Answer:
A 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].
Step-by-step explanation:
We are given that Eight samples of each film thickness are manufactured in a pilot production process, and the film speed (in microjoules per square inch) is measured.
For the 25-mil film, the sample data result is: Mean Standard deviation 1.15 0.11 and For the 20-mil film the data yield: Mean Standard deviation 1.06 0.09.
Firstly, the pivotal quantity for finding the confidence interval for the difference in population mean is given by;
P.Q. = [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ~ [tex]t__n_1_+_n_2_-_2[/tex]
where, [tex]\bar X_1[/tex] = sample mean speed for the 25-mil film = 1.15
[tex]\bar X_1[/tex] = sample mean speed for the 20-mil film = 1.06
[tex]s_1[/tex] = sample standard deviation for the 25-mil film = 0.11
[tex]s_2[/tex] = sample standard deviation for the 20-mil film = 0.09
[tex]n_1[/tex] = sample of 25-mil film = 8
[tex]n_2[/tex] = sample of 20-mil film = 8
[tex]\mu_1[/tex] = population mean speed for the 25-mil film
[tex]\mu_2[/tex] = population mean speed for the 20-mil film
Also, [tex]s_p =\sqrt{\frac{(n_1-1)s_1^{2}+ (n_2-1)s_2^{2}}{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(8-1)\times 0.11^{2}+ (8-1)\times 0.09^{2}}{8+8-2} }[/tex] = 0.1005
Here for constructing a 98% confidence interval we have used a Two-sample t-test statistics because we don't know about population standard deviations.
So, 98% confidence interval for the difference in population means, ([tex]\mu_1-\mu_2[/tex]) is;
P(-2.624 < [tex]t_1_4[/tex] < 2.624) = 0.98 {As the critical value of t at 14 degrees of
freedom are -2.624 & 2.624 with P = 1%}
P(-2.624 < [tex]\frac{(\bar X_1 -\bar X_2)-(\mu_1- \mu_2)}{s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < 2.624) = 0.98
P( [tex]-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < [tex]2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < ) = 0.98
P( [tex](\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] < ([tex]\mu_1-\mu_2[/tex]) < [tex](\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ) = 0.98
98% confidence interval for ([tex]\mu_1-\mu_2[/tex]) = [ [tex](\bar X_1-\bar X_2)-2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] , [tex](\bar X_1-\bar X_2)+2.624 \times {s_p \times \sqrt{\frac{1}{n_1}+\frac{1}{n_2} } }[/tex] ]
= [ [tex](1.15-1.06)-2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } }[/tex] , [tex](1.15-1.06)+2.624 \times {0.1005 \times \sqrt{\frac{1}{8}+\frac{1}{8} } }[/tex] ]
= [-0.042, 0.222]
Therefore, a 98% confidence interval estimate for the difference in mean speed of the films is [-0.042, 0.222].
Since the above interval contains 0; this means that decreasing the thickness of the film doesn't increase the speed of the film.
using the horizontal line test, which of the following can be confused about the inverse of the graph?
Answer:
I think D
Step-by-step explanation:
Verticle or horizontal line test, it would be a function either way
Please answer in the form of an angle or degree
Step-by-step explanation:
angle A = angle B( Corresponding angles)
so,
5x - 5 = 3x + 13
=> 5x - 3x = 13 + 5
=> 2x = 18
=> x = 9
angle B = 3x + 13 = (3×9) + 13 = 27 + 13 = 40
Answer:
x=9, ∠B=40
Step-by-step explanation:
In this case, ∠A≅∠B, as they are corresponding angles. Therefore, if you set up the equation to be 5x-5=3x+13,
2x=18, x=9
∠B=3(9)+13=27+13=40
1. for what constant k must f(k) always equal the constant term of f(x) for any polynomial f(x) 2. If we multiply a polynomial by a constant, is the result a polynomial? 3. if deg(f+g) is less than both deg f and deg g, then must f and g have the same degree?
Answer:
1. k=0
2. yes, result is still a polynomial.
3. yes, f and g must have the same degree to have deg(f+g) < deg(f) or deg(g)
Step-by-step explanation:
1. for what constant k must f(k) always equal the constant term of f(x) for any polynomial f(x)
for k=0 any polynomial f(x) will reduce f(k) to the constant term.
2. If we multiply a polynomial by a constant, is the result a polynomial?
Yes, If we multiply a polynomial by a constant, the result is always a polynomial.
3. if deg(f+g) is less than both deg f and deg g, then must f and g have the same degree?
Yes.
If
deg(f+g) < deg(f) and
deg(f+g) < deg(g)
then it means that the two leading terms cancel out, which can happen only if f and g have the same degree.
What is the image of (-8, 10) when reflected in the y-axis?
Answer:
if you're just reflecting the point over the y-axis it just becomes (8,10)
Answer: (8, 10)
Explanation and Example:
I have a trick that I use. I'm not sure if it will make sense to you but I'll explain it. When the question asks you to reflect over the x-axis, then keep the x in (x,y) the same and just flip the sign for the y. If the question asks you to reflect over the y-axis, then keep y the same and flip the sign for x.
Reflect over x-axis:
(-2, 6) -----> (-2, -6)
Reflect over y-axis:
(-4, -8) -----> (4, -8)
PLEASE HELP ASAP!! Write a polynomial f(x) that satisfies the following conditions. Polynomial of lowest degree with zeros of -4 (multiplicity of 1), 2 (multiplicity of 3), and with f(0)=64
Answer:
See below.
Step-by-step explanation:
So, we have the zeros -4 with a multiplicity of 1, zeros 2 with a multiplicity of 3, and f(0)=64.
Recall that if something is a zero, then the equation must contain (x - n), where n is that something. In other words, for a polynomial with a zero of -4 with a multiplicity of 1, then (x+4)^1 must be a factor.
Therefore, (x-2)^3 (multiplicity of 3) must also be a factor.
Lastly, f(0)=64 tells that when x=0, f(x)=64. Don't simply add 64 (like what I did, horribly wrong). Instead, to keep the zeros constant, we need to multiply like this:
In other words, we will have:
[tex]f(x)=(x+4)(x-2)^3\cdot n[/tex], where n is some value.
Let's determine n first. We know that f(0)=64, thus:
[tex]f(0)=64=4(-2)^3\cdot n[/tex]
[tex]64=-32n, n=-2[/tex]
Now, let's expand:
Expand:
[tex]f(x)=(x+4)(x^2-4x+4)(x-2)(-2)[/tex]
[tex]f(x)=(x^2+2x-8)(x^2-4x+4)(-2)[/tex]
[tex]f(x)=(x^4-4x^3+4x^2+2x^3-8x^2+8x-8x^2+32x-32)(-2)[/tex]
[tex]f(x)=-2x^4+4x^3+24x^2-80x+64[/tex]
This is the simplest it can get.
What is 36/100 added with 4/10
Answer:
0.76 or 19/25
Step-by-step explanation:
Convert 4/10 so that it has a common denominator with 36/100.
4/10 x 10/10 = 40/100
Now that the denominator is the same, just add the top values.
40/100 + 36/100 = 76/100
We can also simplify the answer to be 19/25 by dividing the top and bottom by 4.
Answer:
19/25Step-by-step explanation:
[tex]\frac{36}{100}+\frac{4}{10}\\Let\: first\: deal\: with\: ;\frac{36}{100}\\\mathrm{Cancel\:the\:common\:factor:}\:4\\=\frac{9}{25}\\\\=\frac{9}{25}+\frac{4}{10}\\Now \:lets \:deal \:with ; \frac{4}{10}\\\mathrm{Cancel\:the\:common\:factor:}\:2\\=\frac{2}{5}\\=\frac{9}{25}+\frac{2}{5}\\\mathrm{Prime\:factorization\:of\:}25:\quad 5\times\:5\\\mathrm{Prime\:factorization\:of\:}5:\quad 5\\\mathrm{Multiply\:each\:factor\:the\:greatest\:number\:of\:times\:it\:occurs\:in\:either\:}25\mathrm{\:or\:}5\\[/tex]
[tex]\lim_{n \to \infty} a_n =5\cdot \:5\\\\\mathrm{Multiply\:the\:numbers:}\:5\cdot \:5=25\\=25\\\mathrm{Multiply\:each\:numerator\:by\:the\:same\:amount\:needed\:to\:multiply\:its}\\\mathrm{corresponding\:denominator\:to\:turn\:it\:into\:the\:LCM}\:25\\\mathrm{For}\:\frac{2}{5}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}5\\\frac{2}{5}=\frac{2\times \:5}{5\times \:5}=\frac{10}{25}\\=\frac{9}{25}+\frac{10}{25}\\[/tex]
[tex]\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}\\=\frac{9+10}{25}\\\\=\frac{19}{25}[/tex]
simplify (3+3 / x(x+1) )(x-3 / x(x-1) )
Answer:
I think it is [tex]\frac{6x-18}{x^{4} }[/tex]
Step-by-step explanation:
One number is 2 more than another. The difference between their squares is 52. What are the numbers?
Answer:
The aprox, numbers:
4.1633 and 8.3266
Step-by-step explanation:
a = 2b
a² - b² = 52
then:
(2b)² - b² = 52
4b² - b² = 52
3b² = 52
b² = 52/3
b² = 17.333
√b² = √17.333
b = 4.1633 aprox.
a = 2b
a = 2*4.1633
a = 8.3266
Check:
8.3266² - 4.1633² = 52
69.333 - 17.333 = 52
You are given the following information obtained from a random sample of 5 observations. 20 18 17 22 18 At 90% confidence, you want to determine whether or not the mean of the population from which this sample was taken is significantly less than 21. (Assume the population is normally distributed.) a) State the null and the alternative hypotheses. b) Compute the standard error of the mean. c) Determine the test statistic. d) Test to determine whether or not the mean of the population is significantly less than 21.
Answer:
a
The null hypothesis is
[tex]H_o : \mu = 21[/tex]
The Alternative hypothesis is
[tex]H_a : \mu< 21[/tex]
b
[tex]\sigma_{\= x} = 0.8944[/tex]
c
[tex]t = -2.236[/tex]
d
Yes the mean population is significantly less than 21.
Step-by-step explanation:
From the question we are given
a set of data
20 18 17 22 18
The confidence level is 90%
The sample size is n = 5
Generally the mean of the sample is mathematically evaluated as
[tex]\= x = \frac{20 + 18 + 17 + 22 + 18}{5}[/tex]
[tex]\= x = 19[/tex]
The standard deviation is evaluated as
[tex]\sigma = \sqrt{ \frac{\sum (x_i - \= x)^2}{n} }[/tex]
[tex]\sigma = \sqrt{ \frac{ ( 20- 19 )^2 + ( 18- 19 )^2 +( 17- 19 )^2 +( 22- 19 )^2 +( 18- 19 )^2 }{5} }[/tex]
[tex]\sigma = 2[/tex]
Now the confidence level is given as 90 % hence the level of significance can be evaluated as
[tex]\alpha = 100 - 90[/tex]
[tex]\alpha = 10[/tex]%
[tex]\alpha =0.10[/tex]
Now the null hypothesis is
[tex]H_o : \mu = 21[/tex]
the Alternative hypothesis is
[tex]H_a : \mu< 21[/tex]
The standard error of mean is mathematically evaluated as
[tex]\sigma_{\= x} = \frac{\sigma}{ \sqrt{n} }[/tex]
substituting values
[tex]\sigma_{\= x} = \frac{2}{ \sqrt{5 } }[/tex]
[tex]\sigma_{\= x} = 0.8944[/tex]
The test statistic is evaluated as
[tex]t = \frac{\= x - \mu }{ \frac{\sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 19 - 21 }{ 0.8944 }[/tex]
[tex]t = -2.236[/tex]
The critical value of the level of significance is obtained from the critical value table for z values as
[tex]z_{0.10} = 1.28[/tex]
Looking at the obtained value we see that [tex]z_{0.10}[/tex] is greater than the test statistics value so the null hypothesis is rejected
what other numbers can you square that result in 9 ?
Step-by-step explanation:
I'm not sure what your answers are, but you can only square 3 and -3 to get 9.
Answer:
3, -3
Step-by-step explanation:
3*3 = 9
-3 * -3 = 9
These are the only two numbers that square to 9
Given p(x) = x4 + x3 - 13x2 - 25x - 12
1. What is the remainder when p(x) is divided by X - 4?
2. Describe the relationship between the linear expression and the polynomial?
How do we describe the relationship?
What is 4sqrt7^3 in exponential form?
Answer:
[tex]\boxed{7^{\frac{3}{2} } \times 4}[/tex]
Step-by-step explanation:
[tex]4 (\sqrt{7} )^3[/tex]
Square root can be written as a power.
[tex]4(7^{\frac{1}{2} })^3[/tex]
Multiply the exponents.
[tex]4(7^{\frac{3}{2} })[/tex]
Answer:
A (7^3/4)
Step-by-step explanation:
ed 2020
what are the coordinates of point b on ac such that ab=2/5ac
Answer:
[tex](-\frac{36}{7},\frac{40}{7})[/tex]
Step-by-step explanation:
Coordinates of points A and C are (-8, 6) and (2, 5).
If a point B intersects the segment AB in the ratio of 2 : 5
Then coordinates of the point B will be,
x = [tex]\frac{mx_2+nx_1}{m+n}[/tex]
and y = [tex]\frac{my_2+ny_1}{m+n}[/tex]
where [tex](x_1, y_1)[/tex] and [tex](x_2,y_2)[/tex] are the coordinates of the extreme end of the segment and a point divides the segment in the ratio of m : n.
For the coordinates of point B,
x = [tex]\frac{2\times 2+(-8)\times 5}{2+5}[/tex]
= [tex]-\frac{36}{7}[/tex]
y = [tex]\frac{2\times 5+5\times 6}{2+5}[/tex]
= [tex]\frac{40}{7}[/tex]
Therefore, coordinates of pint B will be,
[tex](-\frac{36}{7},\frac{40}{7})[/tex]
A landscaping company charges $50 per cubic yard of mulch plus a delivery charge of $24. Find a
linear function which computes the total cost C(in dollars) to deliver a cubic yards of mulch.
C(x) =
Answer: c(x) = $50*x + $24
Step-by-step explanation:
First, this situation can be modeled with a linear equation like:
c(x) = s*x + b
where c is the cost, s is the slope, x is the number of cubic yards of mulch bought, and b is the y-intercept ( a constant that no depends on the number x)
Then we know that:
The company charges $50 per cubic yard, so the slope is $50
A delivery charge of $24, this delivery charge does not depend on x, so this is the y-intercept.
Then our equation is:
c(x) = $50*x + $24
This is:
"The cost of buying x cubic yards of mulch"
Find the total area of the prism.
Answer:
A=1,728
Step-by-step explanation:
To find the area of a prism, you must find the area of one side, then multiply it by so it would be Width*Hight*Depth, W*H*D.
The width is 12, the hight is 12, and the depth is 12 so you can write
A=12*12*12
Multiply 12 by 12
A=144*12
Multiply 12 by 144 to get your final total area
A=1,728
Hope this helps, feel free to ask follow-up questions if confused.
Have a good day! :)
Find the distance between the points (–9, 0) and (2, 5). Find the distance between the points (–9, 0) and (2, 5).
Answer:
sqrt( 146)
Step-by-step explanation:
To find the distance, we use the following formula
d = sqrt( ( x2-x1) ^2 + ( y2-y1) ^2)
sqrt( ( -9-2) ^2 + ( 0-5) ^2)
sqrt( ( -11) ^2 + ( -5) ^2)
sqrt( 121+25)
sqrt( 146)
what is the value of this expression when a = 2 and b = -3 ? a^3 - b^3 / 5
Answer:
13 2/5
Step-by-step explanation:
a = 2 and b = -3
so the question asks whats.... a^3 - b^3/5
First we plug in the values of a and b
(2)^3 - (-3)^3 /5
Now we solve the ones in paranthesis first
(2)^3 = 8 because 2×2×2 and
-(-3)^3 forget about the - outside the parenthesis so
(-3)^3 = (-27) because (-3)×(-3)×(-3)
now we put it back together
8 -(-27)/5
the two minus become plus so
8 + 27/5
Now we solve it like fractions
8 and 27/5
simplify
13 and 2/5
Hope that helps!
write the statement for 6x-3=9
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
The statement for [tex]6x - 3 = 9[/tex] is :
[tex]\boxed{Six (x) .minus. Three .equals. Nine.}[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hope this helped you.
Could you maybe give brainliest..?
❀*May*❀
This afternoon, Vivek noticed that the temperature was above zero when the temperature was 17 5/8 degrees. Its evening now, and the temperature is -8 1/2 degrees. What does this mean?
Answer:
The temperature droped from 17 5/8° C to - 8 1/2° C = 26 1/8° C, simply add the 2 mixed fractions together and you'll get the temperture change.
Step-by-step explanation:
Convert to a mixed number:
209/8
Divide 209 by 8:
8 | 2 | 0 | 9
8 goes into 20 at most 2 times:
| | 2 | |
8 | 2 | 0 | 9 |
- | 1 | 6 | |
| | 4 | 9 |
8 goes into 49 at most 6 times:
| | 2 | 6 |
8 | 2 | 0 | 9 |
- | 1 | 6 | |
| | 4 | 9 |
| - | 4 | 8 |
| | | 1 |
Read off the results. The quotient is the number at the top and the remainder is the number at the bottom:
| | 2 | 6 | (quotient)
8 | 2 | 0 | 9 |
- | 1 | 6 | |
| | 4 | 9 |
| - | 4 | 8 |
| | | 1 | (remainder)
The quotient of 209/8 is 26 with remainder 1, so:
Answer: 26 1/8° C
a warehouse had 3 shelves long enough to hold 8 boxes and high enough to hold 4 boxes. all the shelves are full how many boxes are on the shelves all together?
Answer:
8*4*3=96 boxes in total
Step-by-step explanation:
I think. I just multiplies the 3 numbers. Hope this helps (:
Answer:
8*4*3=96 boxes in total
Step-by-step explanation:
I just multiplies the 3 numbers.
Of the cartons produced by a company, % have a puncture, % have a smashed corner, and % have both a puncture and a smashed corner. Find the probability that a randomly selected carton has a puncture or a smashed corner. The probability that a randomly selected carton has a puncture or a smashed corner nothing%. (Type an integer or a decimal. Do not round.)
Full Question
Of the cartons produced by a company, 10% have a puncture, 6% have a smashed corner, and 0.4% have both a puncture and a smashed corner. Find the probability that a randomly selected carton has a puncture or a smashed corner. The probability that a randomly selected carton has a puncture or a smashed corner nothing ____%. (Type an integer or a decimal. Do not round.)
Answer:
[tex]P(Punctured\ or\ Smashed\ Corner) = 0.156[/tex]
Step-by-step explanation:
Given
[tex]Puncture\ Corner = 10\%[/tex]
[tex]Smashed\ Corner = 6\%[/tex]
[tex]Punctured\ and\ Smashed\ Corner = 0.4\%[/tex]
Required
[tex]P(Punctured\ or\ Smashed\ Corner)[/tex]
For non-mutually exclusive event described above, P(Punctured or Smashed Corner) can be calculated as thus;
[tex]P(Punctured\ or\ Smashed\ Corner) = P(Punctured\ Corner) + P(Smashed\ Corner) - P(Punctured\ and\ Smashed\ Corner)[/tex]
Substitute:
10% for P(Puncture Corner),
6% for P(Smashed Corner) and
0.4% for P(Punctured and Smashed Corner)
[tex]P(Punctured\ or\ Smashed\ Corner) = 10\% + 6\% - 0.4\%[/tex]
[tex]P(Punctured\ or\ Smashed\ Corner) = 15.6\%[/tex]
Convert % to fraction
[tex]P(Punctured\ or\ Smashed\ Corner) = \frac{15.6}{100}[/tex]
Convert to decimal
[tex]P(Punctured\ or\ Smashed\ Corner) = 0.156[/tex]
Using Venn probabilities, it is found that:
The probability that a randomly selected carton has a puncture or a smashed corner is 15.6%.In this problem, the events are:
Event A: Puncture.Event B: Smashed corner.The "or" probability is given by:
[tex]P(A \cup B) = P(A) + P(B) - P(A \cap B)[/tex]
10% have a puncture, hence [tex]P(A) = 0.1[/tex]6% have a smashed corner, hence [tex]P(B) = 0.06[/tex].0.4% have both a puncture and a smashed corner, hence [tex]P(A \cup B) = 0.004[/tex].Then:
[tex]P(A \cup B) = 0.1 + 0.06 - 0.004 = 0.156[/tex]
The probability that a randomly selected carton has a puncture or a smashed corner is 15.6%.
To learn more about Venn probabilities, you can check https://brainly.com/question/25698611
PLEASEEEEE HELPPOO
For Individual or Group Explorations
Maximizing the Total Profit
Payles at The Christmas Store very periodically with a high ef 550.000 in December
the Christmas Stove also comes the Powe, where profits reach a high of $80,000
in Aurust and a few of $20,000 in February Assume that the profit function for
Crm Store
Save
40
20
10
1 2 3 4 5 6 7 8 9 10 11 12
Month
a) Write the profit function for The Christmas Store as a function of the month
and sketch its graph
b)
Write the profit function for The Pool Store as a function of the month and
sketch its graph.
are are length
Write the total profit as a function of the month and sketch its graph. What is
the period?
are inside the
est enth of a
Use the maximum feature of a graphing calculator to find the owner's maxi-
mum total profit and the month in which it occurs.
Find the owner's minimum total profit and the month in which it occurs.
We know that y -a sin x + bcos x is a sine function. However, the sum of
two arbitrary sine or cosine functions is not necessarily a sine function. Find an
example in which the graph of the sum of two sine functions does not look like
a sine curve.
Explain.
is tangent to one
Answer:
what
Step-by-step explanation:
An anchor lowered at a constant rate into the ocean takes 5 seconds to move -17.5 meters. What is the rate of the anchor in meters per second?
Answer:
-3.5 meters per second
Step-by-step explanation:
Take the distance and divide by the time
-17.5 meters/ 5 seconds
-3.5 meters per second
Answer:
-3.5 m/s
Step-by-step explanation:
Rate of the anchor = [tex]\frac{distance}{time}[/tex]
[tex]\frac{-17.5}{5}[/tex]
-3.5 meters per second.
-6+4q+(-6q)−6+4q+(−6q)minus, 6, plus, 4, q, plus, left parenthesis, minus, 6, q, right parenthesis ?
Answer:
-16-5q
Step-by-step explanation:
-6+4q-6q-6+4q-6q-6+4q-6q= -18-6q
Answer:C
Step-by-step explanation: 100% correct I did it on Khan Academy
Need help finding the length
Answer:
27
Step-by-step explanation:
First, we need to find x. We are given the perimeter, which is 2l + 2w, so from there, we have an equation of 2(4x-1) + 2(3x+2) = 100. By working through it, we get that x = 7. We're asked to find WX, so plug 7 into 4x - 1 and get 27.
Answer:
27 unitsStep-by-step explanation:
Perimeter of rectangle is 2(l) + 2(w).
The perimeter is given 100 units.
2(4x-1) + 2(3x+2) = 100
Solve for x.
8x-2+6x+4=100
14x+2=100
14x=98
x=7
Plug x as 7 for the side WX.
4(7) - 1
28-1
= 27
find the values of x and y that make k ll j and m ll n
Answer:
x = 80
y = 130
Step-by-step explanation:
The 2 angles are supplementary. so, x-30 + x+50 = 180.
We solve and get 2x = 180-20
x = 80
y = x+50, because of parallel rules.
y = 130
Answer:
x = 80
y = 130
Step-by-step explanation:edge 2020
explain square roots
Answer:A square root of a number is a value that, when multiplied by itself, gives the number. Example: 4 × 4 = 16, so a square root of 16 is 4. Note that (−4) × (−4) = 16 too, so −4 is also a square root of 16. The symbol is √ which always means the positive square root. Example: √36 = 6 (because 6 x 6 = 36)
PLZ IM ON THE CLOCK!!!!! A sports memorabilia store makes $6 profit on each football it sells and $5.50 profit on each baseball it sells. In a typical month, it sells between 35 and 45 footballs and between 40 and 55 baseballs. The store can stock no more than 80 balls total during a single month. What is the maximum profit the store can make from selling footballs and baseballs in a typical month? $457.50 $460.00 $462.50 $572.50
Answer:
460
Step-by-step explanation:
Answer:
460
Step-by-step explanation:
Write the equation of a line through the given point with the given slope (0,6);m undefined
Answer:
x=0
Step-by-step explanation:
If the slope is undefined, the line is vertical
vertical lines are of the form
x =
Since the point is (0,6)
x=0
Use Demoivres Theorem to find (-square root 3 +i)^6
Answer:
[tex]z=(-\sqrt{3}+i)^6[/tex] = -64
Step-by-step explanation:
You have the following complex number:
[tex]z=(-\sqrt{3}+i)^6[/tex] (1)
The Demoivres theorem stables the following:
[tex]z^n=r^n(cos(n\theta)+i sin(n\theta))[/tex] (2)
In this case you have n=6
In order to use the theorem you first find r and θ, as follow:
[tex]r=\sqrt{3+1}=2\\\\\theta=tan^{-1}(\frac{1}{\sqrt{3}})=30\°[/tex]
Next, you replace these values into the equation (2) with n=6:
[tex]z^6=(2)^6[cos(6*30\°)+isin(6*30\°)]\\\\z^6=64[-1+i0]=-64[/tex]
Then, the solution is -64
Answer:
A) -64
Step-by-step explanation:
Edge 2021