow's potential energy. Therefore, the arrow will have a kinetic energy of 40 J.
To learn more about Potential Energy and Kinetic Energy. Please Visit:
https://brainly.com/question/30176483
#SPJ11
what is the weight of a cubic meter of cork? could you lift it? (use 400 kg/m^3 for the density of cork.)
To lift this weight, you would need a force greater than or equal to 3,920 N (assuming you are lifting it vertically).
weight = [tex]1 m^3 \times 400 kg/m^3 \times9.8 m/s^2[/tex]
weight = 3,920 N
Force is a physical quantity that describes the interaction between objects or systems. The SI unit of force is the Newton (N), which is defined as the amount of force required to accelerate a one kilogram mass at a rate of one meter per second squared.
Force is also responsible for deformations in solid objects, such as stretching or compressing a spring. Nuclear forces are responsible for the interactions between subatomic particles, and frictional forces are the forces that resist motion when two surfaces come into contact. Gravitational force is the force that pulls objects towards each other due to their masses. Electromagnetic force is responsible for the interactions between charged particles, such as in electricity or magnetism.
To learn more about Force visit here:
brainly.com/question/24115409
#SPJ4
What happens when thermal energy is applied to a substance q
When thermal energy is applied to a substance, the particles in the substance start to vibrate more rapidly, and the average kinetic energy of the particles increases.
What happens when thermal energy is applies to a substanceAs a result, the temperature of the substance increases. The amount of thermal energy required to increase the temperature of the substance by a certain amount is called the specific heat capacity of the substance.
The way the substance responds to the applied thermal energy also depends on its physical properties, such as its mass, density, and thermal conductivity. For example, a substance with a high thermal conductivity will transfer heat more rapidly to its surroundings, while a substance with a low thermal conductivity will retain heat more effectively.
If the applied thermal energy is sufficient, the substance may undergo a phase change, such as melting or boiling, as the increased kinetic energy overcomes the intermolecular forces holding the particles together.
Learn more about thermal energy at
https://brainly.com/question/19666326
#SPJ1
question 34 pts how do ambient sounds differ from sound effects?how are foley sounds different from sound effects?
The differences between ambient sounds, sound effects, and Foley sounds.
Ambient sounds, also known as background sounds or atmospheric sounds, are the continuous, subtle noises that help create a sense of atmosphere or location in a scene. They differ from sound effects in that sound effects are distinct, purposeful sounds added to emphasize specific actions or events in a scene.
Foley sounds, on the other hand, are a type of sound effect created manually by a Foley artist to match and enhance the actions happening on-screen. They are different from regular sound effects because they are typically recorded live in a studio using various objects and materials to create realistic, synchronized sounds for actions such as footsteps, clothing rustles, and object handling.
In summary:
1. Ambient sounds create a sense of atmosphere or location and are continuous and subtle.
2. Sound effects are distinct, purposeful sounds added to emphasize specific actions or events.
3. Foley sounds are a type of sound effect created manually by a Foley artist to match on-screen actions.
To know more about ambient sounds, sound effects, and Foley sounds:
https://brainly.com/question/16519187
#SPJ11
019 (part 1 of 2) 10.0 points
A Carnot engine has a power output of
197 kW. The engine operates between two
reservoirs at 20◦C and 425◦C.
How much thermal energy is absorbed each
hour?
Answer in units of J.
020 (part 2 of 2) 10.0 points
How much thermal energy is lost per hour?
Answer in units of J.
Thermal energy is absorbed each hour is 13.53 x 10¹² J and thermal energy lost per hour is 7.092 x 10¹² J.
What is the Carnot engine's operating principle?a technique of isothermal gas expansion that is reversible. In this process, the ideal gas in the system receives amount heat from a heat source at a high temperature Thigh, expands and does work on surroundings. a technique of adiabatic gas expansion that is reversible. The system is thermally insulated throughout this process.
Temp_cold = 20°C + 273.15 = 293.15 K
Temp_hot = 425°C + 273.15 = 698.15 K
efficiency = 1 - (Temp_cold / Temp_hot)
= (698.15 K * 293.15 K) / (698.15 K)² - (293.15 K)²
efficiency = 0.524 or 52.4%
thermal energy absorbed/ hour = power output / efficiency
= 197 kW / 0.524
= 375.95 MJ/h x 3.6 x 10⁶ J/kWh = 13.53 x 10¹² J
thermal energy is lost per hour
W = power output x time = 197 kW x 1 h = 197 kWh
W = 197 kWh x 3.6 x 10⁶ J/kWh = 7.092 x 10¹²1J
Since the engine is running in a cycle, the system's internal energy is equal to zero, hence U = 0.
Q = ΔU + W
hence, thermal energy lost per hour = Q = W = 7.092 x 10^11 J
To know more about thermal energy visit:-
https://brainly.com/question/27359499
#SPJ1
The surface of which jovian moon most resembles the pack ice of the Arctic Ocean? A) Amalthea B) Io C) Europa D) Ganymede E) Callisto.
help me please oml 2 one
Color: Both the bromine gas and steak have a brownish color.
What is bromine gas?Bromine gas is a reddish-brown, nonflammable, and highly toxic gas with a very strong, unpleasant odor. It is composed of two heavy, diatomic, halogen molecules, Br2, and is the only nonmetal element that exists as a liquid at room temperature. Bromine gas is denser than air and is soluble in water and organic solvents.
Texture: The bromine gas is a gas and therefore has no texture, while the steak is solid and has a firm texture.
Temperature: The bromine gas is a gas and therefore has a lower temperature than the steak, which is at room temperature.
Bromine Gas and Juice:
Color: The bromine gas is brownish and the juice is a yellowish or orange color.
Texture: The bromine gas is a gas and therefore has no texture, while the juice is a liquid and has a smooth texture.
Temperature: The bromine gas is a gas and therefore has a lower temperature than the juice, which is at room temperature.
To learn more about bromine gas
https://brainly.com/question/1126306
#SPJ1
An astronaut of mass 75 kg is floating in space holding a 20 kg fire extinguisher. If she throws the extinguisher forward at a velocity of 3.5 m/s, what will be her resulting velocity?
Momentum is defined as mass multiplied by velocity, so the total momentum before the extinguisher is thrown is 70 kg*m/s.
What is Velocity?Velocity is a vector quantity that measures the rate of change of an object's position. It is determined by the displacement of an object over a given period of time, and is usually expressed in terms of distance over time.
The astronaut's resulting velocity will be the same as the fire extinguisher's velocity, 3.5 m/s.
This is because the astronaut and extinguisher have the same mass and momentum must be conserved.
Momentum is defined as mass multiplied by velocity, so the total momentum before the extinguisher is thrown is 75 kg * 0 m/s + 20 kg * 3.5 m/s
= 70 kg*m/s.
To learn more about Velocity
https://brainly.com/question/626479
#SPJ1
if the wavelength of a wave in a particular medium is tripled, what will happen to the frequency of the wave?
Answer:
V = λ * ν speed of wave in medium
We know the speed of a particular wave in a medium is constant.
ν = V / λ
If λ is increased by 3 then the frequency ν will be reduced by a factor of three to keep the speed constant.
ν' = ν / 3
a hollow cylindrical copper (density 8.96 g/cm3) pipe is 0.71 m long and has an outside diameter of 3.50 cm and an inside diameter of 2.50 cm. the mass of this pipe is closest to
Having an exterior diameter of 3.50 cm and an inside diameter of 2.50 cm, a hollow cylindrical copper pipe measures 0.71 m in length. The mass of the copper pipe is closest to 6.72 kg.
To find the mass of the copper pipe, we need to first calculate its volume, which can be obtained by subtracting the volume of the hollow center from the volume of the outer cylinder.
The outer cylinder's volume can be calculated as:
[tex]$V_{outer} = \pi r_{outer}^2h$[/tex]
where r_outer is the outer radius, h is the height, and π is the mathematical constant pi.
Similarly, the inner cylinder's volume can be calculated as:
[tex]$V_{inner} = \pi r_{inner}^2h$[/tex]
where r_inner is the inner radius.
Therefore, the volume of the hollow center can be found by subtracting V_inner from V_outer:
V_hollow = V_outer - V_inner
[tex]$V_{outer} = \pi(r_{outer}^2 - r_{inner}^2)h$[/tex]
Substituting the given values, we get:
[tex]$V_{hollow} = \pi(0.0175^2 - 0.0125^2) \times 0.71$[/tex]
= 0.00074962 m^3
The mass of the copper pipe can be found by multiplying its volume by its density:
mass = density × volume
[tex]$V = 8.96 \text{ g/cm}^3 \times 749.62 \text{ cm}^3$[/tex]
= 6716.23 g
≈ 6.72 kg (rounded to two decimal places)
To learn more about copper pipe
https://brainly.com/question/27813166
#SPJ4
type 1 cable consists of ? twisted pairs, each individually shielded with foil, with a braided outer shield surrounding the entire cable core and covered with a jacket.
Type 1 cable consists of a braided outer shield surrounding the entire cable core and covered with a jacket, the correct answer is c.
Type 1 cable is commonly used in high-frequency applications where signal interference is a concern. The braided shield provides excellent protection against electromagnetic interference (EMI) and radio frequency interference (RFI). It also helps to reduce signal loss and attenuation by keeping the signal within the cable and preventing it from escaping.
The jacket provides an additional layer of protection against environmental factors such as moisture, abrasion, and temperature extremes. Type 1 cable is a reliable and effective option for applications where signal integrity and protection against interference are critical factors, the correct answer is c.
To learn more about cable follow the link:
https://brainly.com/question/30424450
#SPJ4
The complete question is:
Type 1 cable consists of ?
a. twisted pairs
b. each individually shielded with foil
c. with a braided outer shield surrounding the entire cable core and covered with a jacket.
A rock thrown horizontally from the roof edge of a 12.4 m-high building hits the ground below, a horizontal distance of 17.8 m from the building. What is the overall speed of the rock when it hits the ground?
The overall speed of the rock when it hits the ground is 24.4 m/s.
We can solve this problem using kinematic equations of motion. Since the rock is thrown horizontally, its initial vertical velocity is zero.
Let's use the following kinematic equation to find the final velocity of the rock (v):
v² = u² + 2as
where u is the initial velocity (in this case, u = 0), a is the acceleration due to gravity (-9.81 m/s²), and s is the vertical distance the rock falls (12.4 m). Solving for v, we get:
v = sqrt(2as) = sqrt(2 x (-9.81 m/s²) x 12.4 m) = 17.26 m/s
Now that we have found the final vertical velocity, we can use it to find the time it takes for the rock to fall to the ground.
The time (t) can be found using the following kinematic equation:
s = ut + (1/2)at²
where s is the horizontal distance the rock travels (17.8 m), u is the horizontal velocity of the rock (which is constant), and a is the horizontal acceleration (which is zero). Since the initial horizontal velocity is equal to the final horizontal velocity, we can use the following equation to find u:
v = u
u = v = 17.26 m/s
Now we can plug in the known values to find t:
17.8 m = 17.26 m/s x t
t = 1.03 s
Finally, we can use the horizontal distance and time to find the horizontal velocity (v_h) using the equation:
v_h = s/t = 17.8 m / 1.03 s = 17.28 m/s
Therefore, the overall speed of the rock when it hits the ground is the vector sum of the horizontal and vertical velocities:
v_overall = sqrt(v_h² + v²) = sqrt((17.28 m/s)² + (17.26 m/s)²) = 24.4 m/s
So the overall speed of the rock when it hits the ground is 24.4 m/s.
To know more about vertical velocity, visit:
https://brainly.com/question/11679227
#SPJ1
a circuit breaker is rated for a current of 15 a rms at a voltage of 240 v rms. (a) what is the largest value of imax that the breaker can carry?
The largest value of I_max that the breaker can carry is approximately 21.21 A.
Given a circuit breaker rated for 15 A RMS at 240 V RMS, we want to find the largest value of Imax (maximum current) that the breaker can carry. To do this, we'll use the following formula:
I_max = √2 * I_RMS
Where I_RMS is the rated current in RMS, which is 15 A in this case.
Substitute the value of I_RMS into the formula:
Imax = √2 * 15 A
Calculate the value of Imax:
Imax ≈ 21.21 A
Therefore approximately 21.21 A is the largest value of Imax that the breaker can carry.
More on circuit breaker: https://brainly.com/question/29480920
#SPJ11
if interstellar dust makes an rr lyrae variable star look 5 magnitudes fainter than the star should, by how much will you over- or underestimate its distance?
The distance to the RR Lyrae variable star will be underestimated by a factor of 10 due to the effect of interstellar dust.
The distance to an astronomical object can be determined using the inverse square law, which states that the apparent brightness of an object decreases as the square of the distance increases.
The apparent magnitude of an object is a measure of its brightness as seen from Earth. The lower the magnitude, the brighter the object.
If interstellar dust makes an RR Lyrae variable star look 5 magnitudes fainter than it should, then the apparent magnitude of the star as observed from Earth is 5 magnitudes greater than its true apparent magnitude.
Using the inverse square law, we can write:
Apparent brightness ~ 1 / (distance[tex])^2[/tex]
If the apparent brightness is 5 magnitudes fainter than it should be, we can express the distance to the star as:
distance = sqrt(100^(0.4 * 5)) x true distance
where 0.4 is the conversion factor from magnitudes to brightness ratios, and 100 is the ratio of the brightness of the star as observed from Earth to its true brightness.
Simplifying this expression, we get:
distance = 100^(0.5) x true distance
distance = 10 x true distance
Therefore, the distance to the RR Lyrae variable star will be underestimated by a factor of 10 due to the effect of interstellar dust.
Learn more about interstellar dust.
https://brainly.com/question/13034266
#SPJ4