A six-pole motor has a coil span of ______. A) 60 B) 90 C) 120 D) 180.

Answers

Answer 1

The correct option: A) 60 . Thus, the coil span of a six-pole motor is 60 degrees, which means that the coil sides connected to the same commutator segment are 60 electrical degrees apart.

The coil span of a motor is the distance between the two coil sides that are connected to the same commutator segment.

The coil span of a six-pole motor can be calculated by dividing the electrical angle of the motor by the number of poles. Since a full electrical cycle is equal to 360 degrees, the electrical angle of a six-pole motor is 360/6 = 60 degrees. Therefore, the coil span of a six-pole motor is 60 degrees.The answer to the question is A) 60. This means that the coil sides connected to the same commutator segment are 60 electrical degrees apart. It is important to note that the coil span affects the motor's performance, as it determines the back electromotive force (EMF) and the torque produced by the motor. A smaller coil span results in a higher back EMF and lower torque, while a larger coil span results in a lower back EMF and higher torque.In conclusion, the coil span of a six-pole motor is 60 degrees, which means that the coil sides connected to the same commutator segment are 60 electrical degrees apart. Understanding the coil span is crucial for designing and analyzing motor performance.

Know more about the commutator segment

https://brainly.com/question/31421194

#SPJ11


Related Questions

A teacher wants to determine whether his students have mastered the material in their statistics (1 point) unit. Each student completes a pretest before beginning the unit and a posttest at the end of the unit. The results are in the table Student Pretest Score Posttest Score 72 75 82 85 90 86 78 84 87 82 80 78 84 84 92 91 81 84 86 86 10 The teacher's null hypothesis is that μ,-0, while his alternative hypothesis is μ) > 0 . Based on the data in the table and using a significance level of 0.01, what is the correct P-value and conclusion? The P-value is 0.019819, so he must reject the null hypothesis. The P-value is 0.00991, so he must fail to reject the null hypothesis OThe P-value is 0.019819, so he must fail to reject the null hypothesis OThe P-value is 0.00991, so he must reject the null hypothesis

Answers

the P-value (0.0000316) is less than the significance level of 0.01, we reject the null hypothesis. This means that the teacher can conclude that the students have indeed mastered the material in their statistics unit, based on the results of the pretest and posttest.

To determine the P-value and draw a conclusion, the teacher can use a one-tailed paired t-test since the same group of students took both the pretest and posttest. The null hypothesis is that the mean difference between pretest and posttest scores (μd) is equal to zero, and the alternative hypothesis is that μd is greater than zero.

Using a calculator or statistical software, the teacher can calculate the paired t-statistic for the data:

t = (x(bar)d - μd) / (s / √n)

Where x(bar)d is the sample mean of the difference scores, μd is the hypothesized population mean difference (0), s is the sample standard deviation of the difference scores, and n is the sample size (20).

Plugging in the values from the table, we get:

x(bar)d = 5.75

s = 4.091

n = 20

t = (5.75 - 0) / (4.091 / √20) = 4.67

Using a t-distribution table with 19 degrees of freedom (df = n-1), the P-value for this one-tailed test is 0.0000316.

To learn more about statistics visit:

brainly.com/question/31577270

#SPJ11

A random sample of 900 13- to 17-year-olds found that 411 had responded better to a new drug therapy for autism. Let p be the proportion of all teens in this age range who respond better. Suppose you wished to see if the majority of teens in this age range respond better. To do this, you test the following hypothesesHo p=0.50 vs HA: p 0.50The chi-square test statistic for this test isa. 6.76
b. 3.84
c. -2.5885
d. 1.96

Answers

The p-value is less than the significance level (typically 0.05), we reject the null hypothesis and conclude that the majority of teens in this age range do not respond better to the new drug therapy for autism.

The correct answer is not provided in the question. The chi-square test statistic cannot be used for testing hypotheses about a single proportion. Instead, we use a z-test for proportions. To find the test statistic, we first calculate the sample proportion:

p-hat = 411/900 = 0.4578

Then, we calculate the standard error:

SE = [tex]\sqrt{[p-hat(1-p-hat)/n] } = \sqrt{[(0.4578)(1-0.4578)/900]}[/tex] = 0.0241

Next, we calculate the z-score:

z = (p-hat - p) / SE = (0.4578 - 0.50) / 0.0241 = -1.77

Finally, we find the p-value using a normal distribution table or calculator. The p-value is the probability of getting a z-score as extreme or more extreme than -1.77, assuming the null hypothesis is true. The p-value is approximately 0.0392.

Since the p-value is less than the significance level (typically 0.05), we reject the null hypothesis and conclude that the majority of teens in this age range do not respond better to the new drug therapy for autism.


Learn more about null hypothesis here:

https://brainly.com/question/28920252


#SPJ11

determine whether the series converges or diverges. [infinity] n2 − 6n n3 3n 1 n = 1

Answers

If we determine if the series ∑(n=1 to ∞) n^2 - 6n / (n^3 + 3n + 1) converges or diverges, further analysis or tests, such as the comparison test or the ratio test, may be necessary.

To determine if the series ∑(n=1 to infinity) (n^2 - 6n)/(n^3 + 3n + 1) converges or diverges, we can use the limit comparison test.

First, we choose a series b_n that we know converges and has positive terms. Let's choose the series b_n = 1/n. Since b_n > 0 for all n, we can use it for the limit comparison test.

Next, we need to calculate the limit of the ratio of the two series as n approaches infinity: lim (n → ∞) [(n^2 - 6n)/(n^3 + 3n + 1)] / (1/n)

We can simplify this expression by dividing both the numerator and denominator by n^3: lim (n → ∞) [(1 - 6/n^2)/(1/n^2 + 3/n^3 + 1/n^3)]As n approaches infinity, all the terms with 1/n or higher powers of 1/n approach zero, so we can simplify further:

lim (n → ∞) [1/(1/n^2)]

= lim (n → ∞) n^2

= ∞

Since this limit is finite and positive, the series ∑(n=1 to infinity) (n^2 - 6n)/(n^3 + 3n + 1) and the series ∑(n=1 to infinity) 1/n have the same convergence behavior.

Since the harmonic series ∑(n=1 to infinity) 1/n diverges, we can conclude that the original series ∑(n=1 to infinity) (n^2 - 6n)/(n^3 + 3n + 1) also diverges by the limit comparison test.

To learn more about “series” refer to the https://brainly.com/question/24643676

#SPJ11

The vector matrix 6, -2 is rotated at different angles. Match the angles of rotation with the vector matrices they produce

Answers

The matches between the angles of rotation and the resulting vector matrices are:

1. 45 degrees: [7√2, 7√2]

2. 90 degrees: [2, -2]

3. 180 degrees: [-6, 2]

To determine the resulting vector matrices after rotating the vector [6, -2] at different angles, we need to apply rotation matrices. The rotation matrix for a given angle θ is:

R(θ) = [cos(θ), -sin(θ)]

[sin(θ), cos(θ)]

Now, let's match the angles of rotation with the corresponding vector matrices:

1. 45 degrees:

R(45°) = [√2/2, -√2/2]

[√2/2, √2/2]

The resulting vector matrix after rotating [6, -2] by 45 degrees is:

[√2/2 * 6 + -√2/2 * -2, √2/2 * -2 + √2/2 * 6] = [7√2, 7√2]

2. 90 degrees:

R(90°) = [0, -1]

[1, 0]

The resulting vector matrix after rotating [6, -2] by 90 degrees is:

[0 * 6 + -1 * -2, 1 * -2 + 0 * 6] = [2, -2]

3.180 degrees:

R(180°) = [-1, 0]

[0, -1]

The resulting vector matrix after rotating [6, -2] by 180 degrees is:

[-1 * 6 + 0 * -2, 0 * -2 + -1 * 6] = [-6, 2]

for more such questions on vector matrices

https://brainly.com/question/31529852

#SPJ8

How many hours must be traveled by car for each hour of rock climbing to make the risks of fatality by car equal to the risk of fatality by rock climbing?

Answers

To make the risks of fatality by car equal to the risk of fatality by rock climbing, a certain number of hours must be traveled by car for each hour of rock climbing.

Let's calculate how many hours must be traveled by car for each hour of rock climbing to make the risks of fatality by car equal to the risk of fatality by rock climbing.

Given that the risk of fatality by rock climbing is 1 in 320,000 hours and the risk of fatality by car is 1 in 8,000 hours

To make the risks of fatality by car equal to the risk of fatality by rock climbing:320,000 hours (Rock climbing) ÷ 8,000 hours (Car)

= 40 hours

Therefore, for each hour of rock climbing, 40 hours must be traveled by car to make the risks of fatality by car equal to the risk of fatality by rock climbing.

To know more about hours visit :-

https://brainly.com/question/24562751

#SPJ11

In a bag there are pink buttons, yellow buttons and blue buttons

Answers

In a bag, there are three different colors of buttons: pink, yellow, and blue. There are several methods to approach this question, but one effective way is to calculate the probability of choosing a specific button out of the entire bag.

It is important to note that probability is a fraction with the total number of outcomes on the bottom and the desired outcomes on the top. For instance, if there are five possible outcomes with two desired outcomes, the probability would be 2/5.

The probability of picking a pink button is the number of pink buttons in the bag divided by the total number of buttons. Similarly, the probability of picking a yellow button is the number of yellow buttons in the bag divided by the total number of buttons, and the probability of picking a blue button is the number of blue buttons in the bag divided by the total number of buttons. The sum of the probabilities of picking a pink, yellow, or blue button is equal to one. This implies that the probability of not selecting a pink, yellow, or blue button is zero. In other words, one of the three colors of buttons will be selected. For instance, if there are five pink buttons, three yellow buttons, and two blue buttons in the bag, there are ten buttons in total. The probability of selecting a pink button is 5/10 or 0.5, the probability of selecting a yellow button is 3/10, and the probability of selecting a blue button is 2/10 or 0.2. The sum of these probabilities is 0.5 + 0.3 + 0.2 = 1.0.  Therefore, if someone were to select one button randomly from the bag, there is a 50% chance that the button will be pink, a 30% chance that it will be yellow, and a 20% chance that it will be blue.

Know more about calculate the probability here:

https://brainly.com/question/14382310

#SPJ11

places.) (a) Compute a 95% CI for μ when n=25 and x
ˉ
=53.6. (, ) watts (b) Compute a 95% CI for μ when n=100 and x
ˉ
=53.6 ( , ) watts (c) Compute a 99%CI for μ when n=100 and x
ˉ
=53.6. ( , ) watts (d) Compute an 82% CI for μ when n=100 and x
ˉ
=53.6. ( , ) watts (e) How large must n be if the width of the 99% interval for μ is to be 1.0 ? (Round your answer up to the nearest whole number.) n=

Answers

(a)  95% CI for μ when n=25 and x will be (51.68, 55.52) watts .

We use the formula for a confidence interval for the mean with known standard deviation:

CI = (x - z*σ/√n, x+ z*σ/√n)

where x is the sample mean, σ is the population standard deviation, n is the sample size, and z is the z-score corresponding to the desired confidence level (95% in this case).

Since the standard deviation is unknown, we use the sample standard deviation s as an estimate for σ.

Plugging in the values, we have:

CI = (53.6 - 1.96*(s/√25), 53.6 + 1.96*(s/√25))

  = (51.68, 55.52) watts

(b) 95% CI for μ when n=100 and x will be (52.42, 54.78) watts.

Using the same formula as in part (a), we have:

CI = (53.6 - 1.96*(s/√100), 53.6 + 1.96*(s/√100))

  = (52.42, 54.78) watts

(c) 99%CI for μ when n=100 and x will be (51.96, 55.24) watts

Using the same formula as in part (a) with a z-score of 2.58 (corresponding to a 99% confidence level), we have:

CI = (53.6 - 2.58*(s/√100), 53.6 + 2.58*(s/√100))

  = (51.96, 55.24) watts

(d) 82% CI for μ when n=100 and x will be (52.95, 54.25) watts

Using the same formula as in part (a) with a z-score of 1.305 (found using a standard normal table or calculator), we have:

CI = (53.6 - 1.305*(s/√100), 53.6 + 1.305*(s/√100))

  = (52.95, 54.25) watts

(e) The value of n will be 267.

We use the formula for the width of a confidence interval:

width = 2*z*(s/√n)

where z is the z-score corresponding to the desired confidence level (99% in this case) and s is the sample standard deviation.

Solving for n, we have:

n = (2*z*s/width)^2

Plugging in the values, we get:

n = (2*2.58*s/1.0)^2

 = 266.49

Rounding up to the nearest whole number, we get n = 267.

To know more about statistics refer here:

https://brainly.com/question/31538429?#

#SPJ11


5. Two forest fire towers, A and B, are 20.3 km apart. The bearing from A to B is N70°E. The ranger
in each tower observes a fire and radios the fire's bearing from the tower. The bearing from tower A is
N25°E. From Tower B, the bearing is N15°W. How far is the fire from each tower?

Answers

The distance between tower A and the fire, x, is approximately 3.992 km, and the distance between tower B and the fire, y, is approximately 14.898 km.

To solve this problem, we can use the law of sines and trigonometric ratios to set up a system of equations that can be solved to find the distances from each tower to the fire.

We know that the distance between the two towers, AB, is 20.3 km, and that the bearing from tower A to tower B is N70°E. From this, we can infer that the bearing from tower B to tower A is S70°W, which is the opposite direction.

We can draw a triangle with vertices at A, B, and the fire. Let x be the distance from tower A to the fire, and y be the distance from tower B to the fire. We can use the law of sines to write:

sin(70°)/y = sin(25°)/x

sin(70°)/x = sin(15°)/y

We can then solve this system of equations to find x and y. Multiplying both sides of both equations by xy, we get:

x*sin(70°) = y*sin(25°)

y*sin(70°) = x*sin(15°)

We can then isolate y in the first equation and substitute into the second equation:

y = x*sin(15°)/sin(70°)

y*sin(70°) = x*sin(15°)

Solving for x, we get:

x = (y*sin(70°))/sin(15°)

Substituting the expression for y, we get:

x = (x*sin(70°)*sin(15°))/sin(70°)

x = sin(15°)*y

We can then solve for y using the first equation:

sin(70°)/y = sin(25°)/(sin(15°)*y)

y = (sin(15°)*sin(70°))/sin(25°)

Substituting y into the earlier expression for x, we get:

x = (sin(15°)*sin(70°))/sin(25°)

For such more questions on distance

https://brainly.com/question/26046491

#SPJ8

Find the net signed area between the curve of the function f(x)=x−1 and the x-axis over the interval [−7,3]. Do not include any units in your answer.

Answers

The net signed area between the curve of the function f(x)=x−1 and the x-axis over the interval [−7,3] is -75/2.

To find the net signed area between the curve of the function f(x)=x−1 and the x-axis over the interval [−7,3], we need to integrate the function f(x) with respect to x over this interval, taking into account the signs of the function.

First, we need to find the x-intercepts of the function f(x)=x−1 by setting f(x) equal to zero:

x - 1 = 0

x = 1

So the function f(x) crosses the x-axis at x=1.

Next, we can split the interval [−7,3] into two parts: [−7,1] and [1,3]. Over the first interval, the function f(x) is negative (i.e., below the x-axis), and over the second interval, the function f(x) is positive (i.e., above the x-axis).

So, we can write the integral for the net signed area as follows:

Net signed area = ∫[-7,1] f(x) dx + ∫[1,3] f(x) dx

Substituting the function f(x)=x−1 into this expression, we get:

Net signed area = ∫[-7,1] (x - 1) dx + ∫[1,3] (x - 1) dx

Evaluating each integral, we get:

Net signed area = [x²/2 - x] from -7 to 1 + [x²/2 - x] from 1 to 3

Simplifying and evaluating each term, we get:

Net signed area = [(1/2 - 1) - (49/2 + 7)] + [(9/2 - 3) - (1/2 - 1)]

Net signed area = -75/2

To know more about Net signed area, refer to the link below:

https://brainly.com/question/29720546#

#SPJ11

determine whether the sequence converges or diverges. if it converges, find the limit. (if an answer does not exist, enter dne.) an = tan 5n 3 20n

Answers

The given sequence converges.

The limit of the given sequence is :  1/4.

The given sequence is an = tan(5n)/(3 + 20n).
To determine if the sequence converges or diverges, we can use the limit comparison test.
We know that lim n→∞ tan(5n) = dne, since the tangent function oscillates between -∞ and +∞ as n gets larger.
Thus, we need to find another sequence bn that is always positive and converges/diverges.

Let's try bn = 1/(20n).
Then, we have lim n→∞ (tan(5n)/(3 + 20n)) / (1/(20n))
= lim n→∞ (tan(5n) * 20n) / (3 + 20n)
= lim n→∞ (tan(5n) / 5n) * (5 * 20n) / (3 + 20n)
= 5 lim n→∞ (tan(5n) / 5n) * (20n / (3 + 20n))

Now, we know that lim n→∞ (tan(5n) / 5n) = 1, by the squeeze theorem.

And we also have lim n→∞ (20n / (3 + 20n)) = 20/20 = 1, by dividing both numerator and denominator by n.

Therefore, the limit comparison test yields:
lim n→∞ (tan(5n)/(3 + 20n)) / (1/(20n)) = 5

Since the limit comparison test shows that the given sequence is similar to a convergent sequence, we can conclude that the given sequence converges.

To find the limit, we can use L'Hopital's rule to evaluate the limit of the numerator and denominator separately as n approaches infinity:
lim n→∞ tan(5n)/(3 + 20n) = lim n→∞ (5sec^2(5n))/(20) = lim n→∞ (1/4)sec^2(5n) = 1/4.

Therefore, the limit of the given sequence is 1/4.

To learn more about sequences visit : https://brainly.com/question/28169281

#SPJ11

the demand for a product is = () = √300 − where x is the price in dollars.

Answers

Based on the information provided, the demand for a product is given by the function D(x) = √300 - x, where x represents the price in dollars. In this function, the demand is expressed as a relationship between the price and the quantity of the product that consumers are willing to purchase.

To answer your question, let's first understand what demand for a product means. Demand refers to the quantity of a product that consumers are willing to buy at a particular price point. Typically, the higher the price of a product, the lower the demand for it. Now, coming back to your equation, the demand for a product is equal to √300 minus the price in dollars. So, if we put this equation into words, we can say that the demand for the product decreases as the price of the product increases. To put this into numbers, let's assume that the price of the product is 10 dollars. Substituting this value into the equation, we get the demand for the product as √300 - 10, which is equal to approximately 14 units. However, if the price of the product increases to 20 dollars, the demand will decrease to √300 - 20, which is equal to approximately 12 units. Therefore, the higher the price, the lower the demand for the product. In summary, this equation helps us understand the relationship between the price and demand for a product, and we can use it to make informed decisions regarding pricing strategies.

To know more about pricing strategies visit:

https://brainly.com/question/15586236

#SPJ11

Calculate the degrees of freedom that should be used in the pooled-variance t test, using the given information. s* =4 s2 = 6 n1 = 16 n2 = 25 0 A. df = 25 B. df = 39 C. df = 16 D. df = 41

Answers

The degrees of freedom that should be used in the pooled-variance t-test is 193.

The formula for calculating degrees of freedom (df) for a pooled-variance t-test is:

df = [tex](s_1^2/n_1 + s_2^2/n_2)^2 / ( (s_1^2/n_1)^2/(n_1-1) + (s_2^2/n_2)^2/(n_2-1) )[/tex]

where [tex]s_1^2[/tex] and [tex]s_2^2[/tex] are the sample variances, [tex]n_1[/tex] and [tex]n_2[/tex] are the sample sizes.

Substituting the given values, we get:

df = [tex][(4^2/16) + (6^2/25)]^2 / [ (4^2/16)^2/(16-1) + (6^2/25)^2/(25-1) ][/tex]

df = [tex](1 + 1.44)^2[/tex] / ( 0.25/15 + 0.36/24 )

df = [tex]2.44^2[/tex] / ( 0.0167 + 0.015 )

df = 6.113 / 0.0317

df = 193.05

Rounding down to the nearest integer, we get:

df = 193

For similar question on degrees of freedom

https://brainly.com/question/28527491

#SPJ11

To calculate the degrees of freedom for the pooled-variance t test, we need to use the formula:  df = (n1 - 1) + (n2 - 1) where n1 and n2 are the sample sizes of the two groups being compared. The degrees of freedom for this pooled-variance t-test is 39 (option B).

However, before we can use this formula, we need to calculate the pooled variance (s*).

s* = sqrt(((n1-1)s1^2 + (n2-1)s2^2) / (n1 + n2 - 2))

Substituting the given values, we get:

s* = sqrt(((16-1)4^2 + (25-1)6^2) / (16 + 25 - 2))

s* = sqrt((2254) / 39)

s* = 4.02

Now we can calculate the degrees of freedom:

df = (n1 - 1) + (n2 - 1)

df = (16 - 1) + (25 - 1)

df = 39

Therefore, the correct answer is B. df = 39.


To calculate the degrees of freedom for a pooled-variance t-test, use the formula: df = n1 + n2 - 2. Given the information provided, n1 = 16 and n2 = 25. Plug these values into the formula:

df = 16 + 25 - 2
df = 41 - 2
df = 39

So, the degrees of freedom for this pooled-variance t-test is 39 (option B).

Learn more about t-test at: brainly.com/question/15870238

#SPJ11

Express tan G as a fraction in simplest terms.


G


24


H


2

Answers

The value of tan(G/24) can be expressed as a fraction in simplest terms, but without knowing the specific value of G, we cannot determine the exact fraction.

To express tan(G/24) as a fraction in simplest terms, we need to know the specific value of G. Without this information, we cannot provide an exact fraction.

However, we can explain the general process of simplifying the fraction. Tan is the ratio of the opposite side to the adjacent side in a right triangle. If we have the values of the sides in the triangle formed by G/24, we can simplify the fraction.

For example, if G/24 represents an angle in a right triangle where the opposite side is 'O' and the adjacent side is 'A', we can simplify the fraction tan(G/24) = O/A by reducing the fraction O/A to its simplest form.

To simplify a fraction, we find the greatest common divisor (GCD) of the numerator and denominator and divide both by it. This process reduces the fraction to its simplest terms.

However, without knowing the specific value of G or having additional information, we cannot determine the exact fraction in simplest terms for tan(G/24).

Learn more about ratio  here:

https://brainly.com/question/25184743

#SPJ11

Are the polygons similar? If they are, write a similarity statement and give the scale factor. The figure is not drawn to scale

Answers

Corresponding angles of these polygons are not congruent, they are not similar. Therefore, we cannot write the similarity statement and the scale factor of these polygons.

Similarity is the property of figures with the same shape but different sizes. Two polygons are considered similar if their corresponding angles acongruent, and the ratio of their corresponding sides are proportional. Therefore, to check whether two polygons are similar, we compare their corresponding angles and their corresponding side lengths.In this problem, we are not provided with the length of the sides of the polygons. So, we can only check the similarity of these polygons based on their angles.

ABC and XYZ are two polygons given in the figure below. Let us check if they are similar.ABC has three interior angles with measure 45°, 60°, and 75°.XYZ has three interior angles with measure 70°, 45°, and 65°.The angles 45° of ABC and XYZ are corresponding angles. So, ∠ABC ≅ ∠XYZ. The angles 60° of ABC and 65° of XYZ are not corresponding angles. Similarly, the angles 75° of ABC and 70° of XYZ are not corresponding angles.Since corresponding angles of these polygons are not congruent, they are not similar. Therefore, we cannot write the similarity statement and the scale factor of these polygons.

Learn more about Corresponding here,Which angles are corresponding angles?

https://brainly.com/question/28769265

#SPJ11

Which of the following statements is not true regarding a robust statistic:
Question 10 options:
a) A statistical inference procedure is called robust if the probability calculations required are insensitive to violations of the assumptions made
b) The t procedures are not robust against outliers
c) t procedures are quite robust against nonnormality of the population where no outliers are present and the distribution is roughly symmetric
d) The two-sample t procedures are more robust than the one-sample t methods especially when the distributions are not symmetric

Answers

The statement that is not true is "The two-sample t procedures are more robust than the one-sample t methods especially when the distributions are not symmetric". That is option (d)

Understanding Robust Statistics

The statement given in Option (d) above is incorrect because the two-sample t procedures are generally considered less robust than the one-sample t methods, especially when the distributions are not symmetric.

This is because the two-sample t procedures require the assumption that the two populations have equal variances, and this assumption is often violated in practice. In contrast, the one-sample t methods only require the assumption of normality, and are more robust in the presence of outliers or non-normality.

To summarize the other statements given above:

a) A statistical inference procedure is called robust if the probability calculations required are insensitive to violations of the assumptions made - This is a true statement that defines the concept of robustness.

b) The t procedures are not robust against outliers - This is a true statement that highlights the sensitivity of t procedures to outliers.

c) t procedures are quite robust against nonnormality of the population where no outliers are present and the distribution is roughly symmetric - This is a true statement that highlights the robustness of t procedures to non-normality when the sample is roughly symmetric and there are no outliers.

Learn more about robust statistics here:

https://brainly.com/question/15966631

#SPJ1

) if is the subspace of consisting of all upper triangular matrices, then (b) if is the subspace of consisting of all diagonal matrices, then___

Answers

If $U$ is the subspace of $M_n(\mathbb{R})$ consisting of all upper triangular matrices, then any matrix $A\in U$ can be written as $A=T+N$, where $T$ is the diagonal part of $A$ and $N$ is the strictly upper triangular part of $A$ (i.e., the entries above the diagonal).

Note that $N$ is nilpotent (i.e., $N^k=0$ for some $k\in\mathbb{N}$), so any polynomial in $N$ must be zero. Therefore, the characteristic polynomial of $A$ is the same as that of $T$.

\ Since $T$ is diagonal, its eigenvalues are just its diagonal entries, so the characteristic polynomial of $T$ is $\det(\lambda I-T)=(\lambda-t_1)(\lambda-t_2)\cdots(\lambda-t_n)$, where $t_1,t_2,\ldots,t_n$ are the diagonal entries of $T$. Thus, the eigenvalues of $A$ are $t_1,t_2,\ldots,t_n$, so $U$ is diagonalizable.

If $D$ is the subspace of $M_n(\mathbb{R})$ consisting of all diagonal matrices, then any matrix $A\in D$ is already diagonal, so its eigenvalues are just its diagonal entries. Therefore, $D$ is already diagonalizable.

Learn more about subspace  here:

https://brainly.com/question/26727539

#SPJ11

true/false. if lim n → [infinity] an = 0, then an is convergent.

Answers

The statement is true because, in the context of sequences, convergent refers to the behavior of the sequence as its terms approach a certain value or limit.

If the limit of a sequence as n approaches infinity is 0 (i.e., lim n → [infinity] an = 0), it means that the terms of the sequence get arbitrarily close to zero as n becomes larger and larger.

For a sequence to be convergent, it must have a well-defined limit. In this case, since the limit is 0, it implies that the terms of the sequence are approaching zero. This aligns with the intuitive understanding of convergence, where a sequence "settles down" and approaches a specific value as n becomes larger.

Learn more about convergent https://brainly.com/question/31756849

#SPJ11

simplify and express your answer in exponential form. assume x>0, y>0
x^4y^2
4√x^3y^2
a. x^1/3
b. x^16/3 y^4
c. x^3 y
d. x^8/3

Answers

a. .[tex]x^{(1/3)[/tex], There is no need to simplify further as it is already in exponential form.

b. Simplify [tex]x^{(16/3)} to be (x^3)^{(16/9) }= (x^{(3/9)})^16 = (x^{(1/3)})^{16.[/tex]

c. c.[tex]x^{3y,[/tex]There is no need to simplify further as it is already in exponential form.

d. We can simplify [tex]x^{(8/3)[/tex]to be [tex](x^{(1/3)})^8[/tex] in exponential form.

To simplify [tex]x^4y^2[/tex], we can just write it as [tex](x^2)^2(y^1)^2[/tex], which gives us[tex](x^2y)^2[/tex]in exponential form.

For 4√[tex]x^3y^2[/tex], we can simplify the fourth root of [tex]x^3[/tex] to be[tex]x^{(3/4)}[/tex] and the fourth root of [tex]y^2[/tex] to be[tex]y^{(1/2)[/tex].

Then we have:

4√[tex]x^3y^2[/tex]= 4√[tex](x^{(3/4)} \times y^{(1/2)})^4[/tex] = [tex](x^{(3/4)} \times y^{(1/2)})^1 = x^{(3/4)} \times y^{(1/2)[/tex] in

exponential form.

For a.[tex]x^{(1/3)[/tex], there is no need to simplify further as it is already in exponential form.

For b. [tex]x^{(16/3)}y^4[/tex], we can simplify [tex]x^{(16/3)} to be (x^3)^{(16/9) }= (x^{(3/9)})^16 = (x^{(1/3)})^{16.[/tex]

Then we have: [tex]x^{(16/3)}y^4 = (x^{(1/3)})^16 \times y^4[/tex] in exponential form. For c.[tex]x^{3y,[/tex]there is no need to simplify further as it is already in exponential form. For d. [tex]x^{(8/3),[/tex] we can simplify [tex]x^{(8/3)[/tex]to be [tex](x^{(1/3)})^8[/tex] in exponential form.

for such more question on exponential form.

https://brainly.com/question/2883200

#SPJ11

To simplify and express the given expression in exponential form, we need to use the rules of exponents. Starting with the given expression:
x^4y^2 * 4√(x^3y^2)

First, we can simplify the fourth root by breaking it down into fractional exponents:
x^4y^2 * (x^3y^2)^(1/4)

Next, we can use the rule that says when you multiply exponents with the same base, you can add the exponents:
x^(4+3/4) y^(2+2/4)

Now, we can simplify the fractional exponents by finding common denominators:
x^(16/4+3/4) y^(8/4+2/4)

x^(19/4) y^(10/4)

Finally, we can express this answer in exponential form by writing it as:
(x^(19/4)) * (y^(10/4))

Therefore, the simplified expression in exponential form is (x^(19/4)) * (y^(10/4)), assuming x>0 and y>0.

To learn more about exponential form click here, brainly.com/question/29287497

#SPJ11

consider the curve given by the parametric equations x = t (t^2-3) , \quad y = 3 (t^2-3) a.) determine the point on the curve where the tangent is horizontal.

Answers

The two points on the curve where the tangent is horizontal are:

(0, -9) and (-3/2, 0).

To find where the tangent is horizontal, we need to find where the slope (dy/dx) equals zero.
Using the chain rule, we have:

dy/dx = (dy/dt)/(dx/dt)
     = (6t)/(2t^2-3)

Setting this equal to zero and solving for t, we get:
6t = 0
t = 0
or
2t^2 - 3 = 0
t = ±√(3/2)

Now we need to find the corresponding points on the curve.

When t = 0, x = 0 and y = -9. So the point (0, -9) is one point on the curve where the tangent is horizontal.

When t = √(3/2), x = -3/2 and y = 0. So the point (-3/2, 0) is another point on the curve where the tangent is horizontal.

Therefore, the two points on the curve where the tangent is horizontal are (0, -9) and (-3/2, 0).

To learn more about tangent visit : https://brainly.com/question/4470346

#SPJ11

find the probability that a normal variable takes on values within 0.6 standard deviations of its mean. (round your decimal to four decimal places.)

Answers

The probability that a normal variable takes on values within 0.6 standard deviations of its mean is approximately 0.4514, or 45.14%, when rounded to four decimal places.

For a normal distribution, the probability of a variable falling within a certain range can be determined using the Z-score table, also known as the standard normal table. The Z-score is calculated as (X - μ) / σ, where X is the value, μ is the mean, and σ is the standard deviation. In this case, you are interested in finding the probability that a normal variable takes on values within 0.6 standard deviations of its mean. This means you'll be looking for the area under the normal curve between -0.6 and 0.6 standard deviations from the mean. First, look up the Z-scores for -0.6 and 0.6 in the standard normal table. For -0.6, the table gives a probability of 0.2743, and for 0.6, it gives a probability of 0.7257. To find the probability of the variable falling within this range, subtract the probability of -0.6 from the probability of 0.6:
0.7257 - 0.2743 = 0.4514

Learn more about variable here:

https://brainly.com/question/15740935

#SPJ11

Un comerciante a vendido un comerciante ha vendido una caja de tomates que le costó 150 quetzales obteniendo una ganancia de 40% Hallar el precio de la venta

Answers

From the profit of the transaction, we are able to determine the sale price as 210 quetzales

What is the sale price?

To find the sale price, we need to calculate the profit and add it to the cost price.

Given that the cost price of the box of tomatoes is 150 quetzales and the profit is 40% of the cost price, we can calculate the profit as follows:

Profit = 40% of Cost Price

Profit = 40/100 * 150

Profit = 0.4 * 150

Profit = 60 quetzales

Now, to find the sale price, we add the profit to the cost price:

Sale Price = Cost Price + Profit

Sale Price = 150 + 60

Sale Price = 210 quetzales

Therefore, the sale price of the box of tomatoes is 210 quetzales.

Learn more on sale price here;

https://brainly.com/question/28420607

#SPJ4

Translation: A merchant has sold a merchant has sold a box of tomatoes that cost him 150 quetzales, obtaining a profit of 40% Find the sale price

Let A be an m x n matrix and let x ER" There are many different ways to think about the matrix-vector multiplication Ax. One useful way is to recognize that this is really just writing a linear combination of the columns of A! Let's see what we mean by this: [1 2] (a) For A = and x = write out the matrix vector product Ax. Note: your answer will still have 11 and 12 in it. 1 3 4 (b) Now take your answer to part la and rewrite it in this form: 11V1 + 12V2. In other words, this problem is asking you to find vi and v2. (c) What do you notice? How does your answer to part lb relate to the original matrix A?

Answers

(a) The matrix-vector multiplication Ax can be written as:
Ax = [1 2; 3 4; 1 1] * [x1; x2]

Simplifying this expression, we get:
Ax = [1*x1 + 2*x2; 3*x1 + 4*x2; 1*x1 + 1*x2]

(b) Rewriting the above expression in terms of column vectors, we get:
Ax = x1 * [1; 3; 1] + x2 * [2; 4; 1]

So, we can say that vi = [1; 3; 1] and v2 = [2; 4; 1]

(c) We notice that the vectors vi and v2 are the columns of the matrix A. In other words, we can write A = [vi, v2]. So, when we do matrix-vector multiplication Ax, we are essentially taking a linear combination of the columns of A.

To Know more about linear combination refer here

brainly.com/question/31977121#

#SPJ11

Suppose you implement a RAID 0 scheme that splits the data over two hard drives. What is the probability of data loss

Answers

The probability of data loss in RAID 0 is high. It is not advised to keep important data on it.

RAID 0, also known as "striping," is a data storage method that utilizes multiple disks. It divides data into sections and stores them on two or more disks, allowing for faster access and higher performance. RAID 0's primary purpose is to enhance read and write speeds and increase storage capacity, rather than data protection.

Since RAID 0 is a non-redundant array, the probability of data loss is high. If one drive fails, the entire array will fail, and all data stored on it will be lost. When two disks are used in RAID 0, the probability of failure increases because if one drive fails, the entire RAID 0 array will fail. RAID 0 provides no redundancy, and it is considered dangerous to store critical data on it. RAID 0 should only be used in situations where speed and performance are more important than data safety.

In conclusion, the probability of data loss in RAID 0 is high. Therefore, it is not recommended to store critical data on it.

To know more about probability Visit :

https://brainly.com/question/32117953

#SPJ11

Justify why log (6) must


have a value less than 1


but greater than 0

Answers

Log (6) lies between 0 and 1 exclusive and it is a positive number since it is a logarithm of a number greater than 1.

The justification why log (6) must have a value less than 1 but greater than 0 is as follows:Justification:

The logarithmic function is a one-to-one and onto function, whose domain is all positive real numbers and the range is all real numbers, and for any positive real number b and a, if we have b > 1, then log b a > 0, and if we have 0 < b < 1, then log b a < 0.

For log (6), we can use a change of base formula to find that:log (6) = log(6) / log(10) = 0.7781, which is less than 1 but greater than 0, since 0 < log(6) / log(10) < 1, thus, log (6) must have a value less than 1 but greater than 0.

Therefore, log (6) lies between 0 and 1 exclusive and it is a positive number since it is a logarithm of a number greater than 1.

Thus, the justification of why log (6) must have a value less than 1 but greater than 0 is proven.

Know more about logarithm  here,

https://brainly.com/question/30226560

#SPJ11

Derivative e-1/x and 0 show that f0 =0

Answers

The derivative f'(x) = [tex]e^{(-1/x)[/tex] * (1/x²)

f(0) =0

The function f(x) = [tex]e^{(-1/x)[/tex] is defined as:

f(x) = [tex]e^{(-1/x)[/tex] if x > 0

f(x) = 0 if x = 0

To find the derivative of f(x), we can use the chain rule and the power rule:

f'(x) = [tex]e^{(-1/x)[/tex] * (1/x²)

Note that the derivative exists for all x > 0, but not at x = 0. We need to show that f'(0) exists and is equal to 0 to demonstrate that f(x) is differentiable at x = 0.

To do this, we can use the definition of the derivative:

f'(0) = lim(h -> 0) [f(0 + h) - f(0)] / h

For h > 0, we have:

f(0 + h) = [tex]e^{(-1/(0+h))} = e^{(-1/h)[/tex]

For h < 0, we have:

f(0 + h) = [tex]e^{(-1/(0+h)}) = e^{(1/|h|)[/tex]

Note that both of these functions approach 0 as h approaches 0. Therefore, we can write:

f'(0) = lim(h -> 0) [f(0 + h) - f(0)] / h

= lim(h -> 0) f(h) / h

Using L'Hopital's rule, we can take the derivative of the numerator and denominator separately:

f'(0) = lim(h -> 0) f'(h) / 1

Substituting the expression for f'(x), we get:

f'(0) = lim(h -> 0) [tex]e^{(-1/h)[/tex] * (1/h²) / 1

= lim(h -> 0) (1/h²) * [tex]e^{(-1/h)[/tex]

Note that as h approaches 0, [tex]e^{(-1/h)[/tex] approaches 0 faster than 1/h² approaches infinity. Therefore, the limit of f'(0) is equal to 0.

This shows that f(x) is differentiable at x = 0 and that its derivative at x = 0 is equal to 0. Intuitively, we can think of f(x) as a smooth curve that flattens out to 0 as x approaches 0. Therefore, the slope of the curve at x = 0 is 0, which is consistent with the fact that f'(0) = 0.

To know more about derivative, refer to the link below:

https://brainly.com/question/29005833#

#SPJ11

A car's cooling system has a capacity of 20 quarts. Initially, the system contains a mixture of 5 quarts of antifreeze and 15 quarts of water. Water runs into the system at the rate of 1 gal min , then the homogeneous mixture runs out at the same rate. In quarts, how much antifreeze is in the system at the end of 5 minutes? (Round your answer to two decimal places. ) qt

Answers

To solve this problem, we need to consider the rate of water entering the system and the rate at which the mixture is being drained out.

The water runs into the system at a rate of 1 gallon per minute, which is equivalent to 4 quarts per minute. Since the mixture is being drained out at the same rate, the amount of water in the system remains constant at 15 quarts.

Initially, the system contains 5 quarts of antifreeze. As the water enters and is drained out, the proportion of antifreeze in the mixture remains the same.

In 5 minutes, the system will have 5 minutes * 4 quarts/minute = 20 quarts of water passing through it.

The proportion of antifreeze in the mixture is 5 quarts / (5 quarts + 15 quarts) = 5/20 = 1/4.

Therefore, at the end of 5 minutes, the amount of antifreeze in the system will be 1/4 * 20 quarts = 5 quarts.

So, at the end of 5 minutes, there will be 5 quarts of antifreeze in the system.

Learn more about proportion here:

https://brainly.com/question/31548894

#SPJ11

PLEASE HELP


A frustum of a regular square pyramid has bases with sides of lengths 6 and 10. The height of the frustum is 12.


Find the volume of the frustum?


Find the surface area of the frustum?

Answers

Volume of the frustum: The volume of the frustum of a pyramid is given by: V = (h/3) × (A + √(A × B) + B)where A and B are the areas of the top and bottom faces of the frustum, respectively. h is the height of the frustum.

Therefore, the volume of the frustum with sides of lengths 6 and 10 is given by: First, we need to find the areas of the two bases of the frustum. Area of the top face = 6² = 36Area of the bottom face = 10² = 100.

Now, the volume of the frustum = (12/3) × (36 + √(36 × 100) + 100)= 4 × (36 + 60 + 100)= 4 × 196= 784 cubic units.

Surface area of the frustum: The surface area of the frustum is given by: S = πl(r1 + r2) + π(r1² + r2²)where l is the slant height of the frustum. r1 and r2 are the radii of the top and bottom bases, respectively.

The slant height of the frustum can be found using the Pythagorean theorem.

l² = h² + (r2 - r1)²= 12² + (5)²= 144 + 25= 169l = √(169) = 13The radii of the top and bottom faces are half the lengths of their respective sides. r1 = 6/2 = 3r2 = 10/2 = 5.

Therefore, the surface area of the frustum = π(13)(3 + 5) + π(3² + 5²)= π(13)(8) + π(9 + 25)= 104π + 34π= 138π square units.

Answer: Volume of the frustum = 784 cubic units.

Surface area of the frustum = 138π square units.

To know more about pyramid visit:

https://brainly.com/question/13057463

#SPJ11

what is the probability that z is between 1.57 and 1.87

Answers

The probability that z is between 1.57 and 1.87 is approximately 0.0275. This would also give us a result of approximately 0.0275.

Assuming you are referring to the standard normal distribution, we can use a standard normal table or a calculator to find the probability that z is between 1.57 and 1.87.

Using a standard normal table, we can find the area under the curve between z = 1.57 and z = 1.87 by subtracting the area to the left of z = 1.57 from the area to the left of z = 1.87. From the table, we can find that the area to the left of z = 1.57 is 0.9418, and the area to the left of z = 1.87 is 0.9693. Therefore, the area between z = 1.57 and z = 1.87 is:

0.9693 - 0.9418 = 0.0275

So the probability that z is between 1.57 and 1.87 is approximately 0.0275.

Alternatively, we could use a calculator to find the probability directly using the standard normal cumulative distribution function (CDF). Using a calculator, we would input:

P(1.57 ≤ z ≤ 1.87) = normalcdf(1.57, 1.87, 0, 1)

where 0 is the mean and 1 is the standard deviation of the standard normal distribution. This would also give us a result of approximately 0.0275.

Learn more about probability here

https://brainly.com/question/13604758

#SPJ11

what are the horizontal and vertical components of the velocity of the rock at time t1 calculated in part a? let v0x and v0y be in the positive x - and y -directions, respectively.

Answers

The horizontal and vertical components of the velocity of the rock at time t1 calculated in part a? let v0x and v0y be in the positive x - and y -directions, respectively, the horizontal and vertical components of the velocity of the rock at time t1 are: v(t1)x = v0x and v(t1)y = 0

Calculate the horizontal and vertical components of the velocity of the rock at time t1, we need to use the equations of motion. From part a, we know that the initial velocity of the rock, v0, is equal to v0x + v0y.
Using the equation for the vertical motion of the rock, we can find the vertical component of the velocity at time t1:
y(t1) = y0 + v0y*t1 - 1/2*g*t1^2
where y0 is the initial height of the rock, g is the acceleration due to gravity, and t1 is the time elapsed.
At the highest point of the rock's trajectory, its vertical velocity will be zero, so we can set v(t1) = 0:
v(t1) = v0y - g*t1 = 0
Solving for t1, we get:
t1 = v0y/g
Substituting this value of t1 back into the equation for y(t1), we get:
y(t1) = y0 + v0y*(v0y/g) - 1/2*g*(v0y/g)^2
y(t1) = y0 + v0y^2/(2*g)
Therefore, the vertical component of the velocity at time t1 is:
v(t1)y = v0y - g*t1
v(t1)y = v0y - g*(v0y/g)
v(t1)y = v0y - v0y
v(t1)y = 0
Now, using the equation for the horizontal motion of the rock, we can find the horizontal component of the velocity at time t1:
x(t1) = x0 + v0x*t1
where x0 is the initial horizontal position of the rock.
Since there is no acceleration in the horizontal direction, the horizontal component of the velocity remains constant:
v(t1)x = v0x
Therefore, the horizontal and vertical components of the velocity of the rock at time t1 are:
v(t1)x = v0x
v(t1)y = 0

Read more about velocity.

https://brainly.com/question/30736877

#SPJ11

Truck is carrying two sizes of boxes large and small. Combined weight of a small and large box is 70 pounds. The truck is moving 60 large and 55 small boxes. If it is carrying a total of 4050 pounds in boxes how much does each type of box weigh

Answers

Let's assume the weight of a large box is represented by L (in pounds) and the weight of a small box is represented by S (in pounds).

Given that the combined weight of a small and large box is 70 pounds, we can create the equation:

L + S = 70 ---(Equation 1)

We are also given that the truck is moving 60 large and 55 small boxes, with a total weight of 4050 pounds. This information gives us another equation:

60L + 55S = 4050 ---(Equation 2)

To solve this system of equations, we can use the substitution method.

From Equation 1, we can express L in terms of S:

L = 70 - S

Substituting this expression for L in Equation 2:

60(70 - S) + 55S = 4050

4200 - 60S + 55S = 4050

-5S = 4050 - 4200

-5S = -150

Dividing both sides by -5:

S = -150 / -5

S = 30

Now, we can substitute the value of S back into Equation 1 to find L:

L + 30 = 70

L = 70 - 30

L = 40

Therefore, each large box weighs 40 pounds, and each small box weighs 30 pounds.

Learn more about equation here:

https://brainly.com/question/29538993

#SPJ11

Other Questions
A soap film (n = 1.33) is 772 nm thick. White light strikes the film at normal incidence. What visible wavelengths will be constructively reflected if the film is surrounded by air on both sides? C. Create a function called prism_prop that would give the volume and surface area of arectangular prism, where the length, width, and height are the input parameters, andwhere l,w,h are distinct. Output the quantities when =1,W =5,H =10. Consider a monopolistically competitive market with N firms. Each firm's business opportunities are described by the following equations:Demand: Q=100/N-PMarginal Revenue: MR=100/N-2QTotal cost: TC=50+Q(squared)Marginal Cost: MC=2Qa. How does N, the number of firms in the market, affect each firms demand curve? Why.b. How many units does each firm produce? (The answer to this and the next two questions depend on N.)c. What price does each firm charge?d. How much profit does each firm make?e. In the long run, how many firms will exist in this market? The velocity distribution in a two-dimensional steady flow field in the xy-plane is V = (Ax + B)i + (C - Ay)i, where A = 25-1, B = 5 m.s-1, and C= 5 m.s-1; the coordinates are measured in meters, and the gravitational acceleration is g = -gk. Does the velocity field represent the flow of an incompressible fluid? Find the stagnation point of the flow field. Obtain an expression for the pressure gradient in the flow field. Evaluate the difference in pressure between points (x,y,z) = (1,3,0) and the origin, if the density is 1.2 kg/m? a force f = bx3 acts in the x direction, where the value of b is 3.9 n/m3. how much work is done by this force in moving an object from x = 0.0 m to x = 2.5 m? describe the advantages and disadvantages of segment marketing. How does persistence assist a school leaver to become a successful business owner If the radius of a flying disc is 7. 6 centimeters, what is the approximate area of the disc? A. 23. 864 square centimeters B. 90. 6832 square centimeters C. 181. 3664 square centimeters D. 238. 64 square centimeters. True/False: the prosotmium is the anterior-most segment of an annelid. At December 31, 2016, Vanderpool's price-earnings ratio was 14.6. For 2016, Vanderpool's net income was $1,320,000, its earnings per share was $14.00, and its annual dividend per share was $8.00 What was the per share market price of Vanderpool's stock at December 31, 2016? A. $132.80 B. $116.80 C.$165.60 D. $204.40 QUESTION 18 Beltower. Inc. has net income for 2016 of $370.000. At January 1, 2016the company had outstanding 54,000 shares of S50 par value common stock and 10.000 shares of 6%, $100 par value cumulative preferred stock. On September 1, 2016, an additional 18,000 shares of common stock were issued. What is the earnings per share for 2016 (to the nearest cent)? A.$4.44 B.$6.17 C.$5.17 D.$4.31 Why would a company want to hire a member of its external audit team? Do our intestines contain germs? Katrina wants to make a cover for her laptop to fit into her bag in order to protect it. She measured the top of her laptop and found it was 57,000 mm2. No one sells covers using square millimeters, her friend noted. Describe the area of the top of Katrinas laptop using square centimeters. Duerr Company makes a $60,000, 60-day, 12% cash loan to Ryan Co. The note and interest to be collected at maturity is: (Use 360 days a year.)A) $67,200. B) $60,000. C) $1,200. D) $58,800. E) $61,200. Place the following steps in the expression of the lac operon in the order in which each occurs for the first time after a cell is induced.Sigma protein dissociates from RNA polymerase.A peptide bond is formed between the first two amino acids in galactosidase.A phosphodiester bond is formed between two ribonucleotides.RNA polymerase dissociates from the lacA gene.A repressor dissociates from an operator.A ribosome subunit binds to a transcript. how do you distinguish between the concepts of demand and supply functions in microeconomics and the concepts of ad and as functions in macroeconomics? why are they different? Seasonal changes are related to the length of a day and the height of the sun in the sky. Dscribe how these two factors change throughout a year a public key is part of what security measure? group of answer choices firewall web security protocol digital certificates intrusion detection system The accompanying scatterplot shows data on age and GPA for a sample of college students. Comment on the trend of the scatterplot. Is the trend positive, negative, or near zero? Click the icon to view the scatterplot of age and GPA. The graph shows since the points show as age increases. The association between age and GPA is Age and GPA 4.0- 3.5 3.0- GPA 2.5 2.0 - 1.5 - 20 24 32 36 28 Age Print Done What is the molality of a 21.8 m sodium hydroxide solution that has a density of 1.54 g/ml?