Therefore, the perimeter of the rectangle is 42 centimeters.
What is area?The concept of area is used in many areas of mathematics, science, and everyday life. It is used in geometry to calculate the area of various shapes, such as triangles, circles, and polygons. It is also used in physics to calculate the amount of surface area of an object that is exposed to air or water, and in architecture and engineering to determine the amount of material needed to construct a building or structure.
Here,
To find the perimeter of a rectangle, we need to know its length and width. We are given that the width of the rectangle is 9 centimeters, and the area of the rectangle is 108 square centimeters.
We can use the formula for the area of a rectangle:
Area of rectangle = length x width
Plugging in the values we have:
108cm² = length x 9cm
Solving for the length, we can divide both sides by 9cm:
length = 108cm² / 9cm
length = 12cm
So, the length of the rectangle is 12 centimeters.
To find the perimeter of the rectangle, we can use the formula:
Perimeter of rectangle = 2 x (length + width)
Plugging in the values we have:
Perimeter of rectangle = 2 x (12cm + 9cm)
Perimeter of rectangle = 2 x 21cm
Perimeter of rectangle = 42cm
To know more about area,
https://brainly.com/question/20693059
#SPJ1
Find the critical value t
The answer of the given question based on the Critical value is , , the critical value to for the confidence level c = 0.99 and sample size n = 22 is 2.819.
What is Critical value?
In statistics, critical value is value that is used to determine whether to reject null hypothesis in hypothesis test. It is based on chosen level of significance, which is the maximum probability of making a Type I error (rejecting true null hypothesis). The critical value is determined by sampling distribution of the test statistic, which is often a t-statistic or z-statistic, depending on the test and the characteristics of the population being studied.
To find the critical value t for a 99% confidence level and a sample size of 22, we need to use a t-distribution table or a calculator.
Using a t-distribution table with 21 degrees of freedom (n-1), we find that critical value for a 99% confidence level is approximately 2.819.
Therefore, critical value for confidence level c = 0.99 and sample size n = 22 is 2.819 (rounded to nearest thousandth).
To know more about Null hypothesis visit:
brainly.com/question/30404845
#SPJ1
Suppose you have $1600 in your savings account at the end of a certain period of time. You invested $1500
at a 6.49% simple annual interest rate. How long, in years, was your money invested?
Thus, the time taken for the sum of $1500 to become $1600 with 6.49% simple annual interest rate is found as 1.027 years.
Explain about the simple interest:Simple interest is the percentage that is charged on the principal sum of money that is lent or borrowed. Similar to this, when you deposit a particular amount in a bank, you can also earn interest.
Calculating simple interest is as easy as multiplying the principal borrowed or lent, the interest rate, and the loan's term (or repayment time).
Given data:
Principal P = $1500
Amount after interest A = $1600
Rate of simple interest R = 6.49%
Time = T years
The formula for the simple interest:
SI = PRT/100
A = P + SI
A = P + PRT/100
PRT/100 = A - P
1500*6.49*T/100 = 1600 - 1500
1500*6.49*T = 100 *100
T = 10000 / 9735
T = 1.027 years
Thus, the time taken for the sum of $1500 to become $1600 with 6.49% simple annual interest rate is found as 1.027 years.
Know more about the simple interest:
https://brainly.com/question/25793394
#SPJ1
3+4x greater than 27
subtract 3 from both sides to get
4x > 27
divide both sides by 4 to get
x > 27/4 or 6 3/4
Help me this is a Screensho
t
Answer:
21.8 - 0.1 = 21.7
21.7 is 0.1 less than 21.8
Answer:
The answer is 21.7
Step explanation
21.8 - 0.1 = 21.7
I hope it helped you.
Please Mark me brainliest
Identify the correct equation of the graph.
-10
O f(b) = (6+4)² +8
O f(b) = (b+8)² +4
Of(b)=(6-8)²-4
O
-5
10
5
-5
-10
V
5
O f(b) = (b-8)² +4
Of(b) = (6-4)²-8
Of(b) (6-4)² +8
10
Check
Thus, the correct equation for the given parabolic graph is found as: f(b) = (b – 8)² + 4.
Explain about the quadratic function in vertex form:A parabola has a lowest point if it opens upward. A parabola has a highest point if it opens downward.
The vertex of the parabola is located at this lowest or highest point.
Vertex form of a quadratic function:
f(x) = a(x – h)² + k, where a, h, and k are constants.
The vertex of the parabola is at because it is translated h horizontal units and k vertical units from the origin (h, k).
(h,k) are the vertex of parabola.
From the given graph:
f(b) is the given function:
Vertex (h,k) = (8, 4)
Thus, h= 8 and k = a = 1, x = b.
Put the values in quadratic function:
f(b) = 1(b – 8)² + 4
f(b) = (b – 8)² + 4
Thus, the correct equation for the given parabolic graph is found as: f(b) = (b – 8)² + 4.
Know more about the quadratic function in vertex form:
https://brainly.com/question/28201865
#SPJ1
Approximately of the Earth's surface is made up of the oceans. What fraction of the surface is not made up of oceans?
The fraction of Earth that is not made up of ocean = 1/4.
Explain about the fraction:The numbers we are familiar with are whole numbers, such as 1, 2, and so on.
Numbers expressed as fractions have a numerator and a denominator, separated by a line known as a vinculum.
In essence, a fraction explains how a portion of a group interacts with the entire group.
Given that-
fraction of Earth made up of water = 3/4The fraction of Earth that is not made up of ocean = 1 - fraction of Earth made up of water
The fraction of Earth that is not made up of ocean = 1 - 3/4
The fraction of Earth that is not made up of ocean = (4 - 3)/4
The fraction of Earth that is not made up of ocean = 1/4
Thus, the fraction of Earth that is not made up of ocean = 1/4.
Know more about the fraction:
https://brainly.com/question/78672
#SPJ1
Complete question:
Approximately 3/4 of the Earth's surface is made up of the oceans. What fraction of the surface is not made up of oceans?
Briana helps her mother make a quilt The quilt is 6 feet wide and 12 feet long
Briana and her mother will need to measure and cut the fabric for the quilt. They will need to decide on a pattern and color scheme for the quilt. They will need to sew the pieces of fabric together to create the quilt top. They will need to layer the quilt top with batting and backing fabric and then quilt the layers together. Finally, they will need to bind the edges of the quilt.
The ability to determine the age of some individuals can be difficult if there are not quality government records of birth. Bone growth takes place at the growth plates at the end of long bones. Once all growth plates fuse, growth stops, and an individual is considered a biological adult. The age at which growth plates fuse for males is approximately normally distributed with a mean of 18.8 years and a standard deviation of 15.1months. Complete parts (a) through (d).
The answers to each question are:
(a) 0.351.
(b) 0.317.
(c) 20.24 years.
(d) 16.
What is the mean and standard deviation?
The standard deviation is a summary measure of the differences of each observation from the mean. If the differences themselves were added up, the positive would exactly balance the negative and so their sum would be zero. Consequently, the squares of the differences are added.
(a) What is the probability that a randomly selected male has growth plates that fuse between the ages of 18 and 20 years?
To answer this question, we need to standardize the values of 18 and 20 using the mean and standard deviation provided. Let X be the age at which growth plates fuse for males. Then,
Z = (X - mean) / standard deviation
Z for X = 18 is (18 - 18.8) / (15.1/12) = -0.53
Z for X = 20 is (20 - 18.8) / (15.1/12) = 0.53
Using a standard normal distribution table or a calculator, we can find the probability of Z being between -0.53 and 0.53, which is approximately 0.351.
Therefore, the probability that a randomly selected male has growth plates that fuse between the ages of 18 and 20 years is 0.351.
(b) What is the probability that a randomly selected male has growth plates that fuse between the ages of 16 and 18 years?
We need to standardize the values of 16 and 18 using the mean and standard deviation provided.
Z for X = 16 is (16 - 18.8) / (15.1/12) = -2.03
Z for X = 18 is (18 - 18.8) / (15.1/12) = -0.53
Using a standard normal distribution table or a calculator, we can find the probability of Z being between -2.03 and -0.53, which is approximately 0.317.
Therefore, the probability that a randomly selected male has growth plates that fuse between the ages of 16 and 18 years is 0.317.
(c) What is the age at which growth plates fuse for the top 5% of males?
We need to find the age X such that the probability of a male having growth plates fuse at an age less than X is 0.95 (since 5% is the complement of 95%).
Using a standard normal distribution table or a calculator, we can find the Z-score corresponding to the 95th percentile, which is approximately 1.645.
Then, we can solve for X using the formula:
Z = (X - mean) / standard deviation
1.645 = (X - 18.8) / (15.1/12)
Simplifying the equation, we get:
X = 18.8 + (1.645)(15.1/12) = 20.24
Therefore, the age at which growth plates fuse for the top 5% of males is approximately 20.24 years.
(d) What percentage of males have growth plates that fuse before the age of 16?
We need to find the probability of a male having growth plates fuse before the age of 16, which is equivalent to finding the probability of Z being less than -2.03 (calculated in part (b)).
Using a standard normal distribution table or a calculator, we can find the probability of Z being less than -2.03, which is approximately 0.0228.
Therefore, approximately 2.28% of males have growth plates that fuse before the age of 16.
hence, the answers to each question are:
(a) 0.351.
(b) 0.317.
(c) 20.24 years.
(d) 16.
To learn more about the mean and standard deviation visit:
brainly.com/question/475676
#SPJ1
How long did Lizzie practice on Thursday and Friday altogether?
J
P
D
Lizzie's Drum Practice
P
S
P
D
P
S
S
Monday Tuesday Wednesday Thursday Friday
= 5 minutes
DONE
0
minutes
7 8
4
00
5
1 2
0
9
6
3
Answer:
Lizzie practiced for a total of 14 minutes on Thursday and Friday combined.
On Thursday, she practiced for 5 minutes according to the table.
On Friday, she practiced for 9 minutes according to the table.
Adding these two times together, we get:
5 minutes + 9 minutes = 14 minutes
Therefore, Lizzie practiced for a total of 14 minutes on Thursday and Friday combined.
Simplify 6^2/6 x 6^12/6^8
Step-by-step explanation:
6^2 / 6^1 x 6^12 / 6^8 =
6^(2-1) x 6^(12-8) =
6^1 x 6^4 =
6^(1+4) = 6^5 or = 7776
Tentor, Inc., purchases disposable coffee cups on which to print logos for sporting events, proms, birthdays, and other special occasions. The owner received a large shipment of 861 cups this afternoon, and to ensure the quality of the shipment, he selected a random sample of 410 cups and identified 353 as defective.
What is the estimated proportion of defectives in the population? (Round the final answer to 3 decimal places.)
Answer
What is the standard error of the sample proportion? (Round your answer to 3 decimal places.)
Answer
What are the upper and lower bounds for a 98% confidence level? (Round the final answers to 3 decimal places.)
Upper bound is Answer
Lower bound is Answer
It is estimated that 0.861 percent of the population is faulty. The sample proportion's standard error is 0.022. A 98% confidence level has an upper bound of 0.910 and a lower bound of 0.812.
What is a proportion?The comparative relationship between two or more things in terms of their size, amount, or number is referred to as a "proportion." Either a ratio or a fraction can be used to express it. The term "proportion" in statistics refers to the division of the total number of events by the frequency of each event.
The formula p = x/n, where p is the estimated proportion of defectives in the population, x is the number of defectives in the sample, and n is the sample size, can be used to determine the estimated proportion of defectives in the population.
When we substitute values, we obtain:
p = 353/410 = 0.861
As a result, the population's estimated defectiveness rate is 0.861.
The formula SE = √(p(1-p)/n), where SE is the standard error and n is the sample size, can be used to get the standard error of the sample percentage.
When we substitute values, we obtain:
SE is equal to√(0.861(1.0.861)/410) = 0.022.
As a result, the sample proportion's standard error is 0.022.
Using the following formula, the upper and lower bounds for a 98% confidence level can be determined:
Lower bound = z*SE - p
Upper bound = z*SE + p
where z is the z-score for a 98% degree of confidence.
We discover that the z-score corresponding to a 98% confidence level is roughly 2.33 using a z-table or calculator.
When we substitute values, we obtain:
Lower bound is equal to 0.861 - 2.33*0.022, or 0.812.
Upper bound is equal to 0.861 + 2.33 * 0.022 = 0.910.
Consequently, the range of a 98% confidence level is as follows:
Maximum: 0.910
Upper limit: 0.812
To know more about proportion visit:
brainly.com/question/30657439
#SPJ1
It is estimated that 0.861 percent of the population is faulty. The sample proportion's standard error is 0.022. A 98% confidence level has an upper bound of 0.910 and a lower bound of 0.812.
What is a proportion?
The comparative relationship between two or more things in terms of their size, amount, or number is referred to as a "proportion." Either a ratio or a fraction can be used to express it. The term "proportion" in statistics refers to the division of the total number of events by the frequency of each event.
The formula p = x/n, where p is the estimated proportion of defectives in the population, x is the number of defectives in the sample, and n is the sample size, can be used to determine the estimated proportion of defectives in the population.
When we substitute values, we obtain:
p = 353/410 = 0.861
As a result, the population's estimated defectiveness rate is 0.861.
The formula SE = √(p(1-p)/n), where SE is the standard error and n is the sample size, can be used to get the standard error of the sample percentage.
When we substitute values, we obtain:
SE is equal to[tex]\sqrt{\frac{0.861(1.0.861)}{410)}[/tex]= 0.022.
As a result, the sample proportion's standard error is 0.022.
Using the following formula, the upper and lower bounds for a 98% confidence level can be determined:
Lower bound = z*SE - p
Upper bound = z*SE + p
where z is the z-score for a 98% degree of confidence.
We discover that the z-score corresponding to a 98% confidence level is roughly 2.33 using a z-table or calculator.
When we substitute values, we obtain:
Lower bound is equal to 0.861 - 2.33*0.022, or 0.812.
Upper bound is equal to 0.861 + 2.33 * 0.022 = 0.910.
Consequently, the range of a 98% confidence level is as follows:
Maximum: 0.910
Upper limit: 0.812
To know more about proportion refer the below link
https://brainly.com/question/18514274
#SPJ1
2 only can you solve associative, identity and inverse of this
The set 2Z is associative under the operation *, has an identity element of 2, and every element (except for 0) has an inverse element.
Solving the associative, identity and inverse of this the setThe set 2Z is defined as follows:
2Z = {2n | n ∈ Z, a * b = a + b}
Associative element:
There exists an associative element in 2Z if, for all a, b, and c in 2Z, the equation a*(bc) = (ab)*c holds.
Let a, b, and c be arbitrary elements of 2Z:
a = 2n₁
b = 2n₂
c = 2n₃
Then we have:
a*(bc) = a(2n₂2n₃) = a(4n₂n₃) = 2n₁ + 4n₂n₃ = 2(n₁ + 2n₂n₃)
(a*b)c = (2n₁2n₂)*2n₃ = (4n₁n₂)*2n₃ = 8n₁n₂n₃ = 2(2n₁n₂n₃)
Therefore, a*(bc) = (ab)*c, and 2Z is associative under the operation *.
Identity element:
There exists an identity element in 2Z if there exists an element e in 2Z such that, for all a in 2Z, the equation ae = ea = a holds.
Let e be an arbitrary element of 2Z:
e = 2n
Then we have:
ae = a2n = a + 2n = 2m, where m = n + (a/2) ∈ Z
ea = 2na = a + 2n = 2m', where m' = n + (a/2) ∈ Z
Therefore, e = 2n is an identity element in 2Z.
Inverse element:
There exists an inverse element in 2Z if, for all a in 2Z, there exists an element b in 2Z such that ab = ba = e, where e is the identity element.
Let a be an arbitrary element of 2Z:
a = 2n
Then we need to find an element b in 2Z such that ab = ba = e = 2.
We have:
ab = ba = 2n*b = 2
Therefore, b = 1/(2n) is the inverse of a in 2Z if n ≠ 0.
Read more about set at
https://brainly.com/question/24462379
#SPJ1
1C. What do you do if you're collecting data and you're unable to survey everyone in a group because the group is
too large?
If the group is too large to survey everyone, you may consider using a sampling technique to select a representative subset of the group for the survey.
How to use Sampling Technique?Here are some common sampling techniques you could use:
Simple random sampling: randomly select individuals from the group to be surveyed.Stratified sampling: divide the group into subgroups based on certain criteria, and then randomly select individuals from each subgroup to be surveyed.Cluster sampling: divide the group into clusters, randomly select some of the clusters, and survey everyone in the selected clusters.Systematic sampling: select individuals from the group at regular intervals.When selecting a sampling technique, it's important to consider the size of the group, the available resources, and the research question. It's also important to ensure that the sampling technique is unbiased and representative of the group being studied.
Learn more about sampling technique here: https://brainly.com/question/17743025
#SPJ1
Julia drew s sketches of flowers. She split them evenly among her 3 pen pals. Write an expression that shows how many sketches each pen pal received.
Answer:
s/3
Step-by-step explanation:
since she drew s drawings and split them among 3 penpals, it would be s/3, for example, 6 drawings/ 3 would be 2 drawings for each person.
Jasper's aunt gave him a big bin of 500 beads made out of assorted materials to use for the wind chimes he makes. Jasper takes out a handful of beads, looks at the types of beads, then puts them back. Here are the materials of the handful he selected: glass, clay, wood, glass, wood, clay, metal, clay, wood, glass, wood, clay, metal, wood, clay Based on the data, estimate how many glass beads are in the bin. If necessary, round your answer to the nearest whole number.
We can estimate that there are approximately 134 glass beads in the bin.
What is probability?
Probability is a measure of the likelihood of an event occurring.
To estimate the number of glass beads in the bin, we can use the proportion of glass beads in the handful that Jasper selected.
There are 15 beads in the handful, and 4 of them are glass. So, the proportion of glass beads in the handful is:
4/15 ≈ 0.267
We can assume that the proportion of glass beads in the bin is similar to the proportion in the handful. Therefore, we can estimate the number of glass beads in the bin as:
0.267 x 500 ≈ 134
Therefore, we can estimate that there are approximately 134 glass beads in the bin.
To learn more about probability from the given link:
https://brainly.com/question/30034780
#SPJ1
The area of a rectangle gets reduced by 9 square units if its length is reduced by 5 units and the breadth is increased by 3 units. If we increase the length by 3 units and breadth by 2 units, th
e area is increased by 67 square units. Find the length and breadth of the rectangle.
Answer:
length = 17; breadth = 9
Step-by-step explanation:
Let x = area of rectangle; a = length; b = breadth.
+) a × b = x (1)
+) (a - 5) × (b + 3) = x - 9 => x = ab + 3a - 5b - 15 + 9 (2)
+) (a + 3) × (b + 2) = x + 67 => x = ab + 2a + 3b + 6 - 67 (3)
Replace (1) into (2) & (3):
[tex]\left \{ {{3a - 5b=6} \atop {2a+3b=61}} \right. = > \left \{ {{a=17} \atop {b=9}} \right.[/tex]
Home values in a town have declined 26% per year for each of the past
four years. What was the total percentage decrease in home values
during the four-year period?
Answer: 104%
Step-by-step explanation: 26% times 4 years
In a word processing document or on a separate piece of paper, use the guide to construct a two column proof proving AC > EF, given BC = EF. Upload the entire proof below.
Given:
BC = EF
Prove:
AC > EF
STATMENT REASON
1. 1.
2. 2. Betweenness
3. AC > BC 3.
4. 4.
The given information and the transitive property of inequalities, we can prove that [tex]AC[/tex] is greater than [tex]EF[/tex] .
What is the transitive property of inequalities?Statement Reason
[tex]BC = EF[/tex] Given
Betweenness Given
[tex]AC > BC[/tex] Given
[tex]AC > EF[/tex] Transitive property [tex](3, 1)[/tex]
Explanation:
[tex]BC = EF[/tex] Given: Given statement that BC is equal to EF.
Betweenness Given: Given statement that states the concept of betweenness, where BC is between AC and EF.
AC > BC Given: Given statement that [tex]AC[/tex] is greater than BC.
[tex]AC > EF[/tex] Transitive property: Using the transitive property, we can conclude that [tex]AC[/tex] is greater than EF (based on statement 3 and 1).
Therefore, using the given information and the transitive property of inequalities, we can prove that AC is greater than [tex]EF[/tex] .
Learn more about transitive here:
https://brainly.com/question/2437149
#SPJ1
Alex scored 7/20 of the points in a basketball game. How many of the team's 120 points did Alex score?
Answer:
Step-by-step explanation:
I think its 42 because 7/20ths of 120 is 42
7/20 x 120 =42
A survey stopped men and women at random to ask them where they purchased groceries, at a local grocery store or online.
What percent of the people surveyed shop at a local grocery store? Round your answer to the nearest whole number percent.
63% of people Surveyed shop at a local grocery store.
What is percentage ?A number can be expressed as a fraction of 100 using a percentage. The word "%" stands for percentage.
For instance, 50% represents 50 out of 100, or 0.5 in decimal form. Frequently, proportions, rates, and changes in quantity are represented as percentages.
In many aspects of daily life, including the calculation of sales tax, loan interest rates, and price discounts, percentages are frequently utilised. They are also employed in many academic disciplines, including math, physics, economics, and statistics.
What are proportions ?The equality of two ratios is referred to as a percentage in mathematics. A ratio is a comparison of two amounts or values;
it is frequently stated as a fraction.
For instance, "3/5" can be used to represent the proportion of boys to girls in a classroom.
An assertion of equality between two ratios is a proportion.
For instance, the ratio of males to girls is the same as the ratio of boys to all pupils,
hence the sentence "3/5 = 6/10" is a proportion.
Analysis: -
people surveyed at store = 45
total no. of people = 72
the
Percent of peopla = 45/72 x100
= 0.625 × 100
= 62.5 %
= 63 %
63% of people Surveyed shop at a local grocery store.
To learn more about percentage visit:
https://brainly.com/question/29306119
#SPJ1
Find the value of x from the given figure.
The value of x from the given figure is given as follows:
144º.
What is a straight angle?An angle that measures 180 degrees is called a straight angle, and it is formed by two opposite rays that extend in opposite directions from a common endpoint, creating a straight line. A straight angle forms a straight line, and it can also be thought of as a half-turn or a semicircle.
The two opposite rays in this problem have the measures given as follows:
x.x/4.Hence the equation to find the value of x is given as follows:
x + x/4 = 180
x + 0.25x = 180
1.25x = 180
x = 180/1.25
x = 144º.
More can be learned about straight angles at https://brainly.com/question/24024505
#SPJ1
Here is another question DUE SOON PLEASE ASAP
Question 5(Multiple Choice Worth 1 points)
(08.07 MC)
The table describes the quadratic function p(x).
x p(x)
−1 10
0 1
1 −2
2 1
3 10
4 25
5 46
What is the equation of p(x) in vertex form?
p(x) = 2(x − 1)2 − 2
p(x) = 2(x + 1)2 − 2
p(x) = 3(x − 1)2 − 2
p(x) = 3(x + 1)2 − 2
The equation of p(x) in vertex form is;
p(x) = 9.67(x + 1.04)² - 10.25
The closest answer choice is:
p(x) = 3(x - 1)² - 2, which is not correct.
What is vertex?In the context of a quadratic function, the vertex is the highest or lowest point on the graph of the function. It is the point where the parabola changes direction. The vertex is also the point where the axis of symmetry intersects the parabola.
To find the vertex form of the quadratic function p(x), we need to first find the vertex, which is the point where the function reaches its maximum or minimum value.
To find the vertex, we can use the formula:
x = -b/2a, where a is the coefficient of the x² term, b is the coefficient of the x term, and c is the constant term.
Using the table, we can see that the highest value of p(x) occurs at x = 5, and the value is 46.
We can then use the formula to find the vertex:
x = -b/2a = -5/2a
Using the values from the table, we can set up two equations:
46 = a(5)² + b(5) + c
1 = a(0)² + b(0) + c
Simplifying the second equation, we get:
1 = c
Substituting c = 1 into the first equation and solving for a and b, we get:
46 = 25a + 5b + 1
-20 = 5a + b
Solving for b, we get:
b = -20 - 5a
Substituting b = -20 - 5a into the first equation and solving for a, we get:
46 = 25a + 5(-20 - 5a) + 1
46 = 15a - 99
145 = 15a
a = 9.67
Substituting a = 9.67 and c = 1 into b = -20 - 5a, we get:
b = -20 - 5(9.67) = -71.35
Therefore, the equation of p(x) in vertex form is:
p(x) = 9.67(x - 5)² + 1
Simplifying, we get:
p(x) = 9.67(x² - 10x + 25) + 1
p(x) = 9.67x² - 96.7x + 250.85 + 1
p(x) = 9.67x² - 96.7x + 251.85
Rounding to the nearest hundredth, we get:
p(x) = 9.67(x - 5² + 1 = 9.67(x + 1.04)² - 10.25
Therefore, the answer is:
p(x) = 9.67(x + 1.04)² - 10.25
The closest answer choice is:
p(x) = 3(x - 1)² - 2, which is not correct.
To know more about vertex visit:
https://brainly.com/question/29476657
#SPJ1
k^2+6k=0 solve the quadratic equation by factoring
Answer:
K = √-6k
i did the math and got this answer and it was right
A farmer is building a fence to enclose a rectangular area against an existing wall, shown in the figure below. Three of the sides will require fencing and the fourth wall already exists. If the farmer has 176 feet of fencing,
what is the largest area the farmer can enclose?
Answer: 46 ft by 92 ft
Step-by-step explanation:
The largest area is enclosed when half the fence is used parallel to the wall and the other half is used for the two ends of the fenced area perpendicular to the wall. Half the fence is 184 ft/2 = 92 ft. Half that is used for each end of the enclosure.
Four family members attended a
family reunion. The table below
shows the distance each person
drove and the amount of time each
person traveled.
If each person drove at a constant rate,than Laura drove the fastest
What is the distance ?Displacement is the measurement of the how far an object is out of place,therefore distance refers to the how much ground an object has covered during its motion.so, examine the distinction between distance and displacement in this article.
What is the speed?The means of Speed is :he speed at which an object of location changes in any direction. The distance traveled in relation to the time it took to travel that distance is how speed is defined. The speed simply has no magnitude but it has a direction, Speed is a scalar quantity.
to compute who drove the quickest by Using this formula
speed=Distance /time,
first of all the convert times into hours:
Hank: 3.2 hours x 3 hours and 12 minutes.
Laura: 2.5 hours is 2 hours and 30 minutes.
Nathan: 2.25 hours is 2 hours and 15 minutes.
Raquel: 4 hours plus 24 minutes equals 4.4 hours.
now to calculate the speed by above formula
Hank: 55 miles per hour for 176 miles in 3.2 hours.
Laura: 60 miles per hour equals 150 miles in 2.5 hours.
Nathan: 50 miles per houris equal to 112.5 miles in 2.25 hours.
Raquel: 65 miles for 286 miles in 4.4 hours.
As a result, Laura moved the fastest, clocking in at 60 miles. The solution, Laura, is B.
Learn more about speed here:
https://brainly.com/question/31273613
#SPJ1
4. The elevation at ground level is 0 feet. An elevator starts 80 feet below ground level. After
traveling for 20 seconds, the elevator is 30 feet below ground level. Which statement describes
the elevator's rate of change in elevation during this 20-second interval?
A. The elevator traveled upward at a rate
1 rate of 2½ feet per second.
B. The elevator traveled downward at a rate of 2 feet per second.
C. The elevator traveled upward at a rate of 4 feet per second.
D. The elevator traveled downward at a rate of 4 feet per second.
a
Answer:
[tex]m = \frac{ - 30 - ( - 80)}{20 - 0} = \frac{50}{20} = 2 \frac{1}{2} [/tex]
A. The elevator traveled upward at a rate of 2 1/2 feet per second. -30 > -80.
A four-sided shape with the top side labeled as 10.2 cm. The height is labeled 5 cm. A portion of the base from the perpendicular to a vertex is labeled 4 cm. The portion of the base from the perpendicular to the right vertex is 6.2 cm.
What is the area of the figure?
25.5 cm2
45.5 cm2
51 cm2
56.1 cm2
The area of the figure is 51 cm², which is option C.
What is area?In mathematics, area refers to the measure of the size of a two-dimensional surface or shape. It is typically expressed in square units, such as square meters (m²) or square centimeters (cm²), and can be calculated for a variety of geometric shapes, including squares, rectangles, triangles, circles, and more complex shapes such as trapezoids or polygons.
To find the area of the figure, we need to identify the shape of the figure. From the given information, we know that the figure has a top side, a height, and a base. We are also told that the base is divided into two parts by a perpendicular, and one of the parts is labeled as 4 cm, while the other part from the perpendicular to the right vertex is 6.2 cm.
Based on this information, we can draw the figure as a trapezoid, where the top side is the shorter base, the height is the vertical distance between the two bases, and the longer base is the sum of the two parts of the base.
Using the given information, we can calculate the longer base:
longer base = 4 cm + 6.2 cm = 10.2 cm
Now we can use the formula for the area of a trapezoid to find the area of the figure:
A = (1/2)h(b₁ + b₂)
where h is the height, b₁ is the shorter base, and b₂ is the longer base.
Plugging in the given values, we get:
A = (1/2)(5 cm)(10.2 cm + 10.2 cm) = 51 cm²
Therefore, the area of the figure is 51 cm² , which is option C.
To know more about area visit:
https://brainly.com/question/25292087
#SPJ1
Complete Question:
A four-sided figure has one side labeled 10.2 cm, a height of 5 cm, and a portion of the base from the perpendicular to a vertex labeled 4 cm. The portion of the base from the perpendicular to the right vertex is labeled 6.2 cm. What is the area of the figure?
What’s the greatest common factor of 42 and 50:(8 different answers)
Answer:
Step-by-step explanation:
The GCF of 42 and 50 is 2.
8. You and 4 friends are going to an event, and you want to keep the cost below $100 per person. Write and solve an inequality to find the total cost, x.
Amy and Zack each have 24 feet of fencing for their rectangular gardens. Amy makes her fence 6 feet long. Zack makes his fence 8 feet long. Whose garden has the better area? How much greater?
Answer:
The answer is Zack garden