Answer:
332.88 million
Step-by-step explanation:
you do the thing
If two points are given, then exactly one line can be drawn through those two points. Which geometry term does the statement represent?
Answer:
its a postulate
Step-by-step explanation:
The statement represents a geometric postulate.
A postulate is one of the basic concepts of geography, and indicates an assumption that is accepted as true in the given theory.
In this way, the main characteristic of the postulate is its general acceptance by the spectrum that studies it, that is, by the totality or vast majority of the scientists who are dedicated to its analysis.
Learn more in https://brainly.com/question/17252827
Please help, I don’t need an explanation, just the answer.
Answer:
x=2 y=4
Step-by-step explanation:
On an uphill hike Ted climbs at 3mph. Going back down, he runs at 5mph. If it takes him forty minutes longer to climb up than run down, then what is the length of the hike?
Answer:
10 miles
Step-by-step explanation:
3 mi/1 hr x (h hours + 2/3 hr) = 5 mi/1 hr x h hours
3h + 2 = 5h
2 = 2h
h = 1 hour
3mi/hr x 1 2/3 hr = 5 miles
5 mi/hr x 1 hr = 5 miles
He hiked 10 miles. (
Daddy's annual salary is $42603.00. If he gets the same salary
each month and a monthly travelling allowance of $1250.00,
what is his monthly earning?
Answer:
$4800.25
Step-by-step explanation:
$42603 is a yearly salary.
There are 12 months in 1 year.
Monthly salary:
$42603/12 = $3550.25
Monthly travelling allowance: $1250
Total amount earned in 1 month:
$3550.25 + $1250 = $4800.25
Katie wants to create a rectangular frame for a picture. She has 60 inches of material. If she wants the length to be 3 more than 2 times the width what is the largest possible length
Answer:
Largest possible length is 21 inches.
Step-by-step explanation:
Given:
Total material available = 60 inches
Length to be 3 more than twice of width.
To find:
Largest possible length = ?
Solution:
As it is rectangular shaped frame.
Let length = [tex]l[/tex] inches and
Width = [tex]w[/tex] inches
As per given condition:
[tex]l = 2w+3[/tex] ..... (1)
Total frame available = 60 inches.
i.e. it will be the perimeter of the rectangle.
Formula for perimeter of rectangle is given as:
[tex]P = 2 \times (Width + Length)[/tex]
Putting the given values and conditions as per equation (1):
[tex]60 = 2 \times (w+ l)\\\Rightarrow 60 = 2 \times (w+ 2w+3)\\\Rightarrow 60 = 2 \times (3w+3)\\\Rightarrow 30 = 3w+3\\\Rightarrow 3w = 27\\\Rightarrow w = 9 \ inch[/tex]
Putting in equation (1):
[tex]l = 2\times 9+3\\\Rightarrow l = 21\ inch[/tex]
So, the answer is:
Largest possible length is 21 inches.
The dot plots show the number of hours a group of fifth graders and seventh graders spent playing outdoors over a one-
week period.
Time Spent Playing Outdoors
for Fifth Graders and Seventh Graders
.
5th Grade
0
ta
1 2 3 4 5
Hours
7
8
9 10
7th Grade
.
Answer: B
Step-by-step explanation:
Answer:B
Step-by-step explanation: I took the edge quiz and it was right.
Write your answer as a whole number or a mixed number in simplest form. Include the correct unit in your answer
Answer:
15 pt
Step-by-step explanation:
to convert qt to pt you multiply by 2 so 7 and 1/2 times 2 is 15
Please help. I’ll mark you as brainliest if correct!
Answer:
Quantity (lbs) of type 1 candy x = 8
Quantity (lbs) of type 2 candy y = 17,5
Step-by-step explanation:
Let´s call "x" quantity (in pounds) of candy type 1 in the mixture, and "y" quantity (in pounds ) of candy type 2, then according to the problem statement.
x + y = 25,5
2,20*x + 7,30*y = 5,70 * 25,5 ⇒ 2,20*x + 7,30*y = 145,35
Then we have a two equation system
x + y = 25,5 ⇒ y = 25,5 - x
2,20*x + 7,30*y = 145,35 ⇒ 2,20*x + 7,30* (25,5 - x ) = 145,35
2,20*x + 186,15 - 7,30*x = 145,35
5,1*x = 40,8
x = 40,8/5,1
x = 8 lbs
And y = 25,5 - 8
y = 17,5 lbs
What is viscosity?
O A measure of the oil's quality
O An oil's resistance to flow at different temperatures
A reference to synthetic oil; all oils with viscosity are synthetic
O A new motor oil ingredient
< BACK
NEXT
>
Answer:
viscosity is the state of being thick, sticky, and semifluid in consistency, due to internal friction.
"cooling the fluid raises its viscosity"
a quantity expressing the magnitude of internal friction, as measured by the force per unit area resisting a flow in which parallel layers unit distance apart have unit speed relative to one another.
plural noun: viscosities
"silicone oils can be obtained with different viscosities"
Step-by-step explanation:
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. hope this helps you :)
Answer:
O An oil's resistance to flow at different temperatures
Step-by-step explanation:
Internal friction of a moving fluid .
A family paid $28,500 as a down payment for a home. If this represents 15% of the price of the home, what is the price of the home.
Answer:
.15* house price = 28,500
house price = 28,500 / .15
house price = 190,000
Step-by-step explanation:
Answer: 190,000
Step-by-step explanation:
the equation looks like this - .15x=28,500. then you divide both sides by .15 and get x=190,000
McKenzie has a bag contains six red marbles four blue marbles and 14 yellow marbles if she chooses one marble from the bag what is the probability that the marble is not yellow
Answer:
5/12
Step-by-step explanation:
Total number of marbles in the bag
6red+ 4blue + 14 yellow = 24 marbles
Not yellow marbles = 10 marbles
P ( not yellow ) = number of not yellow marbles / total marbles
=10/24
= 5/12
Answer:
5/12
Step-by-step explanation:
6 red marbles
4 blue marbles
14 yellow marbles
total marbles = 6 + 4 + 14 = 24 marbles
24 - 14 = 10 marbles
10 marbles are not yellow.
P(not yellow) = 10/24 = 5/12
Translate the following into an algebraic expression: A number is 30% of 20% of the number x.
Answer: 0.06x
Step-by-step explanation:
An algebraic expression is an expression consist of integer constants, variables, and algebraic operations.The given statement: A number is 30% of 20% of the number x.
The required algebraic expression would be:
30% of 20% of x
[tex]=\dfrac{30}{100}\times \dfrac{20}{100}\times x[/tex] [we divide a percentage by 100 to convert it into decimal]
[tex]=\dfrac{6}{100}\times x\\\\=0.06x[/tex]
Hence, the required algebraic expression would be :
0.06x
Four buses carrying 198 students from the same school arrive at a football stadium. The buses carry, respectively 90, 33, 25, and 50 students. One of the students is randomly selected. Let X denote the number of students who were on the bus carrying the randomly selected student. One of the four bus drivers is also randomly selected. Let Y denote the number of students on her bus. a) Which of E[X] or E[Y] do you think is larger
Answer:
E[x] is larger
Step-by-step explanation:
I think E[x] is larger because the expected number of students on the bus of a randomly chosen student is larger.
This is because the higher the number of students present in a bus, the higher the probability that a randomly selected student would have been on that bus.
Whereas, for every driver to be chosen, the probability of any bus being chosen is 1/4 irrespective of the number of students in that particular bus
8,5,15,18,3,what's next
13 since i think it's when a single didget number has a 1 at the beginning. i might be wrong thoough
Find the vertical and horizontal asymptotes, domain, range, and roots of f (x) = -1 / x-3 +2.
Answer:
Vertical asymptote: [tex]x=3[/tex]
Horizontal asymptote: [tex]f(x) =2[/tex]
Domain of f(x) is all real numbers except 3.
Range of f(x) is all real numbers except 2.
Step-by-step explanation:
Given:
Function:
[tex]f (x) = -\dfrac{1 }{ x-3} +2[/tex]
One root, [tex]x = 3.5[/tex]
To find:
Vertical and horizontal asymptote, domain, range and roots of f(x).
Solution:
First of all, let us find the roots of f(x).
Roots of f(x) means the value of x where f(x) = 0
[tex]0= -\dfrac{1 }{ x-3} +2\\\Rightarrow 2= \dfrac{1 }{ x-3}\\\Rightarrow 2x-2 \times 3=1\\\Rightarrow 2x=7\\\Rightarrow x = 3.5[/tex]
One root, [tex]x = 3.5[/tex]
Domain of f(x) i.e. the values that we give as input to the function and there is a value of f(x) defined for it.
For x = 3, the value of f(x) [tex]\rightarrow \infty[/tex]
For all, other values of [tex]x[/tex] , [tex]f(x)[/tex] is defined.
Hence, Domain of f(x) is all real numbers except 3.
Range of f(x) i.e. the values that are possible output of the function.
f(x) = 2 is not possible in this case because something is subtracted from 2. That something is [tex]\frac{1}{x-3}[/tex].
Hence, Range of f(x) is all real numbers except 2.
Vertical Asymptote is the value of x, where value of f(x) [tex]\rightarrow \infty[/tex].
[tex]-\dfrac{1 }{ x-3} +2 \rightarrow \infty[/tex]
It is possible only when
[tex]x-3=0\\\Rightarrow x=3[/tex]
[tex]\therefore[/tex] vertical asymptote: [tex]x=3[/tex]
Horizontal Asymptote is the value of f(x) , where value of x [tex]\rightarrow \infty[/tex].
[tex]x\rightarrow \infty \Rightarrow \dfrac{1 }{ x-3} \rightarrow 0\\\therefore f(x) =-0+2 \\\Rightarrow f(x) =2[/tex]
[tex]\therefore[/tex] Horizontal asymptote: [tex]f(x) =2[/tex]
Please refer to the graph of given function as shown in the attached image.
The mean number of words per minute (WPM) typed by a speed typist is 149149 with a standard deviation of 1414 WPM. What is the probability that the sample mean would be greater than 147.8147.8 WPM if 8888 speed typists are randomly selected
Answer:
The probability is [tex]P(\= X > x ) = 0.78814[/tex]
Step-by-step explanation:
From the question we are given that
The population mean is [tex]\mu = 149[/tex]
The standard deviation is [tex]\sigma = 14[/tex]
The random number [tex]x = 147.81[/tex]
The sample size is [tex]n = 88[/tex]
The probability that the sample mean would be greater than [tex]P(\= X > x ) = P( \frac{ \= x - \mu }{\sigma_{\= x} } > \frac{ x - \mu }{\sigma_{\= x} } )[/tex]
Generally the z- score of this normal distribution is mathematically represented as
[tex]Z = \frac{ \= x - \mu }{\sigma_{\= x} }[/tex]
Now
[tex]\sigma_{\= x } = \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]\sigma_{\= x } = \frac{14 }{\sqrt{88} }[/tex]
[tex]\sigma_{\= x } = 1.492[/tex]
Which implies that
[tex]P(\= X > x ) = P( Z > \frac{ 147.81 - 149 }{ 1.492} )[/tex]
[tex]P(\= X > x ) = P( Z > -0.80 )[/tex]
Now from the z-table the probability is found to be
[tex]P(\= X > x ) = 0.78814[/tex]
A 60-watt light bulb advertises that it will last 1500 hours. The lifetimes of these light bulbs is approximately normally distributed with a mean of 1550 hours and a standard deviation of 57 hours. What proportion of these light bulbs will last less than the advertised time
Answer:
The proportion of these light bulbs that will last less than the advertised time is 18.94% or 0.1894
Step-by-step explanation:
The first thing to do here is to calculate the z-score
Mathematically;
z-score = (x - mean)/SD
= (1500-1550)/57 = -50/57 = -0.88
So the proportion we will need to find is;
P( z < -0.88)
We shall use the standard score table for this and our answer from the table is 0.1894 which is same as 18.94%
What is the value of s in the equation 3 r equals 10 plus 5 s, when r equals 10? 4 8 100 200
Answer
4Step-by-step explanation:
Given,
r = 10
Let's create an equation,
[tex]3r = 10 + 5s[/tex]
plugging the value of r
[tex]3 \times 10 = 10 + 5s[/tex]
Multiply the numbers
[tex]30 = 10 + 5s[/tex]
Move 5s to L.H.S and change its sign
Similarly, Move 30 to R.H.S and change its sign.
[tex] - 5s = 10 - 30[/tex]
Calculate
[tex] - 5s = - 20[/tex]
The difference sign ( - ) should be cancelled on both sides
[tex]5s = 20[/tex]
Divide both sides of the equation by 5
[tex] \frac{5s}{2} = \frac{20}{5} [/tex]
Calculate
[tex]s = 4[/tex]
The value of s is 4.
Hope this helps..
Best regards!!
Answer:
A. 4 (on edgenuity)
Step-by-step explanation:
At time, t=0, Billy puts 625 into an account paying 6% simple interest. At the end of year 2, George puts 400 into an account paying interest at a force of interest, δt=16+t for t≥2. If both accounts continue to earn interest indefinitely at the levels given above, the amounts in both accounts will be equal at the end of year n. Calculate n.
Answer:
26
Step-by-step explanation:
Given that:
At time, t=0, Billy puts 625 into an account paying 6% simple interest
At the end of year 2, George puts 400 into an account paying interest at a force of interest, 1/(6+t), for all t ≥ 2.
If both accounts continue to earn interest indefinitely at the levels given above, the amounts in both accounts will be equal at the end of year n. Calculate n.
In order to calculate n;
Let K constant to be the value of time for both accounts
At time, t=0, the value of time K when Billy puts 625 into an account paying 6% simple interest is:
[tex]K = 625 \times (1+ 0.06 K)[/tex]
[tex]K = 625 +37.5 K[/tex]
At year end 2; George amount of 400 will grow at a force interest, then the value of [tex]K = 400 \times e^{\int\limits^2_k {\dfrac{1}{6+t}} \, dx }[/tex]
[tex]K =400 \times \dfrac{6+K}{6+2}[/tex]
[tex]K =400 \times \dfrac{6+K}{8}[/tex]
[tex]K =50 \times ({6+K})[/tex]
[tex]K =300+50K[/tex]
Therefore:
If K = K
Then:
625 + 37.5 = 300 +50 K
625-300 = 50 K - 37.5 K
325 = 12.5K
K = 325/12.5
K = 26
the amounts in both accounts at the end of year n = K = 26
what is 20% of 50naira?
Answer:
10
Step-by-step explanation:
To find 20% of 50 you need to times 20 with 50 and divide by 100.
20×50÷100
=10
A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of 1 m/s, how fast is the boat approaching the dock when it is 4 m from the dock
Answer:
-1.031 m/s or [tex]\frac{-\sqrt{17} }{4}[/tex]
Step-by-step explanation:
We take the length of the rope from the dock to the bow of the boat as y.
We take x be the horizontal distance from the dock to the boat.
We know that the rate of change of the rope length is [tex]\frac{dy}{dt}[/tex] = -1 m/s
We need to find the rate of change of the horizontal distance from the dock to the boat = [tex]\frac{dx}{dt}[/tex] = ?
for x = 4
Applying Pythagorean Theorem we have
[tex]1^{2} +x^{2} =y^{2}[/tex] .... equ 1
solving, where x = 4, we have
[tex]1^{2} +4^{2} =y^{2}[/tex]
[tex]y^{2} = 17[/tex]
[tex]y = \sqrt{17}[/tex]
Differentiating equ 1 implicitly with respect to t, we have
[tex]2x\frac{dx}{dt} = 2y\frac{dy}{dt}[/tex]
substituting values of
x = 4
y = [tex]\sqrt{17}[/tex]
[tex]\frac{dy}{dt}[/tex] = -1
into the equation, we get
[tex]2(4)\frac{dx}{dt} = 2(\sqrt{17} )(-1)[/tex]
[tex]\frac{dx}{dt} = \frac{-\sqrt{17} }{4}[/tex] = -1.031 m/s
WILL MARK BRAINLIEST If Alan and Zack can clean a room in 30 minutes when working together, and Alan cleans twice as fast as Zack, how long would it take Alan to clean the room by himself?
Answer:
45 min
Step-by-step explanation:
Here,
the we take the work as W and Alan's speed as A and Zack's speed as Z.
A = 2Z
W = 30 ( A+Z)
if the time for Alan to done cleaning alone is t then t = W ÷ A
t = ( 30 (A+(A÷2)))÷ A
t = 45 min
I am done .
Part of the proceeds from a garage sale was $440 worth of $10 and $20 bills. If there were 2 more $10 bills than $20 bills, find the number of each denomination.
Hey there! I'm happy to help!
Let's set this up a system of equations where x represents the number of 10 dollar bills and y represents the number of 20 dollar bills.
10x+20y=440
x=y+2
We see that x has a value of y+2, so we can replace the x in the first equation with y+2 so we can solve for y.
10(y+2)+20y=440
We use distributive property to undo the parentheses.
10y+20+20y=440
We combine like terms.
30y+20=440
We subtract 20 from both sides.
30y=420
y=14
Since there are 2 more $10 bills, there would be 16 of those.
Therefore, there are 16 $10 bills and 14 $20 bills.
Have a wonderful day! :D
Anyone Willing To Hell Out?
Z=
37
39
51
the answer is 36.36 but the closest to it is 37
Could someone answer the question with the photo linked below? Then explain how to solve it?
Answer:
Hey there!
Pythagorean Theorem:
[tex]a^2+b^2=c^2\\[/tex]
Let 6 be a, and 11 be b.
[tex]6^2+11^2=c^2\\[/tex]
[tex]36+121=c^2\\[/tex]
[tex]157=c^2[/tex]
[tex]\sqrt{157} =c[/tex]
Hope this helps :)
Answer:
[tex]12.529[/tex]
Step-by-step explanation:
[tex] {a}^{2} + {b}^{2} = {c}^{2} \\ {6}^{2} + {11}^{2} = {c}^{2} \\ 36 + 121 = {c}^{2} \\ 157 = {c}^{2} \\ \sqrt{157} = {c}^{2} \\ c = 12.529[/tex]
[tex]hope \: it \: helps \: < 3[/tex]
Please answer this correctly without making a mistake I need a correct answer
Answer: 45.5
Step-by-step explanation:
Im in 6th grade and all you had to do was add 18.3 and 27.2 and you’ll get 45.5
Answer:
The garbage dump is 58.3 miles west of the hotel, and the hotel is 57.1 miles west of the hardware store. The hardware store is 44.8 miles west of the library. The hardware store is 57.9 miles north of the office supply store, and the office supply store is 55.5 miles north of the science lab.
Step-by-step explanation:
Which linear inequality is represented by the graph?
Answer:
A. y ≤ 1/2x + 2
Step-by-step explanation:
Well look at the graph,
It is a solid line with it shaded down,
meaning it is y ≤,
So we can cross out B. and D.
So the y intercept is 2, we know this because the y intercept is the point on the line that touches the y axis.
now the slope can be found by seeing how far away each points are from each other,
Hence, the answer is A. y ≤ 1/2x + 2
6th grade math, help me please.
Answer:
B Kim rode 3 more miles per week than Eric rode.
Susan and Mark are given the same amount of money. Mark spends $5 and susan spends $20. If Mark now has twice as much money as Susan , how many dollars did they each have originally ?
so amnt of money is x
x - 5 is Mark's remaining amnt
x - 20 is Susan's remaining amount
x - 5 = 2( x - 20) as he has twice the amnt of Susan
x - 5 = 2x - 40
40 - 5 = 2x - x
35 = x
the original amnt is $35
What is the inverse of the function below?
f(x) = x-5
A. f^-1(x) = x + 5
B. f^-1(X) = x-5
C. f^-1(x) = -x + 5
D. f^-1(x) = -x-5
Answer:
f^-1(x) = x + 5
Step-by-step explanation:
f(x) = x-5
y = x-5
Exchange x and y
x = y-5
Solve for y
x+5 = y-5+5
x+5 =y
The inverse is x+5