A poll of 863 adults in the United States found that a majority—56%—said that changes should be made in government surveillance programs. The poll reported a margin of error of 3.4%. Use the Margin of Error Rule of Thumb to estimate the margin of error for this poll, assuming a 95% confidence level. (Round your answer as a percentage to one decimal place.)
%

Answers

Answer 1

The estimated margin of error for the poll is approximately 0.2%.

How to estimate margin of error?

To estimate the margin of error for the poll, we can use the Margin of Error Rule of Thumb. The rule states that for a 95% confidence level, the margin of error can be estimated by taking the square root of the sample size and dividing it by 20.

Given:

Sample size (n) = 863

Percentage in favor of changes (p) = 56%

Using the Margin of Error Rule of Thumb:

Margin of Error = (√n) / 20

Margin of Error = (√863) / 20 ≈ 29.35 / 20 ≈ 1.46875

To express the margin of error as a percentage, we can calculate the percentage of the sample size that the margin of error represents:

Percentage Margin of Error = (Margin of Error / Sample size) * 100

Percentage Margin of Error = (1.46875 / 863) * 100 ≈ 0.1702

Rounding to one decimal place, the estimated margin of error for this poll is approximately 0.2%.

Therefore, the estimated margin of error for the poll, using the Margin of Error Rule of Thumb and assuming a 95% confidence level, is approximately 0.2%.

Leran more about margin of error

brainly.com/question/29419047

#SPJ11


Related Questions

A spatially flat universe contains a single component with equation of-state parameter w. In this universe, standard candles of luminosity L are distributed homogeneously in space. The number density of the standard candles is no at t to, and the standard candles are neither created nor destroyed.

Answers

In a spatially flat universe with a single component characterized by an equation of state parameter w, standard candles of luminosity L are uniformly distributed and do not undergo any creation or destruction.  



In this scenario, a spatially flat universe implies that the curvature of space is zero. The equation of state parameter w determines the relationship between the pressure and energy density of the component. For example, w = 0 corresponds to non-relativistic matter, while w = 1/3 corresponds to relativistic matter (such as photons).

The standard candles, which have a fixed luminosity L, are uniformly spread throughout space. This means that their number density remains constant over time, indicating that they neither appear nor disappear. The initial number density of these standard candles is given by no at a specific initial time to.

Understanding the distribution and behavior of standard candles in the universe can provide valuable information for cosmological studies. By measuring the observed luminosity of these standard candles, astronomers can infer their distances. This, in turn, helps in studying the expansion rate of the universe and the nature of the dark energy component, which is often associated with an equation of state parameter w close to -1.

To learn more about luminosity click here brainly.com/question/32497496

#SPJ11

4. Solve without using technology. X³ + 4x² + x − 6 ≤ 0 [3K-C4]

Answers

The solution to the inequality X³ + 4x² + x − 6 ≤ 0 can be found through mathematical analysis and without relying on technology.

How can we determine the values of X that satisfy the inequality X³ + 4x² + x − 6 ≤ 0 without utilizing technology?

To solve the given inequality X³ + 4x² + x − 6 ≤ 0, we can use algebraic methods. Firstly, we can factorize the expression if possible. However, in this case, factoring may not yield a simple solution. Alternatively, we can use techniques such as synthetic division or the rational root theorem to find the roots of the polynomial equation X³ + 4x² + x − 6 = 0. By analyzing the behavior of the polynomial and the signs of its coefficients, we can determine the intervals where the polynomial is less than or equal to zero. Finally, we can express the solution to the inequality in interval notation or as a set of values for X.

Learn more about inequality

brainly.com/question/20383699

#SPJ11

Trying to get the right number possible. What annual payment is required to pay off a five-year, $25,000 loan if the interest rate being charged is 3.50 percent EAR? (Do not round intermediate calculations. Round the final answer to 2 decimal places.Enter the answer in dollars. Omit $sign in your response.) What is the annualrequirement?

Answers

To calculate the annual payment required to pay off a five-year, $25,000 loan at an interest rate of 3.50 percent EAR, we can use the formula for calculating the equal annual payment for an amortizing loan.

The formula is: A = (P * r) / (1 - (1 + r)^(-n))

Where: A is the annual payment,

P is the loan principal ($25,000 in this case),

r is the annual interest rate in decimal form (0.035),

n is the number of years (5 in this case).

Substituting the given values into the formula, we have:

A = (25,000 * 0.035) / (1 - (1 + 0.035)^(-5))

Simplifying the equation, we can calculate the annual payment:

A = 6,208.61

Therefore, the annual payment required to pay off the five-year, $25,000 loan at an interest rate of 3.50 percent EAR is $6,208.61.

Learn more about loan here: brainly.com/question/32625768

#SPJ11

The function h models the height of a rocket in terms of time. The equation of the function h(t) = 40t-2t² - 50 gives the height h(t) of the rocket after t seconds, where h(t) is in metres. (1.1) Use the method of completing the square to write the equation of h in the form h(t)= a(t-h)²+k. (1.2) Use the form of the equation in (1.1) to answer the following questions. (a) After how many seconds will the rocket reach its maximum height? (b) What is the maximum height red hed by the rocket?

Answers

The rocket will reach its maximum height after 10 seconds.

The maximum height reached by the rocket is 150 m.

(1.1) Use the method of completing the square to write the equation of h in the form h(t)= a(t-h)²+k:

The function h models the height of a rocket in terms of time.

The equation of the function [tex]h(t) = 40t-2t^2 - 50[/tex] gives the height h(t) of the rocket after t seconds, where h(t) is in metres.

To write the given function in the form of [tex]a(t - h)^2 + k[/tex] we can first group like terms.

[tex]h(t) = 40t-2t^2- 50[/tex]

[tex]h(t) = -2t^2 + 40t - 50[/tex]

[tex]h(t) = -2(t^2 - 20t) - 50[/tex]

To complete the square we need to add and subtract the square of half the coefficient of the linear term.

In this case, the coefficient of the linear term is -20 and half of it is -10. Hence, we will add and subtract 100 in the bracket.

[tex]h(t) = -2(t^2 - 20t + 100 - 100) - 50[/tex]

[tex]h(t) = -2((t - 10)^2 - 100) - 50[/tex]

[tex]h(t) = -2(t - 10)^2 + 200 - 50[/tex]

[tex]h(t) = -2(t - 10)^2 + 150[/tex]

Thus, [tex]h(t)= a(t-h)^2+k[/tex] is: `[tex]h(t)= -2(t - 10)^2 + 150`(1.2)[/tex]

Use the form of the equation in (1.1) to answer the following questions.

(a) From the equation we see that the maximum height will be reached when (t - 10)² is zero. This occurs when t - 10 = 0 or t = 10. Thus, the rocket will reach its maximum height after 10 seconds.

(b) The highest point of the parabolic trajectory occurs at t = 10 seconds. So, substitute 10 into the equation to get the maximum height.

[tex]h(t) = -2(t - 10)^2 + 150[/tex]

[tex]h(10) = -2(10 - 10)^2 + 150[/tex]

[tex]h(10) = -2(0) + 150[/tex]

[tex]h(10) = 150[/tex]

Thus, the maximum height reached by the rocket is 150 m.

To know more about maximum height, visit:

https://brainly.com/question/12446886

#SPJ11

11. 12X³-2X²+X -11 is divided by 3X+1, what is the restriction on the variable? Explain. [2-T/I]
3. A factor of x³ - 5x² - 8x + 12 is a. 1 b. 8 C. X-1 d. x-8

Answers

The restriction on the variable is that it cannot be equal to -1/3.

What limitation does the variable have in order to divide the expression successfully?

When dividing the polynomial 12X³ - 2X² + X - 11 by 3X + 1, we need to find the restriction on the variable. In polynomial division, a restriction occurs when the divisor becomes zero. To find this restriction, we set the divisor, 3X + 1, equal to zero and solve for X:

3X + 1 = 0

3X = -1

X = -1/3

Therefore, the restriction on the variable is that it cannot be equal to -1/3. If X were -1/3, the divisor would be zero, resulting in an undefined division operation. Thus, in order to successfully divide the given expression, X must be any value except -1/3.

Learn more about Variable

brainly.com/question/15078630

#SPJ11







Minimize f = x² + x2 + 60x, subject to the constraints 8₁x₁-8020 82x₁+x₂-120≥0 using Kuhn-Tucker conditions.

Answers

The minimum value of the objective function is 0, which occurs at the point (0, 0).

The Kuhn-Tucker conditions are a set of necessary conditions for a solution to be optimal. In this case, the conditions are:

* The gradient of the objective function must be equal to the negative of the gradient of the constraints.

* The constraints must be satisfied.

* The Lagrange multipliers must be non-negative.

Using these conditions, we can solve for the optimal point. The gradient of the objective function is (2x, 2x, 60). The gradient of the first constraint is (81, 0). The gradient of the second constraint is (-82, 1). Setting these gradients equal to each other, we get the equations:

* 2x = -81

* 2x = 82

* 60 = 1

The first two equations can be solved to get x = -40 and x = 40. The third equation is impossible to satisfy, so there is no solution where all three constraints are satisfied. However, if we ignore the third constraint, then the minimum value of the objective function is 0, which occurs at the point (0, 0).

Learn more about objective function here:

brainly.com/question/11206462

#SPJ11

Prev Question 6 - of 25 Step 1 of 1 The marketing manager of a department store has determined that revenue, in dollars, is related to the number of units of television advertising, x, and the number of units of newspaper advertising, y, by the function R(x, y) = 550(178x − 2y² + 2xy − 3x²). Each unit of television advertising costs $1200, and each unit of newspaper advertising costs $400. If the amount spent on advertising is $19600, find the maximum revenue. AnswerHow to enter your answer (opens in new window) 2 Points Keypad Keyboard Shortcuts $......

Answers

The values of x and y that maximize the revenue are x = 92 and y = 13.

What are the values of x and y that maximize the revenue in the given scenario?

Given that the revenue, R(x,y) is related to the number of units of television advertising, x and the number of units of newspaper advertising, y, by the function R(x, y) = 550(178x − 2y² + 2xy − 3x²).The cost of each unit of television advertising is $1200, and the cost of each unit of newspaper advertising is $400.

The total cost spent on advertising is $19600.To find the maximum revenue, we need to determine the values of x and y such that R(x,y) is maximum. Also, we need to ensure that the total cost spent on advertising is $19600.Therefore, we have the following equations:Total cost = 1200x + 400y … (1)19600 = 1200x + 400y3x² - 2y² + 2xy + 178x = (3x - 2y)(x + 178)

Firstly, we can simplify the equation for R(x,y):R(x, y) = 550(178x − 2y² + 2xy − 3x²)= 550[(3x - 2y)(x + 178)] -- [factorising the expression]Now, we have to determine the maximum value of R(x,y) subject to the condition that the total cost spent on advertising is $19600.

Substituting (1) in the equation for total cost, we get:1200x + 400y = 19600 ⇒ 3x + y = 49y = 49 - 3xPutting this value of y in the equation for R(x, y), we get:R(x) = 550[(3x - 2(49 - 3x))(x + 178)]Simplifying the above expression, we get:R(x) = 330[x² - 81x + 868] = 330[(x - 9)(x - 92)]Thus, the revenue is maximum when x = 9 or x = 92. Since the cost of each unit of television advertising is $1200, and the cost of each unit of newspaper advertising is $400, the number of units of television and newspaper advertising that maximize the revenue are (x,y) = (9, 22) or (x,y) = (92, 13).

Therefore, the maximum revenue is obtained when x = 9, y = 22 or x = 92, y = 13. Let us find the maximum revenue in both cases.R(9, 22) = 550(178(9) − 2(22)² + 2(9)(22) − 3(9)²) = 550(1602) = 881,100R(92, 13) = 550(178(92) − 2(13)² + 2(92)(13) − 3(92)²) = 550(16,192) = 8,905,600Therefore, the maximum revenue is $8,905,600 obtained when x = 92 and y = 13.

Learn more about revenue

brainly.com/question/14952769

#SPJ11



What number d forces a row exchange? Using that value of d, solve the matrix equation.
1
3
1
-2
d
0
1
08-0

Answers

Therefore, the solution to the matrix equation with d = 2 is: x₁ = 6; x₂ = -1; x₃ = -6.

To determine the number d that forces a row exchange, we need to find a value for d that makes the coefficient in the pivot position (2,2) equal to zero. In this case, the pivot position is the (2,2) entry.

From the given matrix equation:

1 3

1 -2

d 0

To force a row exchange, we need the (2,2) entry to be zero. Therefore, we set -2 + d = 0 and solve for d:

d = 2

By substituting d = 2 into the matrix equation, we have:

1 3

1 2

2 0

To solve the matrix equation, we perform row operations:

R₂ = R₂ - R₁

R₃ = R₃ - 2R₁

1 3

0 -1

0 -6

Now, we can see that the matrix equation is in row-echelon form. By back-substitution, we can solve for the variables:

x₂ = -1

x₁ = 3 - 3x₂

= 3 - 3(-1)

= 6

x₃ = -6

To know more about matrix equation,

https://brainly.com/question/32724891

#SPJ11

Use the properties of limits to help decide whether the limit exists. If the limit exists, find its value.
lim x -> [infinity] 8x^3 - 4x - 7 / 9x^2 - 4x - 3
Select the correct choice below and, if necessary, fill in the answer box within your choice
a. lim x -> [infinity] 8x^3 -4x - 7 / 9x^2 - 4x -3
b. the limit does not exist and is neither [infinity] nor -[infinity]

Answers

a. The limit exists and its value is 8/9. To determine whether the limit exists, we need to analyze the highest powers of x in the numerator and denominator of the expression. In this case, the highest power of x is x^3 in the numerator and x^2 in the denominator.

As x approaches infinity, the terms with the highest powers of x dominate the expression. In this case, both the numerator and the denominator grow without bound as x becomes large. Therefore, we can apply the properties of limits to simplify the expression by dividing both the numerator and the denominator by the highest power of x.

Dividing the numerator and denominator by x^2, we get:

lim x -> [infinity] (8x^3/x^2 - 4x/x^2 - 7/x^2) / (9x^2/x^2 - 4x/x^2 - 3/x^2)

Simplifying further, we have:

lim x -> [infinity] (8 - 4/x - 7/x^2) / (9 - 4/x - 3/x^2)

Now, as x approaches infinity, the terms 4/x and 7/x^2 and -4/x and -3/x^2 become increasingly small. Therefore, we can ignore these terms in the limit calculation.

lim x -> [infinity] (8 - 0 - 0) / (9 - 0 - 0)

Finally, we are left with:

lim x -> [infinity] 8/9

Therefore, the limit exists and its value is 8/9.

Learn more about limit here: brainly.com/question/12211820

#SPJ11

Find the total area under the curve f(x) = X = 0 and x = 5. 2xe*² from

Answers

The total area under the curve f(x) = 2xe^(2x) from x = 0 to x = 5 is (10 * e^10 - e^10 + 1)/2 square units.

To find the total area under the curve f(x) = 2xe^(2x) from x = 0 to x = 5, we need to evaluate the definite integral of the function over the given interval.

∫[0, 5] 2xe^(2x) dx

We can use integration techniques to find the antiderivative of 2xe^(2x), and then evaluate the definite integral using the Fundamental Theorem of Calculus.

Let's start by finding the antiderivative:

∫ 2xe^(2x) dx

We can use integration by parts, where u = x and dv = 2e^(2x) dx:

du = dx (differentiating u)

v = ∫ 2e^(2x) dx = e^(2x) (integrating dv)

Applying the integration by parts formula:

∫ u dv = uv - ∫ v du

= x * e^(2x) - ∫ e^(2x) dx

= x * e^(2x) - (1/2) * ∫ 2e^(2x) dx

= x * e^(2x) - (1/2) * e^(2x)

Now, we can evaluate the definite integral over the interval [0, 5]:

∫[0, 5] 2xe^(2x) dx = [x * e^(2x) - (1/2) * e^(2x)] evaluated from x = 0 to x = 5

= (5 * e^(2 * 5) - (1/2) * e^(2 * 5)) - (0 * e^(2 * 0) - (1/2) * e^(2 * 0))

= (5 * e^10 - (1/2) * e^10) - (0 - (1/2) * 1)

= (5 * e^10 - (1/2) * e^10) - (-1/2)

= (5 * e^10 - (1/2) * e^10) + 1/2

= (10 * e^10 - e^10 + 1)/2

Therefore, the total area under the curve f(x) = 2xe^(2x) from x = 0 to x = 5 is (10 * e^10 - e^10 + 1)/2 square units.

To learn more about integral

https://brainly.com/question/22008756

#SPJ11

For the statement, find the constant of variation and the va
y varies directly as the cube of x; y = 25 when x = 5 Find the constant of variation k. k =
(Type an integer or a simplified fraction.)
Find the direct variation equation given y = 25 when x = 5.
(Type an equation. Use integers or fractions for any nur

Answers

Answer: The direct variation equation is y = (1/5)x^3.

In the given statement, "y varies directly as the cube of x," we can express this relationship using the formula:

y = kx^3

To find the constant of variation (k), we can substitute the given values of y and x into the equation and solve for k.

Given y = 25 when x = 5:

25 = k(5^3)

25 = k(125)

25 = 125k

Dividing both sides of the equation by 125:

25/125 = k

1/5 = k

Therefore, the constant of variation (k) is 1/5.

To find the direct variation equation, we substitute the value of k into the equation:

y = (1/5)x^3

The direct variation equation is y = (1/5)x^3.

Learn more about Dividing  : brainly.com/question/15381501

#SPJ11

As degree of leading is greater than 3, solving for roots using rational roots theorem is not enough.
For part (b) use the Eisenstein Criterion.
For part (c), I believe it has to do with working in mod n.
Determine whether or not each of the following polynomials is irreducible over the integers. (a) [2 marks]. x4 - 4x - 8 (b) [2 marks]. x4 - 2x - 6 (C) [2 marks]. x* - 4x2 - 4

Answers

a) By the Eisenstein criterion, x^4 - 4x - 8 is irreducible over the integers.

b) By the Eisenstein criterion, x^4 - 2x - 6 is irreducible over the integers.

c) x^3 - 4x^2 - 4 is irreducible over the integers.

Given that degree of leading coefficient is greater than 3, then solving for roots using rational roots theorem is not enough. We have to use other theorems to determine if the given polynomial is irreducible over the integers.

a) Determine whether x^4 - 4x - 8 is irreducible over the integers using Eisenstein Criterion.

In order to use Eisenstein criterion, we need to find a prime number p such that:
• p divides each coefficient except the leading coefficient.
• p^2 does not divide the constant coefficient of f(x).

In this case, we can take p = 2.

We write the given polynomial as:

x^4 - 4x - 8 =x^4 - 4x + 2 · (-4)

We see that 2 divides each of the coefficients except the leading coefficient, x^4.

Also, 2^2 = 4 does not divide the constant term, -8.

Therefore, by the Eisenstein criterion, x^4 - 4x - 8 is irreducible over the integers.

b) Determine whether x^4 - 2x - 6 is irreducible over the integers using Eisenstein Criterion.

:Let's check for p = 2. We write the given polynomial as:

x^4 - 2x - 6 = x4 + 2 · (-1) · x + 2 · (-3)

We see that 2 divides each of the coefficients except the leading coefficient, x^4.

Also, 2^2 = 4 does not divide the constant term, -6.

Therefore, by the Eisenstein criterion, x4 - 2x - 6 is irreducible over the integers.

c) Determine whether x^3 - 4x^2 - 4 is irreducible over the integers working in mod 3.

Let's work modulo 3 and write the given polynomial as:

x^3 - 4x^2 - 4 ≡ x^3 + 2x^2 + 2 mod 3

We check for all values of x from 0 to 2:

x = 0:

0^3 + 2 · 0^2 + 2 = 2 (not a multiple of 3)

x = 1:

1^3 + 2 · 1^2 + 2 = 5

≡ 2 (not a multiple of 3)

x = 2:

2^3 + 2 · 2^2 + 2

= 16

≡ 1 (not a multiple of 3)

Therefore, x^3 - 4x^2 - 4 is irreducible over the integers.

Know more about the Eisenstein criterion

https://brainly.com/question/32618018

#SPJ11

Find The Derivative Of The Function 9(x):

9(x) = ∫^Sin(x) 5 ³√7 + t² dt

Answers

The derivative of the function 9(x) = ∫[sin(x)]^5 (³√7 + t²) dt can be found using the Fundamental Theorem of Calculus and the chain rule. Therefore,  we can write the derivative of the function 9(x) as 9'(x) = (³√7 + sin(x)²) * cos(x).

Let's denote the integral part as F(t), so F(t) = ∫[sin(x)]^5 (³√7 + t²) dt. According to the Fundamental Theorem of Calculus, if F(t) is the integral of a function f(t), then the derivative of F(t) with respect to x is f(t) multiplied by the derivative of t with respect to x. In this case, the derivative of F(t) with respect to x is (³√7 + t²) multiplied by the derivative of sin(x) with respect to x.

Using the chain rule, the derivative of sin(x) with respect to x is cos(x). Therefore, the derivative of F(t) with respect to x is (³√7 + t²) * cos(x).

Finally, we can write the derivative of the function 9(x) as 9'(x) = (³√7 + sin(x)²) * cos(x).

Learn more about Fundamental Theorem of Calculus here:

https://brainly.com/question/30761130

#SPJ11

Determine whether the series converges or diverges. n+ 5 Σ (n + 4)4 n = 9 ?

Answers

The series converges by the ratio test.

To determine whether the series converges or diverges, we can use the ratio test:

lim(n->∞) |(n+1+5)/(n+5)| * |((n+1)+4)^4/(n+4)^4|

Simplifying this expression, we get:

lim(n->∞) |(n+6)/(n+5)| * |(n+5)^4/(n+4)^4|

= lim(n->∞) (n+6)/(n+5) * (n+5)/(n+4)^4

= lim(n->∞) (n+6)/(n+4)^4

Since the limit of this expression is finite (it equals 1/16), the series converges by the ratio test.

The ratio test is a method used to determine the convergence or divergence of an infinite series. It is particularly useful for series involving factorials, exponentials, or powers of n.

The ratio test states that for a series ∑(n=1 to infinity) aₙ, where aₙ is a sequence of non-zero terms, if the limit of the absolute value of the ratio of consecutive terms satisfies the condition:

lim(n→∞) |aₙ₊₁ / aₙ| = L

Visit here to learn more about ratio test brainly.com/question/31700436

#SPJ11

A truck takes between 2.8 and 4.2 hours to get from the plant to the "La cheap" store, and this time is uniformly distributed. 4.8% of the time the time required to reach that customer is less than Q and 7.2% of the time the time required to reach that customer is greater than R. The truck must visit "La cheap" between 10:00 and 11:45 a.m.:
i) At what time should he leave the plant, to have a probability of 0.9 of not being late for "La cheap"?
ii) If you leave at 10:00 a.m. What is the probability of not arriving on time?
iii) What are the values of Q and R?

Answers

i) The truck should leave the plant at least 4.068 hours (approximately 4 hours and 4 minutes) before the desired arrival time at "La cheap" to have a probability of 0.9 of not being late.

This calculation is obtained by subtracting the time duration for the truck to reach "La cheap" with less than Q probability (0.0672 hours) and the time duration for the truck to reach "La cheap" with greater than R probability (0.1008 hours) from the desired arrival time. To have a 90% probability of not being late for "La cheap," the truck should leave the plant approximately 4 hours and 4 minutes before the desired arrival time. This calculation takes into account the time durations within the given range for the truck to reach the store with less than Q probability and with greater than R probability.

Learn more about probability here : brainly.com/question/31828911

#SPJ11

In each case, find dy/dx and simplify your answer.
a. y=x’e* x+1
b. y – 2
c. y=(x+1)*(x? – 5)*

Answers

The derivative dy/dx of the function y = x * e^(x+1) is (x+2) * e^(x+1).The derivative dy/dx of the function y = 2 is 0.The derivative dy/dx of the function y = (x+1) * (x^2 - 5) is 3x^2 - 2x - 5.

(a) To find the derivative dy/dx of the function y = x * e^(x+1), we can use the product rule. Applying the product rule, we differentiate x with respect to x, which gives us 1, and we differentiate e^(x+1) with respect to x, which gives us e^(x+1). Multiplying these results and simplifying, we get (x+2) * e^(x+1) as the derivative dy/dx.

(b) The derivative of a constant term, such as y = 2, is always 0. Therefore, the derivative dy/dx of y = 2 is 0.

(c) To find the derivative dy/dx of the function y = (x+1) * (x^2 - 5), we can use the product rule. Applying the product rule, we differentiate (x+1) with respect to x, which gives us 1, and we differentiate (x^2 - 5) with respect to x, which gives us 2x. Multiplying these results and simplifying, we obtain 3x^2 - 2x - 5 as the derivative dy/dx.

To learn more about derivatives click here :

brainly.com/question/29020856

#SPJ11

a board game uses the deck of 20 cards shown to the right. two cards are selected at random from this deck. determine the probability that neither card shows , both with and without replacement.

Answers

The probability that neither card shows with and without replacement is 0.89 and 0.81, respectively.

The deck of 20 cards can be used to play a board game. Two cards are picked at random from this deck. We want to determine the probability that neither card shows, both with and without replacement. we can utilize the formula : P(E) = (n - r) / (n - 1)P(E) = (18/20) * (17/19)P(E) = 0.89 Calculation with replacement To determine the probability that neither card shows when two cards are drawn with replacement, we can use the following formula :P(E) = P(E1) x P(E2)P(E) = (18/20) * (18/20)P(E) = 0.81 Therefore, the probability that neither card shows with and without replacement is 0.89 and 0.81, respectively.

To know more about Probability  visit :

https://brainly.com/question/31828911

#SPJ11

4. [6 points] Find the final coordinates P" of a 2-D point P(3,-5), when first it is rotated 30° about the origin. Then translated by translation distances t = -4 and t, 6. Use composite transformation. Solve step by step, show all the steps. A p" = M.P M T.R 10 te 0 1 h 001 cos(e) -sin(e) 0 sin(8) cos(0) 0 ;] 0 0 1 T = R =

Answers

The final coordinates P" are (3√3/2 - 3, 5√3/2 + 21/2).


P(3,-5) is rotated by 30°, and then translated by translation distances t = -4 and t, 6.  
The composite transformation matrix is:  
AP" = M.P.M T.R  
M = cos(θ)  -sin(θ)   0  
   sin(θ)   cos(θ)   0  
     0        0      1  
θ = 30°,  
M = cos(30°)  -sin(30°)   0  
   sin(30°)   cos(30°)   0  
      0         0        1  
M = √3/2   -1/2   0  
    1/2    √3/2  0  
     0       0    1  
T = translation matrix  
T = 1  0  t  
    0  1  t  
    0  0  1  
t1 = -4, t2 = 6,  
T = 1  0  -4  
    0  1   6  
    0  0   1  
R = Reflection matrix  
R = -1  0  0  
    0  -1  0  
    0  0   1  
AP" = M.P.M T.R  
 =  √3/2   -1/2   0   .  3  
    1/2    √3/2  0   .  -5  
     0       0    1   .  1  
 = [√3/2*3 + (-1/2)*(-5),  1/2*3 + √3/2*(-5),  1]  
 = [3√3/2 + 5/2, -(5√3/2 - 3/2),  1]  
Now, it is translated by t1 = -4, t2 = 6  
AP" = T . AP"  
 = 1  0  -4   .   [3√3/2 + 5/2, -(5√3/2 - 3/2),  1]  
    0  1   6      [3√3/2 + 5/2, -(5√3/2 - 3/2),  1]  
    0  0   1  
 = [1*(3√3/2 + 5/2) + 0*(-5√3/2 + 3/2) - 4,  0*(3√3/2 + 5/2) + 1*(-5√3/2 + 3/2) + 6,  1]  
 = [3√3/2 - 3, 5√3/2 + 21/2, 1]  
Hence, the final coordinates P" are (3√3/2 - 3, 5√3/2 + 21/2).

Know more about coordinates here:

https://brainly.com/question/17206319

#SPJ11

Two random samples are taken, one from among UVA students and the other from among UNC students. Both groups are asked if academics are their top priority. A summary of the sample sizes and proportions of each group answering yes" are given below. UVA (Pop. 1): n₁ = 95, P1 = 0.726 UNC (Pop. 2): n2 = 94, P2 = 0.577 Find a 95.5% confidence interval for the difference P₁ P2 of the population proportions.

Answers

To find a 95.5% confidence interval for the difference [tex]\(P_1 - P_2\)[/tex] of the population proportions, we can use the formula:

[tex]\[\text{{CI}} = (P_1 - P_2) \pm Z \sqrt{\frac{{P_1(1-P_1)}}{n_1} + \frac{{P_2(1-P_2)}}{n_2}}\][/tex]

where [tex]\(P_1\) and \(P_2\)[/tex] are the sample proportions, [tex]\(n_1\) and \(n_2\)[/tex] are the sample sizes, and [tex]\(Z\)[/tex] is the critical value from the standard normal distribution corresponding to the desired confidence level.

Given the following values:

[tex]UVA (Pop. 1): \(n_1 = 95\), \(P_1 = 0.726\)UNC (Pop. 2): \(n_2 = 94\), \(P_2 = 0.577\)[/tex]

We can calculate the critical value [tex]\(Z\)[/tex] using the desired confidence level of 95.5%. The critical value corresponds to the area in the tails of the standard normal distribution that is not covered by the confidence level. To find the critical value, we subtract the confidence level from 1 and divide by 2 to get the area in each tail:

[tex]\[\frac{{1 - 0.955}}{2} = 0.02225\][/tex]

Looking up this area in the standard normal distribution table or using statistical software, we find the critical value to be approximately 1.96.

Plugging in the values into the confidence interval formula, we have:

[tex]\[\text{{CI}} = (0.726 - 0.577) \pm 1.96 \sqrt{\frac{{0.726(1-0.726)}}{95} + \frac{{0.577(1-0.577)}}{94}}\][/tex]

Simplifying the expression:

[tex]\[\text{{CI}} = 0.149 \pm 1.96 \sqrt{0.002083 + 0.002103}\][/tex]

[tex]\[\text{{CI}} = 0.149 \pm 1.96 \sqrt{0.004186}\][/tex]

[tex]\[\text{{CI}} = 0.149 \pm 1.96 \cdot 0.0647\][/tex]

Finally, the 95.5% confidence interval for the difference of population proportions is:

[tex]\[\text{{CI}} = (0.149 - 0.127, 0.149 + 0.127)\][/tex]

[tex]\[\text{{CI}} = (0.022, 0.276)\][/tex]

Therefore, we can say with 95.5% confidence that the true difference between the population proportions [tex]\(P_1\) and \(P_2\)[/tex] lies within the interval (0.022, 0.276).

To know more about value visit-

brainly.com/question/29892330

#SPJ11

select the first function, y = 0.2x2, and set the interval to [−5, 0].

Answers

The function y = 0.2x2 is a quadratic function, which means it has a parabolic shape. Setting the interval to [−5, 0] means we are looking at the values of the function for x values between −5 and 0. When we substitute these values into the function, we get the corresponding y values.

To find the values of y for this interval, we can create a table or plot the points on a graph. For example, when x = −5, y = 5, and when x = 0, y = 0. For the values in between, we can use the formula y = 0.2x2 to find the corresponding y values.

Graphing this function on a coordinate plane, we can see that it opens upward, with the vertex at (0,0). The y values increase as x values move away from the vertex in either direction. In the interval [−5, 0], the values of y decrease as x values become more negative.

To know more about quadratic function visit:

https://brainly.com/question/18958913

#SPJ11

Which of the following is the sum of the series below?
3 + 9/2! + 27/3! + 81/4!
a. e^3 - 2
b. e^3 - 1
c. e^3
d. e^3 + 1
e. e^3 + 2

Answers

The series given is 3 + 9/2! + 27/3! + 81/4!. We are asked to find the sum of this series among the provided options. The correct answer can be determined by recognizing the pattern in the series and applying the formula for the sum of an infinite geometric series.

The given series has a common ratio of 3/2. We can rewrite the terms as follows: 3 + (9/2) * (1/2) + (27/6) * (1/2) + (81/24) * (1/2). Notice that the denominator of each term is the factorial of the corresponding term number.

Using the formula for the sum of an infinite geometric series, which is a / (1 - r), where a is the first term and r is the common ratio, we can calculate the sum. In this case, the first term (a) is 3 and the common ratio (r) is 3/2.

Plugging these values into the formula, we get the sum as 3 / (1 - (3/2)). Simplifying further, we find that the sum is equal to 3 / (1/2) = 6.

Comparing this result with the given options, we can see that none of the provided options matches the sum of 6. Therefore, none of the options is the correct answer for the sum of the given series.

To learn more about infinite geometric series, click here:

brainly.com/question/16037289

#SPJ11

A metal bar at a temperature of 70°F is placed in a room at a constant temperature of 0°F. If after 20 minutes the temperature of the bar is 50 F, find the time it will take the bar to reach a temperature of 35 F. none of the choices
a. 20minutes
b. 60minutes
c. 80minutes
d. 40minutes

Answers

The time it will take for the metal bar to reach a temperature of 35°F cannot be determined from the given information. None of the provided choices (a, b, c, d) accurately represents the time it will take for the bar to reach the specified temperature.

The rate at which the temperature of the metal bar decreases can be modeled using Newton's law of cooling, which states that the rate of temperature change is proportional to the difference between the current temperature and the ambient temperature. However, the problem does not provide the necessary information, such as the specific cooling rate or the material properties of the metal bar, to accurately calculate the time it will take for the bar to reach a temperature of 35°F.

The given data only mentions the initial and final temperatures of the bar and the time it took to reach the final temperature. Without additional information, we cannot determine the cooling rate or the time it will take to reach a specific temperature.

Therefore, the correct answer is that the time it will take for the bar to reach a temperature of 35°F cannot be determined from the given information. None of the provided choices (a, b, c, d) accurately represents the time it will take for the bar to reach the specified temperature.

To learn more about Newton's law of cooling click here: brainly.com/question/30729487

#SPJ11

prove that the number of permutations of the set {1, 2, . . . , n} with n elements is n!, for natural number n ≥ 1. as an examp

Answers

The number of permutations of the set {1, 2, . . . , n} with n elements is n!, for natural number n ≥ 1 fir given set A = {1, 2, 3, ....n},the number of permutations of set A with n elements.

Let n be a natural number greater than or equal to 1.

Let A = {a_1, a_2, . . . , a_n} be a set with n distinct elements.

We wish to find the number of permutations of A.

The number of ways to choose the first element of the permutation is n.

The number of ways to choose the second element, once the first element has been chosen, is n − 1.

The number of ways to choose the third element, once the first two elements have been chosen, is n − 2.

Continuing in this way, we see that there are n(n − 1)(n − 2) ··· 3 · 2 ·

1 ways to choose all n elements in a sequence, that is, there are n! permutations of A.

Therefore, we have proved that the number of permutations of the set {1, 2, . . . , n} with n elements is n!, for natural number n ≥ 1.

To know more about permutations , visit:

https://brainly.com/question/1216161

#SPJ11

Moving to the next question prevents changes Question 1 Given the function f defined as: f: R → R f(x) = 2x2 + 1 Select the correct statements 1.f is bijective 2. f is a function 3.f is one to one C4.f is onto El 5. None of the given statements

Answers

The function f defined as is onto El . The correct option is F.

Given the function f defined as: f: R → R f(x) = 2x² + 1. Let's check the following statements -

Statement 1: f is bijective. For f to be bijective, it must be both one-to-one and onto. Let's check if f is one-to-one:

To show that f is one-to-one,

we need to prove that if f(a) = f(b),

then a = b. Let a, b ∈ R such that f(a) = f(b).

Then we have: 2a² + 1 = 2b² + 1 ⇒ a² = b² ⇒ a = ±b. So f is not one-to-one. Therefore, statement 1 is not correct. Statement 2: f is a function.

Yes, f is a function, since for every real number x, f(x) is a unique real number.

Statement 3: f is one to one. We have shown above that f is not one-to-one.

Hence, statement 3 is not correct.

Statement 4: f is onto.

To show that f is onto, we need to show that every element of R is in the range of f, i.e., for every y ∈ R, there is an x ∈ R such that f(x) = y. Consider y ∈ R, then we can solve 2x² + 1 = y for x, i.e., x = ±√((y - 1) / 2).

Hence, f is onto.

Therefore, statement 4 is correct.

Statement 5: None of the given statements. This statement is incorrect as we have verified statement 2 and 4 to be true. Therefore, the correct statements are statement 2 (f is a function) and statement 4 (f is onto).

To know more about bijective visit:

https://brainly.com/question/30241427

#SPJ11

A rectangular page is to contain 24 in^2 of print. The margins at the top and bottom of the page are each 1 1/2 inches. The margins on each side are 1 inch. What should the dimensions of the page be so that the least amount of paper is used?

Answers

To minimize the amount of paper used, the dimensions of the rectangular page should be 5 inches by 6 inches.

Let's assume the length of the page is x inches. Since there are 1-inch margins on each side, the effective printable width of the page would be (x - 2) inches. Similarly, the effective printable height would be (24 / (x - 2)) inches, considering the print area of 24 in^2.

To minimize the amount of paper used, we need to find the dimensions that minimize the total area of the page, including the printable area and margins. The total area can be calculated as follows:

Total Area = (x - 2) * (24 / (x - 2))

To simplify the equation, we can cancel out the common factor of (x - 2):

Total Area = 24

Since the total area is constant, we can conclude that the dimensions that minimize the amount of paper used are the ones that satisfy the equation above. Solving for x, we find x = 6. Hence, the dimensions of the page should be 5 inches by 6 inches, with 1 1/2-inch margins at the top and bottom and 1-inch margins on each side.

Learn more about rectangular here:

https://brainly.com/question/21416050

#SPJ11

Subjective questions. (51 pts)
Exercise 1. (17 pts)
Let f(z) = z^4+4/z^2-1 c^z
where z is a complex number.
1) Find an upper bound for |f(z)| where C is the arc of the circle |z| = 2 lying in the first quadrant.
2) Deduce an upper bound for |∫c f(z)dz| where C is the arc of th circle || = 2 lying in the first quadrant.

Answers

The upper bound for |f(z)| on the arc C of the circle |z| = 2 in the first quadrant is 33. The upper bound for |∫c f(z)dz| is 33π, where C is the arc of the circle |z| = 2 lying in the first quadrant.

To find the upper bound for |f(z)| on the given arc C, we can use the triangle inequality. We start by bounding each term in the expression separately. For |z^4|, we have |z^4| = |r^4e^(4iθ)| = r^4, where r = |z| = 2. For |4/z^2 - 1|, we can use the reverse triangle inequality: |4/z^2 - 1| ≥ ||4/z^2| - 1| = |4/|z^2|| - 1|. Since |z| = 2 lies in the first quadrant, |z^2| = |z|^2 = 4. Plugging in these values, we get |4/z^2 - 1| ≥ |4/4 - 1| = 0. Thus, the upper bound for |f(z)| on C is |f(z)| ≤ |r^4| + |4/z^2 - 1| ≤ 2^4 + 0 = 16.

To deduce the upper bound for |∫c f(z)dz|, we use the estimate obtained above. Since C is the arc of the circle |z| = 2 in the first quadrant, its length is given by the circumference of a quarter-circle, which is π. Therefore, the upper bound for |∫c f(z)dz| is |∫c f(z)dz| ≤ 16π = 33π. This upper bound is a result of bounding the integrand by the maximum value obtained for |f(z)| on the arc C and then multiplying it by the length of the curve.

Learn more about quadrant here: brainly.com/question/29296837

#SPJ11


all
one question so please do the two parts, don't solve it on paper
please just write down
Guided Practice Write an equation for the line tangent to each parabola at each given point. y? 5A. y = 4x2 + 4; (-1,8) 5B. x= 5 - = 4; (1, -4)

Answers

A. The equation for the line tangent to the parabola

y = 4x^2 + 4 at the point (-1, 8) is

y - 8 = -8(x + 1).

B. The equation for the line tangent to the parabola

x = 5 - y^2 at the point (1, -4) is

x - 1 = 8(y + 4).

A. For the parabola

y = 4x^2 + 4,

the equation of the line tangent at the point (-1, 8) is

y - 8 = -8(x + 1).

This is determined by finding the derivative of the function and substituting the x-coordinate into it to obtain the slope. Using the point-slope form, we get the equation of the tangent line.

B. The parabola

x = 5 - [tex]y^2[/tex]

can be differentiated with respect to y to find the derivative

dx/dy = -2y.

Substituting the y-coordinate of (1, -4) into the derivative gives a slope of 8. By using the point-slope form, we find that the equation of the tangent line at (1, -4) is

x - 1 = 8(y + 4).

Therefore, the equation for the line tangent to the parabola

x = 5 - [tex]y^2[/tex]

at the point (1, -4) is x - 1 = 8(y + 4) and the equation for the line tangent to the parabola

y = 4[tex]x^2[/tex] + 4  at the point (-1, 8) is

y - 8 = -8(x + 1).

To know more about tangent to the parabola, visit:

https://brainly.com/question/1675172

#SPJ11

(a) Bernoulli process: i. Draw the probability distributions (pdf) for X~ bin(8,p) (r) for p = 0.25, p=0.5, p = 0.75, in each their separate diagram. ii. Which effect does a higher value of p have on the graph, compared to a lower value? iii. You are going to flip a coin 8 times. You win if it gives you precisely 4 or precisely 5 heads, but lose otherwise. You have three coins, with Pn = P(heads) equal to respectively p₁ = 0.25, P2 = 0.5, and p = 0.75. Which coin gives you the highest chance of winning? Digits in your answer Unless otherwise specified, give your answers with 4 digits. This means xyzw, xy.zw, x.yzw, 0.xyzw, 0.0xyzw, 0.00xyzw, etc. You will not get a point deduction for using more digits than indicated. If w=0, zw=00, or yzw = 000, then the zeroes may be dropped, ex: 0.1040 is 0.104, and 9.000 is 9. Use all available digits without rounding for intermediate calculations. Diagrams Diagrams may be drawn both by hand and by suitable software. What matters is that the diagram is clear and unambiguous. R/MatLab/Wolfram: Feel free to utilize these software packages. The end product shall nonetheless be neat and tidy and not a printout of program code. Intermediate values must also be made visible. Code + final answer is not sufficient.

Answers

Probability distributions for X~bin(8,p) with p=0.25, p=0.5, p=0.75: see diagrams. Higher p shifts distribution right increases the likelihood of a larger X and a Coin with p=0.5 gives the highest chance of winning (0.4922).

The probability distributions (pdf) for X ~ bin(8,p) with p = 0.25, p = 0.5, and p = 0.75 are as follows:

For p = 0.25:

(0: 0.1001), (1: 0.2734), (2: 0.3164), (3: 0.2344), (4: 0.0977), (5: 0.0234), (6: 0.0039), (7: 0.0004), (8: 0.0000)

For p = 0.5:

(0: 0.0039), (1: 0.0313), (2: 0.1094), (3: 0.2188), (4: 0.2734), (5: 0.2188), (6: 0.1094), (7: 0.0313), (8: 0.0039)

For p = 0.75:

(0: 0.0000), (1: 0.0004), (2: 0.0039), (3: 0.0234), (4: 0.0977), (5: 0.2344), (6: 0.3164), (7: 0.2734), (8: 0.1001)

ii. A higher value of p shifts the graph towards the right and increases the likelihood of obtaining larger values of X. As p increases, the distribution becomes more skewed towards the right, with the peak shifting towards higher values. This means that a higher p leads to a higher probability of success and a greater concentration of probability towards higher values.

iii. To determine the coin that gives the highest chance of winning (getting precisely 4 or 5 heads), we compare the probabilities for X ~ bin(8, p₁), X ~ bin(8, p₂), and X ~ bin(8, p₃). Calculating the probabilities, we find that the coin with p₂ = 0.5 gives the highest chance of winning, with a probability of 0.4922.

To learn more about “Probability” refer to the https://brainly.com/question/13604758

#SPJ11

Hypothesis Testing 9. The Boston Bottling Company distributes cola in cans labeled 12 oz. The Bureau of Weights and Measures randomly selected 36 cans, measured their contents, and obtained a sample mean of 11.82 oz and a sample standard deviation of 0.38 oz. Use 0.01 significance level to test the claim that the company is cheating consumers.

Answers

Given,

The Tasty Bottling Company distributes cola in cans labeled 12 oz. The Bureau of Weights and Measures randomly selected 36 cans, measured their contents, and obtained a sample mean of I I .82 oz. and a sample standard deviation of 0.38 oz.

Now,

Claim translates that :

The mean is less than 12 oz.

µ<12

Therefore,

[tex]H_{0}[/tex] : µ≥12

[tex]H_{1}[/tex] : µ<12

The critical Z value is -2.33 .

Test statistic:

Z = 11.82-12/0.38/√36

Z = -2.84

As we see the test statistic is in critical region, we reject [tex]H_{0}[/tex] .

Hence we can claim that the company is cheating with its consumers.

Know more about statistics,

https://brainly.com/question/13013891

#SPJ1

"
Let f(u, v) = (tan(u – 1) – eº , 8u? – 702) and g(x, y) = (29(x-»), 9(x - y)). Calculate fog. (Write your solution using the form (*,*). Use symbolic notation and fractions where needed.)

Answers

The composition fog is given by fog(x, y) = f(g(x, y)). Calculate fog using symbolic notation and fractions where needed.

What is the result of calculating the composition fog using the functions f and g?

To calculate the composition fog, we substitute g(x, y) into the function f(u, v). Let's first find the components of g(x, y):

g1(x, y) = 29(x - y)

g2(x, y) = 9(x - y)

Now we substitute g1(x, y) and g2(x, y) into f(u, v):

f(g1(x, y), g2(x, y)) = f(29(x - y), 9(x - y))

Expanding the expression:

fog(x, y) = (tan(29(x - y) - 1) - e^0, 8(29(x - y))^2 - 702)

Simplifying further:

fog(x, y) = (tan(29x - 29y - 1), 8(29x - 29y)^2 - 702)

Therefore, the composition fog(x, y) is given by the expression (tan(29x - 29y - 1), 8(29x - 29y)^2 - 702).

Learn more about composition

brainly.com/question/21599979

#SPJ11

Other Questions
The articetus was a four-legged dolphin ancestor that lived & breathed on land. The Inea geoffrenis is a modern, fully aquatic dolphin that breathes in water. Explain why paleontologists consider the Prozeuglodon an example of a transitional dolphin species: The task: For the given Boolean function1) Find its DNF ( Disjunctive Normal Form ).2) Find its dual function ( using 2 methods: the definition & the theorem )Q) f(x, y, z) = x (Z V y) Norman Enterprises has a standard cost system in which manufacturing overhead is applied to units of product on the basis of standard direct labor-hours (DLHs). The company has provided the following data concerning its fixed manufacturing overhead costs for last year: $42,000 $6,000 Total actual fixed overhead cost incurred. Fixed overhead cost overapplied.. Number of units produced...... Volume variance, unfavorable. Standard labor-hours per unit...... 12,500 $3,600 1.6 DLHS 93. The fixed portion of the predetermined A) $1.80 per DLH overhead rate last year was: B) $2.40 per DLH C) $2.88 per DLH D) $3.84 per DLH Answer: B Level: Hard LO: 5 94. The budgeted fixed overhead cost last year was: A) $41,000 12,500 1.6 = 20,000 total DLHS 12,500X1-6 = 20,000 Behind the Supply Curve End of Chapter ProblemVCQuantity of trucksFC20 orders40 orders60 orders2$6,000$2,000$5,000$12,00037,0001,8003,80010,80048,0001,2003,6008,400Daniella owns a small concrete-mixing company. Her fixed cost is the cost of the concrete-batching machinery and her mixer trucks. Her variable cost is the cost of the sand, gravel, and other inputs for producing concrete; the gas and maintenance for the machinery and trucks; and her workers. She is trying to decide how many mixer trucks to purchase. She has estimated the costs shown in the accompanying table based on estimates of the number of orders that her company will receive per week.a. For each level of fixed cost (i.e., for each number of mixer trucks), calculate Daniella's total cost of producing 20, 40, and 60 orders per week.TC, 20 orders, 2 trucks: $TC, 40 orders, 2 trucks: $TC, 60 orders, 2 trucks: $TC, 20 orders, 3 trucks: $TC, 40 orders, 3 trucks: $TC, 60 orders, 3 trucks: $TC, 20 orders, 4 trucks: $TC, 40 orders, 4 trucks: $TC, 60 orders, 4 trucks: $b. If Daniella is producing 20 orders per week, how many trucks should she purchase, and what will her average total cost be? Round average total cost to the nearest dollar.Daniella should buytrucks.Her average total cost will be $per order.If Daniella is producing 40 orders per week, how many trucks should she purchase, and what will her average total cost be? Round the average total cost to the nearest dollar.Daniella should buytrucks.Her average total cost will be $per order.If Daniella is producing 60 orders per week, how many trucks should she purchase, and what will her average total cost be? Round the average total cost to the nearest dollar.Daniella should buytrucks.Her average total cost will be $per order. 7.15NWLatex allergy in health care workers. Health care work- ers who use latex gloves with glove powder may develop a latex allergy. Symptoms of a latex allergy include con- junctivitis, hand eczema, nasal congestion, a skin rash, and shortness of breath. Each in a sample of 46 hospital em- ployees who were diagnosed with latex allergy reported on their exposure to latex gloves (Current Allergy & Clinical Immunology, Mar. 2004). Summary statistics for the number of latex gloves used per week are x 19.3 and S = 11.9. a. Give a point estimate for the average number of latex gloves used per week by all health care workers with a latex allergy.b. Form a 95% confidence interval for the average number of latex gloves used per week by all health care workers with a latex allergy.c. Give a practical interpretation of the interval you found in part b.d. Give the conditions required for the interval in part b to be valid. De los 12 jugadores del equipo 2/8 son delanteros On January 1, 2019 Garcia Company had an $8,000 balance in the Accounts Receivable account and a zero balance in the Allowance for Doubtful Accounts account. During 2019, Garcia provided $52,000 of service on account. The company collected $48,500 cash from account receivable. Uncollectible accounts are estimated to be 2% of sales on account. The amount of uncollectible accounts expense recognized on the 2019 income statement is: a $500 b. $970. c. $160. d. $1,040 Consider the points which satisfy the equation y = x + ax +mod where a = 7.b = 10, and p 11 Enter a comma separated list of points (x,y) consisting of all points in Zsatutying the equation. (Do not try to enter the point at infinity What in the cardinality of this elliptic curve group? If gas molecules in an enclosed space are allowed to enter a second chamber, the resulting redistribution of gas molecules represents an increase in .8. A ballon is in the form of right circular cylinder of radius 1.5 m and length 4m and is surrounded by hemispherical ends. If the radius is increased by 0.01 m and length by 0.05m, find the percentage chant the volume of ballon. Assume that the juice market is currently in equilibrium. What happens to the price and demand for apple juice when the price of apples increases? A. Price increases and quantity increases B. Price increases and quantity decreases C. Price decreases and quantity increases D. Price decreases and quantity decreases Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = 7 - x, y = 3; about the x-axis V = ..........Sketch the region. in cross-section 2, which principle of relative dating best indicates where the oldest rocks are found? Suppose the economy is operating at a point where output isgreater than the natural level of output. Given this information,is the actual price level equal to the expected price level at thecurrent An explorer starts their adventure. They begin at point X and bike 7 km south. Their tire pops, so they get off of their bike, and walk 7 km east, then 7 km north. Suddenly, they are back to point X. Assuming that our Earth is a perfect sphere, find all the points on its surface that meet this condition (your answer should be in the form of a mathematical expression). Your final answer should be in degrees-minutes-seconds. Hint: There are infinite number of points, and you'd be wise to start from "spe- cial" parts of the Earth. Answer each question: 1. [4 pts] Let U = {a,b, c, d, e, f}, A = {a,b,c,d}, and B = {b, e, d}. Find (AUB)'.(An B)'. A'U B', and A' B'. Show your steps. 2. [2 pts] State both of DeMorgan's Laws for Sets. Are the results of item 1 consistent with DeMorgan's Laws for Sets? Explain. 3. [2 pts] State both of DeMorgan's Laws for Logic. Explain, in your own words, how these laws correspond to DeMorgan's Laws for Sets. TES-230 Inc. is a retailer. Its accountants are preparing the company's 2nd quarter master budget. The company has the following balance sheet as of March 31.TES-230 Inc.Balance SheetMarch 31AssetsCash$76,000Accounts receivable137,000Inventory86,100Plant and equipment, net of depreciation230,000Total assets$529,100Liabilities and Stockholders EquityAccounts payable$91,000Common stock312,000Retained earnings126,100Total liabilities and stockholders equity$529,100TES-230 accountants have made the following estimates:Sales for April, May, June, and July will be $410,000, $430,000, $420,000, and $440,000, respectively.All sales are on credit. Each months credit sales are collected 35% in the month of sale and 65% in the month following the sale. All of the accounts receivable at March 31 will be collected in April.Each months ending inventory must equal 30% of next months cost of goods sold. The cost of goods sold is 70% of sales. The company pays for 40% of its merchandise purchases in the month of the purchase and the remaining 60% in the month following the purchase. All of the accounts payable at March 31 are related to previous merchandise purchases and will be paid in April.Monthly selling and administrative expenses are always $58,000. Each month $8,000 of this total amount is depreciation expense and the remaining $50,000 is spent for expenses that are paid in the month they are incurred.The company will not borrow money or pay or declare dividends during the 2nd quarter. The company will not issue any common stock or repurchase its own stock during the 2nd quarter.How much is the company's expected Accounts Receivable balance on June 30?Multiple Choie$279,500$426,500$147,000$273,000 help, how do i solve for x? i dont get it The volume, L litres, of emulsion paint in a plastic tub may be assumed to be normally distributed with mean 10.25 and variance . (a) Assuming that a = 0.04, determine P(L A solid S is bounded by the surfaces x = x, y = x and z = 2. Find the mass of the solid if its density is given by p(z) = z. A parabola has the following equation: y = Ax x>0, A>0 The parabola is rotated about O onto a new parabola with equations 16x-24xy +9y+30x + 40y = 0 Use algebra to determine the value of A Steam Workshop Downloader