Answer:
3200ft^2
Step-by-step explanation:
1 inch = 4ft
so 20 inches = 80ft
and 10 inches = 40ft
Area = 80ft*40ft
Area = 3200ft^2
3 is what percentage of 12?
Answer:
25%
Step-by-step explanation:
First you have the fraction of 3/12 and need to turn it into a decimal. So to do that you divide 3 by 12 = 0.25. So your percent is 25%
Veda solves the following system of linear equations by elimination. What is the value of x in the solution of the system
of equations?
6+4x-2y=0
-3-7y=10x
Answer:
work shown and pictured
Answer:
x= -1 y = 1
Step-by-step explanation:
solve the rational equation 5/x = 4x+1/x^2
Answer:
x = 1
Step-by-step explanation:
Set up the rational expression with the same denominator over the entire equation.
Since the expression on each side of the equation has the same denominator, the numerators must be equal
5x =4x+1
Move all terms containing x to the left side of the equation.
Hope this can help you
HELP!!! Evaluate 8^P7
The correct answer is B. 40,320
Explanation:
In mathematics, a permutation refers to all the possible ways of arranging objects or elements in a set, while still considering an order. For example, you can calculate all the possible ways 5 athletes can end in a race as one athlete cannot have both the first and third place. The expression [tex]{8}[/tex][tex]P_{7}[/tex] shows a permutation because the P indicates the expression refers to a permutation. Additionally, this can be solved by using the formula [tex]{n}[/tex][tex]P_{r}[/tex] =[tex]\frac{n!}{(n-r)!}[/tex]. This means, in the expression presented n = 8 while r = 7. Also, the symbol (!) indicates the number should be multiplied using all whole numbers minor to the given number until you get to 1, which is known as factorial functions. The process is shown below:
[tex]{n}[/tex][tex]P_{r}[/tex] =[tex]\frac{n!}{(n-r)!}[/tex] [tex]{8}[/tex][tex]P_{7}[/tex] = [tex]\frac{8!}{(8-7) !}[/tex][tex]{8}[/tex][tex]P_{7}[/tex] = [tex]\frac{8!}{1!}[/tex][tex]{8}[/tex][tex]P_{7}[/tex] = [tex]\frac{8 x 7 x 6 x 5 x 4 x 3 x 2 x 1}{1}[/tex] or 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 / 1
[tex]{8}[/tex][tex]P_{7}[/tex] = 40320
You change oil every 6000 miles and drive 2000 miles a month; how many times a year do you change oil?
Answer:
you would change it 4 times a year
Step-by-step explanation:
if there is 12 months in a year and 3 mounths equal 6000 then divide 12/3=4
Find the number of possible outcomes Five books need to be placed on a shelf. You randomly arrange the books on the shelf from left to right.
Answer:
120
Step-by-step explanation:
Let's say you put them on the shelf one by one, from left to right.
You can pick 1 of the 5 for the first position.
5
Now you have 4 books left. You pick one out of those 4 for the second position.
5 * 4
There are 3 choices left for the 3rd position.
5 * 4 * 3
2 left for the 4th position.
5 * 4 * 3 * 2
Finally, there is one book left for the 5th position.
5 * 4 * 3 * 2 * 1
Now we multiply:
5 * 4 * 3 * 2 * 1 = 120
Find the surface area of the triangular prism (above) using its net (below).
Answer:
96 square units
Step-by-step explanation:
The surface area of the prism can be calculated using its net.
The net consists of 3 rectangles and 2 triangles.
The surface area = area of the 3 rectangles + area of the 2 triangles
Area of 3 rectangles:
Area of 2 rectangles having the same dimension = 2(L*B) = 2(7*3) = 2(21) = 42 squared units
Area of the middle triangle = L*B = 7*6 = 42 square units.
Area of the 3 triangles = 42 + 42 = 84 square units.
Area of the 2 triangles:
Area = 2(½*b*h) = 2(½*6*2) = 6*2
Area of the 2 triangles = 12 square units
Surface area of the triangular prism = 84 + 12 = 96 square units.
Answer:
It's 96 unit2
Step-by-step explanation:
I just do it in khan and it's correct
Assume that a sample is used to estimate a population proportion p. Find the margin of error E that corresponds to the given statistics and confidence level. Round the margin of error to four decimal places. 95% confidence; n = 349, x = 42
Answer:
0.5705Step-by-step explanation:
Margin of error is expressed as M.E = [tex]z * \sqrt{\frac{\sigma}{n} }[/tex] where;
z is the z score at 95% confidence
[tex]\sigma[/tex] is the standard deviation
n is the sample size
Given n = 349, [tex]\sigma = 42[/tex] and z score at 95% confidence = 1.645
Substituting this values into the formula above we will have;
M.E = [tex]1.645*\sqrt{\frac{42}{349} }[/tex]
[tex]M.E = 1.645*\sqrt{0.1203} \\\\M.E = 1.645*0.3468\\\\M.E = 0.5705 (to\ four\ dp)[/tex]
Can you draw the reflection Across the y-axis of the attached image.
Answer:
see graph
Step-by-step explanation:
A reflection across the y-axis means the point is equal but opposite distance from the y-axis. This has no change on the y-value of the point, because no matter the y-value, the point will still be the same distance from the y-axis. Long story short, if you're reflecting across the y-axis, change the sign of the x-coordinate. If you're reflecting across the x- axis, change the sign of the y-coordinate.
A point P has coordinates (-5, 4). What are its new coordinates after reflecting
point Pover the y-axis?
A. (-5, -4)
B. (-5, 4)
C. (5, 4)
D. (5, -4)
Answer:
C(5, 4)
Step-by-step explanation:
The rule for a reflection over the y -axis is (x,y)→(−x,y) .
Answer:
(5, 4)
Step-by-step explanation:
when you reflect off the y-axis, you switch (x,y) to (-x,y)
So
(-5, 4) --> (5, 4)
Hope this helps,
Feel free to ask more questions if I need to explain more.
What is the formula for the area A of a trapezoid with parallel sides of length B and D, nonparallel sides of length A and C and height H?
A. A = 1/2h (a+c)
B. A = 1/2h (b + d)
C. A = a+b + c + d
D. A= abcd
E. A = 1/2h (a+b+c+d)
Answer:
[tex](B) \dfrac12H (B+D)[/tex]
Step-by-step explanation:
[tex]\text{Area of a trapezoid }= \dfrac12 ($Sum of the parallel sides) \times $Height\\Parallel Sides = B and D\\Height =H\\Therefore:\\\text{Area of the trapezoid }= \dfrac12 (B+D) H[/tex]
The correct option is B.
What is the value of y iin this equation? 4(y-3) =48
Answer:
y = 15Step-by-step explanation:
Question:
4(y - 3) = 48
1. Distribute
4y - 12 = 48
2. Simplify Like terms
4y - 12 = 48
+ 12 + 12
4y = 60
3. Solve
4y = 60
/4 /4
y = 15
4. Check:
4(y - 3) = 48
4((15) - 3) = 48
4(12) = 48
48 = 48 Correct!
Hope this helped,
Kavitha
Answer:
[tex]y=15\\[/tex]
Step 1:
To find y, we first have to multiply [tex]4(y-3)[/tex]. When we do that (4 * y, 4 * - 3), we get [tex]4y-12[/tex].
Step 2:
Our equation looks like this now:
[tex]4y-12=48[/tex]
To solve this equation, we have to add 12 on both sides so we can cancel out the -12 on the left side of the equation.
[tex]4y-12(+12)=48(+12)[/tex]
[tex]4y=60[/tex]
Now, we can divide 4 on both sides to get y by itself.
[tex]4y/4\\60/4[/tex]
[tex]y=15[/tex]
Which value is a solution to the inequality 9-y >12
I believe the value is negative 4. If not, well, try any negative below that, such as -5,6,7,8, etc.
Answer:
y is less than -3
Step-by-step explanation:
To do this you would just subtract 9 from both sides so you get -y is greater than 3. Since you cannot have y as a negative number you will divide -1 from both sides but when you do that you will have to flip the sign so you get y is less than -3.
I have attached the file
Answer:
sorry i am not able to understood
Step-by-step explanation:
Use this scenario for questions 16-20: A city council begins hosting music nights in the park. They want to understand the success of the program, so they record attendance on 4 different nights (n = 4). On average, the city saw an average attendance of 47 (s = 4.7). Other cities that have launched a similar program and have seen an average attendance of μ = 53 (σ = 4.2). Is the city attendance different from other cities that have launched these music programs (alpha = .05)? What would be the hypotheses for this test? (HINT: remember one-tailed and two-tailed tests!).
Answer:
Step-by-step explanation:
To identify the null hypothesis, the null hypothesis is the default statement while the alternative hypothesis is the opposite of the null and always tested against the null hypothesis.
The alternative hypothesis depending on the case study can give rise to a one-tailed or a two-tailed test. The one tailed test includes either less than or greater than option and not both while the two tailed test involves both.
In this case study,
the null hypothesis is u1 (representing the city in particular) = u2 (representing other cities)
The alternative hypothesis is u1 (representing the city in particular) =/ u2 (representing other cities).
This, this test due to its not equal to sign is a two tailed test, the two results might differ maybe with one higher than the other, or lower than the other.
Samuel needs to replace a portion of his rain gutter. The height of the roof is 25 feet and the
length of his ladder is 30 feet. What is the maximum distance away from house that he can place
the ladder? Round your answer to the nearest foot.
Answer:
16.6 ftStep-by-step explanation:
The height of the house, the ground and the ladder forms a right angle triangle, with the following parameters stated below.
1. the hypotenuse is the length of the ladder which is 30 feet
2.the opposite is the height of the house, which is 25 feet
3. the adjacent is the distance of the ladder away from the building, this is the parameter we are solving for.
Since we have two sides of the triangle given, we can employ Pythagoras theorem to solve for the third side of the triangle
let the the opposite be x
we know that
[tex]hyp^2= opp^2+adj^2\\\\ 30^2= x^2+25^2\\\\ 900= 625+x^2\\[/tex]
Solving for x we have
[tex]x^2= 900-625\\\\X^2= 275\\\\x=\sqrt{275} \\\\x= 16.58[/tex]
Hence the maximum distance away from house that he can place
the ladder is 16.6 ft to the nearest foot
Determine the domain of the function. f as a function of x is equal to the square root of x plus three divided by x plus eight times x minus two.
All real numbers except -8, -3, and 2
x ≥ 0
All real numbers
x ≥ -3, x ≠ 2
Answer:
[tex]\huge \boxed{{x\geq -3, \ x \neq 2}}[/tex]
Step-by-step explanation:
The function is given,
[tex]\displaystyle f(x)=\frac{\sqrt{x+3 }}{(x+8)(x-2)}[/tex]
The domain of a function are all possible values of x.
There are restrictions for the value of x.
The denominator of the function cannot equal 0, if 0 is the divisor then the fraction would be undefined.
[tex]x+8\neq 0[/tex]
Subtract 8 from both parts.
[tex]x\neq -8[/tex]
[tex]x-2\neq 0[/tex]
Add 2 on both parts.
[tex]x\neq 2[/tex]
The square root of x + 3 cannot be a negative number, because the square root of a negative number is undefined. x + 3 has to equal to 0 or be greater than 0.
[tex]x+3\geq 0[/tex]
Subtract 3 from both parts.
[tex]x\geq -3[/tex]
The domain of the function is [tex]x\geq -3[/tex], [tex]x\neq 2[/tex].
The domain of the given function will be x ≥ -3 and x ≠ 2.
What is the domain of a function?The entire range of independent input variables that can exist is referred to as a function's domain or,
The set of all x-values that can be used to make the function "work" and produce actual y-values is referred to as the domain.
As per the data given in the question,
The given expression of function is,
f(x) = [tex]\sqrt{\frac{x+3}{(x-8)(x-2)} }[/tex]
The fraction would indeed be undefined if the base of the function were equal to zero, which is not allowed.
x + 8 ≠ 0
x ≠ -8
And, x - 2 ≠ 0
x ≠ 2
Since the square root of a negative number is undefined, x+3 cannot have a negative square root. x+3 must be bigger than zero or identical to zero.
So,
x + 3 ≥ 0
x ≥ -3
So, the domain of the function will be x ≥ -3 and x ≠ 2.
To know more about Domain:
https://brainly.com/question/28135761
#SPJ3
please show on graph (with x and y coordinates) state where the function x^4-36x^2 is non-negative, increasing, concave up
Answer:
[tex] y'' =12x^2 -72=0[/tex]
And solving we got:
[tex] x=\pm \sqrt{\frac{72}{12}} =\pm \sqrt{6}[/tex]
We can find the sings of the second derivate on the following intervals:
[tex] (-\infty<x< -\sqrt{6}) , y'' = +[/tex] Concave up
[tex]x=-\sqrt{6}, y =-180[/tex] inflection point
[tex] (-\sqrt{6} <x< \sqrt{6}), y'' =-[/tex] Concave down
[tex]x=\sqrt{6}, y=-180[/tex] inflection point
[tex] (\sqrt{6}<x< \infty) , y'' = +[/tex] Concave up
Step-by-step explanation:
For this case we have the following function:
[tex] y= x^4 -36x^2[/tex]
We can find the first derivate and we got:
[tex] y' = 4x^3 -72x[/tex]
In order to find the concavity we can find the second derivate and we got:
[tex] y'' = 12x^2 -72[/tex]
We can set up this derivate equal to 0 and we got:
[tex] y'' =12x^2 -72=0[/tex]
And solving we got:
[tex] x=\pm \sqrt{\frac{72}{12}} =\pm \sqrt{6}[/tex]
We can find the sings of the second derivate on the following intervals:
[tex] (-\infty<x< -\sqrt{6}) , y'' = +[/tex] Concave up
[tex]x=-\sqrt{6}, y =-180[/tex] inflection point
[tex] (-\sqrt{6} <x< \sqrt{6}), y'' =-[/tex] Concave down
[tex]x=\sqrt{6}, y=-180[/tex] inflection point
[tex] (\sqrt{6}<x< \infty) , y'' = +[/tex] Concave up
What is the density of a brownie the shape of a cube weighing 15 grams measuring 5 cm on a side?
Answer:
0.12 g/cm³
Step-by-step explanation:
Density is the ratio of mass to volume. The volume of the brownie is the cube of its side dimension:
V = s³ = (5 cm)³ = 125 cm³
Then the density is ...
ρ = M/V = (15 g)/(125 cm³) = 0.12 g/cm³
The density of the brownie is 0.12 g/cm³.
If y>0, which of these values of x is NOT in the domain of this equation? y=x2+7x
Answer:
[tex]\boxed{\sf \ \ \ [-7,0] \ \ \ }[/tex]
Step-by-step explanation:
Hello
[tex]y=x^2+7x=x(x+7) >0\\<=> x>0 \ and \ x+7 >0 \ \ or \ \ x<0 \ and \ x+7<0\\<=> x>0 \ \ or \ \ x<-7\\[/tex]
So values of x which is not in this domain is
[tex]-7\leq x\leq 0[/tex]
which is [-7,0]
hope this helps
need help thankssssss
Answer:
301.44
Step-by-step explanation:
V=π r² h
V=π (4)² (12)
V= 603.19
divide by 2 to find half full: ≈ 301
301.44
The SAT scores have an average of 1200 with a standard deviation of 60. A sample of 36 scores is selected. a) What is the probability that the sample mean will be larger than 1224
Answer:
the probability that the sample mean will be larger than 1224 is 0.0082
Step-by-step explanation:
Given that:
The SAT scores have an average of 1200
with a standard deviation of 60
also; a sample of 36 scores is selected
The objective is to determine the probability that the sample mean will be larger than 1224
Assuming X to be the random variable that represents the SAT score of each student.
This implies that ;
[tex]S \sim N ( 1200,60)[/tex]
the probability that the sample mean will be larger than 1224 will now be:
[tex]P(\overline X > 1224) = P(\dfrac{\overline X - \mu }{\dfrac{\sigma}{\sqrt{n}} }> \dfrac{}{}\dfrac{1224- \mu }{\dfrac{\sigma}{\sqrt{n}} })[/tex]
[tex]P(\overline X > 1224) = P(Z > \dfrac{1224- 1200 }{\dfrac{60}{\sqrt{36}} })[/tex]
[tex]P(\overline X > 1224) = P(Z > \dfrac{24 }{\dfrac{60}{6} })[/tex]
[tex]P(\overline X > 1224) = P(Z > \dfrac{24 }{10} })[/tex]
[tex]P(\overline X > 1224) = P(Z > 2.4 })[/tex]
[tex]P(\overline X > 1224) =1 - P(Z \leq 2.4 })[/tex]
From Excel Table ; Using the formula (=NORMDIST(2.4))
P(\overline X > 1224) = 1 - 0.9918
P(\overline X > 1224) = 0.0082
Hence; the probability that the sample mean will be larger than 1224 is 0.0082
which graph represents a function? Please help!
Answer:
The last graph (to the far right).
Step-by-step explanation:
As long as each x-value has one y-value, it is a function. However, the last graph has an x-value at -1 where there are two y-values. So, it does not pass the Vertical Line Test, and it is a relation rather than a function.
Hope this helps!
Use an appropriate series to find Taylor series of the given function centered at the indicated value of a. Write your answer in summation notation.
sinx, a= 2π
Answer:
The Taylor series is [tex]$$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]
Step-by-step explanation:
From the question we are told that
The function is [tex]f(x) = sin (x)[/tex]
This is centered at
[tex]a = 2 \pi[/tex]
Now the next step is to represent the function sin (x) in it Maclaurin series form which is
[tex]sin (x) = \frac{x^3}{3! } + \frac{x^5}{5!} - \frac{x^7}{7 !} +***[/tex]
=> [tex]sin (x) = $$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]
Now since the function is centered at [tex]a = 2 \pi[/tex]
We have that
[tex]sin (x - 2 \pi ) = (x-2 \pi ) - \frac{(x - 2 \pi)^3 }{3 \ !} + \frac{(x - 2 \pi)^5 }{5 \ !} - \frac{(x - 2 \pi)^7 }{7 \ !} + ***[/tex]
This above equation is generated because the function is not centered at the origin but at [tex]a = 2 \pi[/tex]
[tex]sin (x-2 \pi ) = $$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x - 2 \pi)^{2n+1}][/tex]
Now due to the fact that [tex]sin (x- 2 \pi) = sin (x)[/tex]
This because [tex]2 \pi[/tex] is a constant
Then it implies that the Taylor series of the function centered at [tex]a = 2 \pi[/tex] is
[tex]$$\sum_{n=0}^{\infty} [\frac{(-1)^n}{(2n +1)!} (x)^{2n+1}][/tex]
6x-5<2x+11. plz helpppppp
Answer:
x < 4 or x = ( -∞, 4)
Step-by-step explanation:
6x - 5 < 2x + 116x - 2x < 11 + 54x < 16 x < 16/4x < 4or
x = ( -∞, 4)
[tex]\text{Solve the inequality for x:}\\\\6x-5<2x+11\\\\\text{Subtract 2x from both sides}\\\\4x-5<11\\\\\text{Add 5 to both sides}\\\\4x<16\\\\\text{Divide both sides by 4}\\\\\boxed{x<4}[/tex]
√9m^2n^2 + 2√m^2n^2 - 3mn
Answer:
I think it is
Step-by-step explanation:
Answer:
5n√2m^ - 3mn
Step-by-step explanation:
1/2 of a right angle is a? answers: A. reflex angle B. obtuse angle C. acute angle D. straight angle
Answer:
C. acute angle
Step-by-step explanation:
As you know ,right angle is equal to 90 degrees so half of 90 degrees is 45 degree which is an acute angle (acute angles are the angles which are less than 90 degrees)
Hope this helps and pls mark as brainliest :)
Answer: acute
Step-by-step explanation:
An angle that is less than 90 degrees
the perimeter of a square flower bed is 100 feet. what is the area of the flower bed in sqaure feet
Answer:
A =625 ft^2
Step-by-step explanation:
The perimeter of a square is
P = 4s where s is the side length
100 =4s
Divide each side by 4
100/4 = 4s/4
25 = s
A = s^2 for a square
A = 25^2
A =625
PLEASE HELPPP ITS TIMED Consider the following functions. f(x) = x2 – 4 g(x) = x – 2 What is (f(x))(g(x))? a.(f(x))(g(x)) = x + 2; x ≠ 2 b.(f(x))(g(x)) = x + 2; all real numbers c.(f(x))(g(x)) = x3 – 2x2 – 4x + 8; x ≠ 2 d(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numbers
Answer:
d(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numbersStep-by-step explanation:
(f(x))(g(x)) = (x²- 4)*(x-2) =x³ - 2x² - 4x + 8Choice d. is correct
a.(f(x))(g(x)) = x + 2; x ≠ 2 incorrectb.(f(x))(g(x)) = x + 2; all real numbers incorrectc.(f(x))(g(x)) = x3 – 2x2 – 4x + 8; x ≠ 2 incorrectd(f(x))(g(x)) = x3 – 2x2 – 4x + 8; all real numberscorrectAnswer:
D
Step-by-step explanation:
A circular chicken house has an area of 40m². What length of chicken wire is required to fence the house without any wire left over?