a spaceship has a rest mass of 660,000 tons. if you could measure its mass when it was traveling at half the speed of light, what would the value be?

Answers

Answer 1

The mass of the spaceship when it is traveling at half the speed of light would be approximately 6.91 x 10¹¹ kg.

The spaceship's mass at half the speed of light can be calculated using the formula:

m = m₀ / √(1 - v²/c²)

where m = mass at speed v, m₀ = rest mass, v = velocity, and c = speed of light.

The rests mass of the spaceship is 660,000 tons, which we can convert to kilograms by multiplying by 907,185 (1 ton = 907,185 kg).

So, m₀ = 660,000 * 907,185

= 5.98 x 10¹¹ kg.

The spaceship is traveling at half the speed of light, which we can express as v = 0.5c, where c = 299,792,458 m/s. Plugging these values into the equation, we get:

m = m₀ / √(1 - v²/c²)

m = (5.98 x 10¹¹ kg) / √(1 - (0.5c)²/c²)

m = (5.98 x 10¹¹ kg) / √(1 - 0.25)

m = (5.98 x 10¹¹ kg) / √(0.75)

m = (5.98 x 10¹¹ kg) / 0.866

m = 6.91 x 10¹¹ kg

Learn more about the speed of light here:

https://brainly.com/question/104425

#SPJ11


Related Questions

2. how many times a minute does a boat bob up and down on ocean waves that have a wavelength of 36.0 m and a propagation speed of 4.80 m/s?

Answers

The boat will bob up and down on ocean waves that have a wavelength of 36.0 m and a propagation speed of 4.80 m/s once every 7.50 seconds.

To solve the given question, we must use the formula:

n= v/f

Where: v is the velocity of the wave (in m/s)f is the frequency of the wave (in Hz)n is the number of cycles per second

Therefore, the frequency of the wave (in Hz) can be calculated by using the formula:

f= v/λ

where: v is the velocity of the wave (in m/s)λ is the wavelength of the wave (in m)

The frequency of the wave is 0.1333 Hz (approx).

Now, the number of cycles per second (n) is: n = v/λ

We can solve for n by dividing the velocity of the wave by the wavelength of the wave.

Therefore,

n= v/λ= (4.80 m/s) / (36.0 m)= 0.1333 Hz

So, the boat bob up and down 0.1333 times a minute on ocean waves that have a wavelength of 36.0 m and a propagation speed of 4.80 m/s.

1 Hz = 60 seconds,

0.1333 Hz = 7.50 seconds.

To know more about Frequency, refer here:

https://brainly.com/question/29739263#

#SPJ11

what are some of the challenges associated with using solar energy as a primary source of electricity,

Answers

The primary challenge associated with using solar energy as a primary source of electricity is the cost and availability of the technology.

Cost: One of the significant challenges of solar energy is its cost. Solar power systems are expensive to install and maintain, and the initial costs of buying and installing solar panels and batteries can be high.

Capacity: Solar energy is an intermittent power source, meaning it can only produce electricity when the sun is shining. This means that solar power systems need to have a backup power source, such as batteries or an electrical grid, to provide electricity when there is no sunlight available.

Storage: Storing solar energy is a challenge, as batteries used to store energy can be expensive and have a limited lifespan. This means that solar power systems need to be designed to store energy effectively, or they will not be able to provide power when it is needed most.

Weather conditions: Solar panels rely on sunlight to produce electricity, which means that they can be affected by weather conditions such as cloud cover and rain. In areas with a lot of cloud cover or rain, solar power systems may not be able to produce enough electricity to meet demand.

Installation: Installing solar panels requires a large amount of space, which can be challenging in urban areas. Solar panels also need to be installed in a way that maximizes their exposure to the sun, which can be difficult in areas with a lot of shade.

Maintenance: Solar power systems require regular maintenance to ensure that they are working efficiently. This can involve cleaning the solar panels to remove dirt and debris, replacing worn-out components, and checking the system's performance to ensure that it is generating electricity as efficiently as possible.

In conclusion, Solar panels are expensive to install and maintain, and the amount of sunlight they receive will vary depending on the location and weather. Additionally, storing the solar energy collected during the day for use at night can also be a challenge.

To know more about Solar Energy, refer here:

https://brainly.com/question/9704099#

#SPJ11

two people are yelling at the same time. one yells with an intensity level of 80.0 db, and the other at 90.0 db. what is the total sound intensity level?

Answers

The total sound intensity level is approximately 87 dB.

When two sounds with different intensities are present simultaneously, the total sound intensity level is found by adding the individual sound intensity levels in decibels (dB) using the following equation,

L_total = 10 log10(I_total/I_0)

where L_total is the total sound intensity level, I_total is the total sound intensity, and I_0 is the reference sound intensity (usually taken as 10^-12 W/m^2).

In this case, we have two sounds with intensity levels of 80.0 dB and 90.0 dB. To find the total sound intensity level, we first need to convert each intensity level to sound intensity,

I_1 = I_0 10^(L_1/10) = (10^-12 W/m^2) 10^(80.0/10) = 10^-5 W/m^2

I_2 = I_0 10^(L_2/10) = (10^-12 W/m^2) 10^(90.0/10) = 10^-4 W/m^2

where L_1 and L_2 are the intensity levels of the two sounds in dB.

The total sound intensity is the sum of these two sound intensities,

I_total = I_1 + I_2 = 10^-5 W/m^2 + 10^-4 W/m^2 = 1.1 x 10^-4 W/m^2

L_total = 10 log10(I_total/I_0) = 10 log10(1.1 x 10^-4/10^-12) ≈ 87 dB

To know more about sound intensity, here

brainly.com/question/28448860

#SPJ4

stop to think 5.5 an elevator suspended by a cable is moving upward and slowing to a stop. which free-body diagram is correct?

Answers

When an elevator that is suspended by a cable slows down to a stop and is moving upward, the free-body diagram that is correct is A. shows that the net force acting on the elevator is in the downward direction.

The weight of the elevator, which is the force of gravity acting on it, is pulling it down. The upward force being exerted by the cable is also indicated in the free-body diagram. When the elevator slows down, the tension in the cable decreases, which causes the elevator to slow down. Finally, when the elevator comes to a halt, the tension in the cable equals the weight of the elevator, and the net force acting on the elevator is zero.

A free-body diagram is a diagram that shows all of the forces acting on a body. It can also be referred to as a force diagram. Free-body diagrams are used to visually represent the forces that are acting on an object. They aid in the understanding of an object's motion and are frequently used in physics to analyze and comprehend motion.

Learn more about free-body diagram at:

https://brainly.com/question/10148657

#SPJ11

a bulb emits light ranging in wavelength from 2.64e-7 m to 8.66e-7 m. what is the maximum frequency of the light (in hz)?

Answers

A bulb emits light ranging in wavelength from 2.64e-7 m to 8.66e-7 m. The maximum frequency of the light is [tex]1.14 \times 10^{15} Hz.[/tex]

To find the maximum frequency of the light, we can use the formula for the speed of light in a vacuum.

The speed of light (c) is given by [tex]3.00 \times 10^{8} m/s.[/tex]

We can use the following formula to find the frequency of light:

f = c / λ

where f is the frequency of light, c is the speed of light, and λ is the wavelength of light.

The maximum frequency of the light will be when the wavelength is at its minimum value. So, we can use the minimum wavelength in the formula above.

Hence, the maximum frequency of the light is given by:f = c / λmax

                                                                                              = [tex]3.00 \times 10^{8}  / 2.64 \times 10^{-7}[/tex]

                                                                                              = [tex]1.14 \times 10^{15} Hz.[/tex]

for such more question on frequency

https://brainly.com/question/254161

#SPJ11

when a mass m is hung on a certain ideal spring, the spring stretches a distance d. if the mass is then set oscillating on the spring, the period of oscillation is proportional to

Answers

Answer:

ω = (k / m)^1/2      proportionality for angular speed in SHM

f =  ω / 2 * π

Since P = 1 / f      the period is inversely proportional to ω

P proportional to m

P inversely proportional to k the spring constant

When a mass m is hung on a certain ideal spring, the spring stretches a distance d. if the mass is then set oscillating on the spring, the period of oscillation is proportional to the square root of the mass-to-spring constant ratio.

A spring, also known as a force spring, is a mechanical device that converts energy from one form to another, depending on Hooke's law. Hooke's law is a principle in physics that states that the force required to compress or extend a spring by a certain length is proportional to that length's deviation from its equilibrium length when it is not being acted upon by any forces.

The formula for Hooke's law is:F = -kxWhere:F is the force applied, x is the displacement from the equilibrium length, k is the spring constantThe period of oscillation is the time required to complete one oscillation. It is dependent on the mass m of the system and the spring constant k. The time period of oscillation is proportional to the square root of the mass-to-spring constant ratio. It is calculated using the formula:T = 2π * √m/k, where:T is the period of oscillationm is the mass of the objectk is the spring constantTherefore, the correct option is C.

Learn more about Hooke's law at:

https://brainly.com/question/2449067

#SPJ11

suppose you take off in a car with your physics book on top. if you are accelerating forward and the book rides with you, in what direction does friction act on the book

Answers

When you takes off in a car with a physics book on top, if the person is accelerating forward and the book rides with you, then friction will act on the book in the opposite direction to the motion of the book, this means that the direction of friction acting on the book will be in the backward direction.

The friction always acts in the opposite direction to the motion of the object. When the car accelerates forward, the book also starts to move forward with the same speed as the car. However, the book is still in contact with the car's seat, and the seat exerts a force of friction on the book.

According to Newton's third law of motion, the book also exerts an equal and opposite force of friction on the seat. Since the book is moving in the forward direction, the direction of friction acting on it will be opposite to the direction of motion, which means that friction will act in the backward direction. Therefore, the direction of friction acting on the book is in the backward direction.

Learn more about Newton's third law at:

https://brainly.com/question/29768600

#SPJ11

how do air masses contribute to the formation of air fronts?

Answers

Air masses contribute to the formation of air fronts because air masses are large bodies of air that have similar characteristics in terms of temperature, humidity, and stability.

When two air masses with different characteristics come into contact, they form a boundary known as an air front. The characteristics of the two air masses determine the type of air front that forms.

There are four types of air fronts: cold fronts, warm fronts, stationary fronts, and occluded fronts.

Cold fronts occur when a cold air mass displaces a warm air mass, causing the warm air to rise and cool, which leads to cloud formation and precipitation. Warm fronts occur when a warm air mass displaces a cold air mass, causing the warm air to rise gradually over the cold air, leading to gradual cloud formation and precipitation. Stationary fronts occur when two air masses with different characteristics meet but do not move, leading to prolonged periods of precipitation. Occluded fronts occur when a cold front overtakes a warm front and lifts the warm air mass off the ground, leading to cloud formation and precipitation.

Air masses play a significant role in the formation of air fronts because they determine the characteristics of the air mass that will form at the boundary between the two air masses. This, in turn, determines the type of air front that will form and the type of weather that will result. For example, a cold, dry air mass coming into contact with a warm, moist air mass will likely result in a cold front and a period of heavy precipitation.

To learn more about Air masses, visit: https://brainly.com/question/19626802

#SPJ11

how large must the coefficient of static friction be between the tires and the road if a car is to round a level curve of radius 145 m at a speed of 130 km/h ?

Answers

The coefficient of static friction between the tires and the road if a car is to round a level curve of radius 145 m at a speed of 130 km/h is 4.64

Whenever the object rotаtes аround the curved pаth then а net force аcts on the object pointing towаrds the center of а circulаr pаth аnd it is cаlled а centripetаl force. Mаthemаticаlly, we cаn write;

Centripetаl Force = [tex]\frac{mv^{2} }{r}[/tex]

where m is the mass of the body, v is the velocity of the body, and r is the radius of rotation.

We are given:

Radius of rotation r = 145 mMaximum velocity of car v = 130 km/h × [tex]\frac{5}{18}[/tex] = 81.25 m/sm be the mass of the carμs be the coefficient of static friction

Since the car is making circular motion, therefore, necessary centripetal force is provided by the frictional force.

frictional force = centripetal force

μsmg = [tex]\frac{mv^{2} }{r}[/tex]

μs = [tex]\frac{v^{2} }{rg}[/tex]

μs = [tex]\frac{81.25^{2} }{145.9.81}[/tex]

μs = 4.64

Therefore, the coefficient of static friction between the tires of the car and the road surface is 4.64.

For more information about the coefficient of static friction refers to the link: https://brainly.com/question/13828735

#SPJ11

a body of mass 2.00 kg is pushed straight upward by a 25.0 n external vertical force near the surface of the earth. what is its acceleration?

Answers

When a body of mass 2.00 kg is pushed straight upward by a 25.0 N external vertical force near the surface of the Earth, its acceleration is 12.5 m/s2. This is equal to the acceleration due to gravity (g).

The acceleration of a body of mass 2.00 kg when pushed straight upward by a 25.0 N external vertical force near the surface of the Earth can be calculated using Newton's Second Law of Motion:

F = ma. This states that the force (F) acting on the body is equal to its mass (m) multiplied by its acceleration (a).

Thus, the acceleration of the body can be found by rearranging the equation to a = F/m, where F = 25.0 N and m = 2.00 kg. This gives an acceleration of 12.5 m/s2.

This acceleration is the same as the acceleration due to gravity (g). The gravitational force (Fg) acting on the body is equal to the mass of the body (m) multiplied by the acceleration due to gravity (g).

Therefore, Fg = mg = (2.00 kg)(9.80 m/s2) = 19.6 N. Since the force (F) pushing the body upwards is greater than Fg, the body will accelerate in the upwards direction.

This is why the acceleration of the body (a) is equal to 12.5 m/s2.

to know more about acceleration refer here:

https://brainly.com/question/30660316#

#SPJ11

a weight hanging from a spring will remain hanging until the weight is pulled down and released. when the weight is released the spring will bounce up and down. which of newton's laws explains why the spring will bounce?

Answers

This principle can be observed in other everyday scenarios, such as jumping on a trampoline or the recoil of a gun after firing.  Newton's Third Law of Motion is a fundamental principle in classical mechanics and explains why the spring will bounce when the weight is released.

The bouncing of the weight when released is explained by Newton's Third Law of Motion, which states that for every action there is an equal and opposite reaction. When the weight is released, the spring exerts an equal and opposite force on the weight, propelling it upwards and causing it to bounce. This is because when the weight is pulled down, it compresses the spring, storing potential energy. When the weight is released, the spring decompresses and the potential energy is released, propelling the weight in the opposite direction.

To learn more about Newton's Third Law ;

https://brainly.com/question/25998091

#SPJ11

a 100 cm diameter propeller blade, similar to the blade in example 4.15, is attached to a motor spinning at a constant rate. what is true about the radial (centripetal) acceleration and the tangential acceleration at the end of the blade?

Answers

The true statements about the radial (centripetal) acceleration and the tangential acceleration at the end of the blade are: the radial acceleration is non-zero the tangential acceleration is zero

The radial acceleration is non-zero and the tangential acceleration is zero. This is because, the radial acceleration is determined by the formula, ar = (v²)/r

where ar is the radial acceleration, v is the velocity and r is the radius. Thus, since the propeller blade is spinning at a constant rate, the velocity v is constant.

Therefore, the radial acceleration is constant and non-zero.

The tangential acceleration, on the other hand, is given by at = rα

where at is the tangential acceleration and α is the angular acceleration. Since the blade is spinning at a constant rate, the angular acceleration is zero. Therefore, the tangential acceleration is zero.

So, the correct option is the radial acceleration is non-zero and the tangential acceleration is zero.

Learn more about tangential acceleration at https://brainly.com/question/11476496

#SPJ11

suppose i drop a football from a tall building, and 4 seconds elapse before it hits the ground. neglecting air resistance, roughly how fast is the football moving upon impact?

Answers

The football is moving at approximately 59 meters/second (212.3 kilometers/hour) upon impact, neglecting air resistance.

The football is moving at approximately 59 meters/second (212.3 kilometers/hour) upon impact, neglecting air resistance. This can be calculated using the equation s=1/2at^2, where 's' is the displacement, 'a' is the acceleration due to gravity (9.8m/s^2), and 't' is the time of the fall (4 seconds). Therefore, the displacement is s=1/2(9.8m/s^2)(4s)^2, which simplifies to s=78.4m.
Since the displacement is known (78.4m), the velocity can be determined using the equation v^2=u^2+2as, where 'v' is the velocity upon impact, 'u' is the initial velocity (0m/s), and 'a' is the acceleration due to gravity (9.8m/s^2). Therefore, the velocity is v=sqrt(2as), which simplifies to v=sqrt(2(9.8m/s^2)(78.4m)), which simplifies to v=59m/s.
This is the speed of the football upon impact, neglecting air resistance. This assumes that the football is dropped from rest, and experiences a uniform acceleration throughout the fall, which is due to gravity. The acceleration due to gravity is a constant 9.8m/s^2, regardless of the speed of the falling object.

For more such questions on Displacement.

https://brainly.com/question/28523671#

#SPJ11

explain why adding charge to a bee causes hairs on the bee's body to bend more in response to a field.

Answers

Insects use their hair-like mechanoreceptors to detect electrical fields around them. This electrical charge causes the hairs to move and bend towards the source of the field.

Explanation:

Bee hair is also sensitive to static electricity. As bees collect pollen, they become negatively charged, causing the pollen to become positively charged. This charge difference makes it easier for pollen to stick to the bees' hairy bodies and legs.

Therefore, when a bee is charged with static electricity, it becomes easier for its hairs to detect the electrical fields around it. As a result, the hairs on the bee's body will bend more in response to the electrical field.


Learn more about static electricity here:

https://brainly.com/question/12791045#


#SPJ11

a model depicts two balloons of the same size with identical negative charges being moved toward one another at the same speed. how will the balloons interact with each other?

Answers

Answer:

they will repel, moving in opposite,

Explanation

a point charge q is far from all other charges. at a distance of 2 m from q the electric field is 20n/c. what is the force a charge of 5 coulombs feels

Answers

The force a charge of 5 coulombs for a point charge 'q' which is far from all other charges can be calculated by Coulomb's law.

The Coulomb's law states that the force between two point charges is proportional to the product of the charges and inversely proportional to the square of the distance between them:

[tex]F = k * (q_1 * q_2) / r^2[/tex]

where F is the force,

k is Coulomb's constant ([tex]k = 9*10^9[/tex] N m² / C²),

q₁ and q₂ are the charges, and

r is the distance between the charges.

We know that there is only one charge, q, and it is far from all other charges, so we can assume that

q₁ = q and q₂ = 5 C.

We also know that the electric field at a distance of 2 m from q is 20 N/C. The electric field is related to the force per unit charge, so we can use the equation:

[tex]E = F / q_2[/tex]

Therefore To find the force F acting on a charge q₂ at that distance.

Rearranging this equation in terms of F, we get:

[tex]F = E * q_2[/tex]

Substituting the values we have, we get:

F = 20 N/C * 5 C = 100 N

Therefore, a charge of 5 coulombs would feel a force of 100 N due to the point charge q.

To lean more about the 'Coulombs Law':

https://brainly.com/question/506926

#SPJ11

when you blow air into an open organ pipe, it produces a sound with a fundamental frequency of 440 hz. if you close one end of this pipe, the new fundamental frequency of the sound that emerges from the pipe is

Answers

The new fundamental frequency of 880 Hz.

When you blow air into an open organ pipe, it produces a sound with a fundamental frequency of 440 Hz.

If you close one end of this pipe, the new fundamental frequency of the sound that emerges from the pipe is two times the initial frequency, i.e., 880 Hz.

When the air column is confined to one end of the pipe, the first harmonic that can be supported is the third harmonic.

The wavelength of the first harmonic is twice the length of the pipe, and the wavelength of the third harmonic is equal to the length of the pipe.

The frequency of the third harmonic is three times the frequency of the first harmonic.

The new fundamental frequency of the sound that emerges from the pipe is two times the initial frequency, i.e., 880 Hz.

This is because the frequency of the first harmonic is half that of the fundamental frequency in an open organ pipe.

When one end is closed, the first harmonic is no longer available, and the frequency of the second harmonic, which is twice the fundamental frequency, is available.

Therefore, the fundamental frequency is multiplied by two when one end of an open organ pipe is closed to produce a pipe that is open on one end and closed on the other.

This results in a new fundamental frequency of 880 Hz instead of 440 Hz, as observed in an open pipe.

to know more about frequency refer here:

https://brainly.com/question/14316711#

#SPJ11

Our complete guide to US amusement parks delivers vacation ideas for those who enjoy eye-watering speeds, teeth-chattering descents and a g-force that relocates organs. We head to Coney Island to get shot in the air how far and how fast?
1. 100 feet at 75 mph
2. 200 feet at 75 mph
3. 50 feet at 90 mph
4. 150 feet at 90 mph

Answers

Answer:

100 feet at 75 mph.

What is mean by mph?

mph expresses the speed or velocity in miles per hour. Speed means rate of change of distance with respect to time.

speed = distance/time

hence, distance = speed x time

The above equation is the relationship between distance, speed and time.

Coney Island is a famous destination known for its amusement parks, boardwalk, and beautiful beach.

One of its most popular attractions is the Thunderbolt, which is a steel roller coaster that gives riders a thrilling experience of high speeds, steep drops, and sharp turns.

The distance and speed at which riders get shot in the air on the Thunderbolt roller coaster are 100 feet and 75 mph, respectively.

This means that the ride launches riders at a height of 100 feet while travelling at a speed of 75 miles per hour.

This can be a scary experience, as the force of gravity can make riders feel like their organs are relocating.

To know more about velocity:

https://brainly.com/question/16743925?

#SPJ11

two stationary point charges q1 and q2 are shown in the figure along with a sketch of some field linesrepresenting the electric field produced by them. what can you deduce from the sketch?

Answers

From the sketch, we can deduce that the two charges q1 and q2 are of opposite signs, as field lines start at the positive charge q1 and end at the negative charge q2. The field lines also indicate that the magnitude of the electric field produced by q1 is larger than that of q2.

Additionally, the field lines show that the electric field lines near the charges are denser, indicating a stronger electric field intensity near the charges. The direction of the electric field points from q1 to q2, which is consistent with the direction of the force that a positive test charge would experience if placed in the field. The field lines also show that the electric field is radial, i.e., the field lines point directly away from or towards each charge in a straight line, which is a characteristic of the electric field produced by a point charge. Finally, the density of the field lines decreases with distance from the charges, indicating that the electric field strength decreases with distance from the charges, following an inverse-square law.

Learn more about electric field at: https://brainly.com/question/14372859

#SPJ11

Based on our understanding of our own solar system, what would be most surprising to observe in an extra-solar system of planets?

Answers

Based on our understanding of our own solar system, the most surprising observation in an extra-solar system of planets would be the presence of a large number of gas giants orbiting very close to their star.

Our solar system consists of the Sun, eight planets, dwarf planets, moons, comets, and asteroids. We know that rocky planets such as Mercury, Venus, Earth, and Mars are located close to the sun, while gas giants such as Jupiter, Saturn, Uranus, and Neptune are located far away from the sun. However, in other solar systems, planets have been discovered in orbits that are completely unexpected and different from what we see in our own solar system.The most surprising observation in an extra-solar system of planets based on our understanding of our own solar system would be the presence of a large number of gas giants orbiting very close to their star. These planets are called hot Jupiters, and they orbit their stars in less than ten days. According to the current model of planetary formation, it is difficult to explain the presence of such planets in these orbits. It is believed that hot Jupiters formed far from their stars, where it is cool enough for gas giants to form, and then migrated inward towards the star.

To learn more about extra-solar system  https://brainly.com/question/14018668

#SPJ11

when lighted, a 100-watt light bulb operating on a 110-volt household circuit has a resistance closest to

Answers

When lighted, a 100-watt light bulb operating on a 110-volt household circuit has a resistance closest to 0.99 ohms.

Resistance refers to the electrical property of a circuit component, such as a light bulb, that resists the flow of electrical current through it.

Ohm's law is a fundamental principle in electrical engineering that relates the resistance, voltage, and wattage in a circuit. It states that the resistance (R) is equal to the voltage (V) divided by the wattage (W).

W = 100 watts, V = 110 volts.

Use Ohm’s law to calculate the resistance (R):

R = V/W = 110/100 = 0.99 ohms.


Therefore, when a 100-watt light bulb is operating on a 110-volt household circuit, its resistance is approximately 0.99 ohms.

To know more about resistance click here:

https://brainly.com/question/11431009

#SPJ11

true or false: electrically neutral objects have no positive or negative charges, that is why they are neutral

Answers

True, electrically neutral objects have no positive or negative charges, that is why they are neutral.

Electrically neutral objects have an equal number of protons and electrons, so the total charge on the object is zero. This is why we refer to the object as being ‘neutral’. It has no charge.

In a chemical reaction, protons are transferred between particles, such as atoms or ions. When an atom loses or gains protons, its charge changes, either becoming more negative or more positive.

An atom which has the same number of protons and electrons has a net charge of zero and is neutral.

In an electric field, a neutral object experiences no force due to the absence of electric charge on its surface. When placed in a magnetic field, however, a neutral object still experiences a force due to its electrons.

Electrons have a magnetic moment, so they are affected by the magnetic field, causing the neutral object to move.

Electrically neutral objects have no positive or negative charges, that is why they are neutral.

Their charge is zero, so they are not affected by electric fields, but still experience a force in a magnetic field due to the magnetic moment of their electrons.

to know more about neutral refer here:

https://brainly.com/question/15395418#

#SPJ11

What is the function of the organelle depicted in the photo?

Answers

Answer:

It's a golgi body

Explanation:

It controls the transport system of the cell

What goes in and out the cel

The magnetic flux is changing as it passes through two coils that are exactly the same. The induced voltage is greatest in the coil whose flux is changing fastest.
True
False

Answers

Through the coil, the magnetic flux rises. The coil will experience a voltage as a result. This voltage will cause a current to flow. The amount of the emf increases with speed and is 0 in the absence of motion.

What occurs when a wire coil is positioned in a fluctuating magnetic field?

A current will be induced in a coil of wire if it is exposed to a shifting magnetic field. Because of an electric field that is being generated, which drives the charges to move around the wire, current is flowing.

What does a coil's magnetic flux look like when a unit current passes through it?

Self-Inductance: When current passes through a coil, a magnetic field and consequent magnetic flux are created.

To know more about magnetic flux visit:-

brainly.com/question/30858765

#SPJ1

light having a wavelength in vacuum of 600 nm enters a liquid of refractive index 2.0. in this liquid, what is the wavelength of the light?

Answers

The wavelength of light in a medium with a refractive index of 2.0 is 300 nm. This can be calculated using the equation λ1 = λ2/n, where λ1 is the wavelength of light in vacuum (600 nm) and λ2 is the wavelength of light in the liquid (300 nm), and n is the refractive index of the medium (2.0).

The question is asking what the wavelength of light is when it enters a liquid with a refractive index of 2.0. The wavelength of light in a vacuum is 600 nm.

To find the wavelength in the liquid, we need to use the equation: Wavelength in medium = Wavelength in vacuum/Refractive Index. Therefore, the wavelength of light in the liquid would be 300 nm.

In order for light to travel from one medium to another, the refractive index needs to be taken into consideration. Refractive index is defined as the ratio of the speed of light in a vacuum to the speed of light in a particular medium. When light travels from a medium with a high refractive index to one with a lower refractive index, the wavelength of the light will decrease. Therefore, when light with a wavelength of 600 nm enters a liquid with a refractive index of 2.0, the wavelength of the light will decrease to 300 nm.

For more questions related to wavelength.

https://brainly.com/question/12924624

#SPJ11

Calculate and compare the gravitational force and the electrical force between two protons that are separated by 1.2 x 10-15 m (G = 6.67 x 10-11 Nm2/kg2, e = 1.60 x 10-19 C, mp = 1.67 x 10-27 kg).

Answers

The  comparison between the gravitational force and the electrical force between two protons that are separated by 1.2 x 10-15 m is 4.47 * 10⁻⁴⁰

What is gravitational force ?

Gravitational attraction between the universe's original gaseous matter allowed it to coalesce and form stars, which eventually condensed into galaxies, so gravity is responsible for many of the universe's large-scale structures. Gravity has an infinite range, but its effects weaken as objects move further away. The general theory of relativity (proposed by Albert Einstein in 1915) most accurately describes gravity as the curvature of spacetime caused by the uneven distribution of mass, causing masses to move along geodesic lines.

using the formula

F = G [tex]\frac{M1 * M2}{R * R}[/tex]

FORCE COMES OUT TO BE ;

4.47 * 10⁻⁴⁰

TO know more about gravitational force , visit ;

brainly.com/question/12528243

#SPJ1

how many electrons per second enter the positive end of the battery 2? answer in units of electrons/s.

Answers

The number of electrons per second that enter the positive end of a battery can be calculated by the current flowing through the circuit and the time for which it flows.

Therefore, The formula of current is as

I = Q/t

where I is the current,

Q is the charge passing through the circuit, and

t is the time for which the current flows.

Since one electron carries a charge of -1.6 x 10⁻¹⁹Coulombs, we can calculate the number of electrons passing through the circuit using the following formula:

n = Q/e

where n is the number of electrons and

e is the charge on an electron (-1.6 x 10⁻¹⁹ Coulombs).

If we know the current flowing through the circuit and the time for which it flows, we can calculate the number of electrons per second using the following formula:

n/s = I/e

where n/s is the number of electrons per second.

To learn more about the battery :

https://brainly.com/question/1699616

#SPJ11

how hard must each player pull to drag the coach at a steady 2.0 m/s ? express your answer with the appropriate units.

Answers

Each player must pull with a force of 1250 N to drag the coach at a steady 2.0 m/s.

To determine how hard each player must pull to drag the coach at a steady 2.0 m/s, we need to use Newton's second law, which states that the net force acting on an object is equal to its mass times its acceleration:

Fnet = m * a

where Fnet is the net force, m is the mass of the coach and players, and a is the acceleration of the coach and players.

Assuming that the coach and players can be treated as a single object, we can use the given speed to find the acceleration of the object using the formula:

a = v² / (2 * d)

where v is the speed (2.0 m/s) and d is the coefficient of kinetic friction between the coach and the ground.

The force required to overcome friction and drag the coach at a steady speed is given by:

Ffriction = friction coefficient * Fnormal

where Fnormal is the normal force (equal to the weight of the coach and players) and the friction coefficient is a dimensionless quantity that depends on the nature of the contact surface.

Assuming a friction coefficient of 0.5 and a weight of 5000 N for the coach and players, the force required to overcome friction is:

F_friction = (0.5) * (5000 N) = 2500 N

The net force required to move the coach and players at a steady 2.0 m/s is therefore:

Fnet = Ffriction = 2500 N

Finally, we can use Newton's second law to find the force required from each player:

Fnet = m * a

2500 N = (m_coach + m_players) * (v² / (2 * d))

Solving for the mass (m_coach + m_players), we get:

m_coach + m_players = (2500 N * 2 * d) / v²

Assuming a value of 0.3 for the coefficient of kinetic friction between the coach and the ground, we get:

m_coach + m_players = (2500 N * 2 * 0.3) / (2.0 m/s)² = 562.5 kg

Therefore, the force required from each player is:

Fplayer = Fnet / 2 = 1250 N

Learn more about The Force: https://brainly.com/question/26115859

#SPJ11

what experimental evidence do you have showing that momentum is conserved in inelastic and elastic collisions?

Answers

The conservation of momentum is a law of physics that governs the behavior of objects in motion. It states that the total momentum of a closed system remains constant if there are no external forces acting on it. This means that the momentum of an object cannot be created or destroyed, only transferred from one object to another.

Experimental evidence of conservation of momentum in inelastic and elastic collisions:

Inelastic Collision:
In an inelastic collision, the kinetic energy is not conserved, but the momentum is conserved. In this type of collision, two objects collide and stick together after the collision. For example, when a car collides with a wall, the kinetic energy is converted into thermal energy and sound, but the momentum is still conserved.
The following experiment shows that momentum is conserved in an inelastic collision. A cart is pushed into a spring and the spring compresses. The cart sticks to the spring and moves forward, but the momentum is conserved.
Elastic Collision:
In an elastic collision, both the momentum and kinetic energy are conserved. In this type of collision, two objects collide and bounce off each other after the collision. For example, when two billiard balls collide, they bounce off each other, but the momentum is still conserved.
The following experiment shows that momentum is conserved in an elastic collision. Two carts are pushed toward each other, and they collide elastically. The carts bounce off each other, but the momentum is still conserved.

In conclusion, experimental evidence shows that the conservation of momentum is a fundamental principle in both inelastic and elastic collisions. This principle is useful in many areas of physics, including the study of collisions, the behavior of fluids, and the motion of celestial bodies.

To know more about the "conservation of momentum": https://brainly.com/question/7538238

#SPJ11

g which of the following wavelengths of light is most likely to cause a sunburn? explain your answer. a. 700 nm b. 400 nm c. 200 nm

Answers

Answer:

(b) 400 nm is the far ultraviolet (violet) in the visible spectrum

The shorter wavelengths are more likely to cause sunburn.

200 nm is probably too short to be transmitted by the atmosphere

Other Questions
before the outbreak of the texas revolution, james fannin led the bloodless attack on a mexican army garrison at the port of anahuac that was much criticized by many texans. a) true what refers to the degree of dissimilarity that must exist between two stimuli before the dissimilarity is detected? Describe and correct the error a student made in identifying the growth or decay factor for thefunction y = 2.55(0.7)Step 1 The base of the functionis 0.7, so it representsexponential decay.Step 2 The function in the formy = a(1-r)* isy = 2.55(1-0,7)*Step 3 The decay factor is 0.3.X what are at least three significant factors to consider in evaluating a condition as abnormal/atypical? how many grams of the excess reactant remain assuming the reaction goes to completion and that you start with 15.5 g of na2s and 12.1 g cuso4? an internal revenue service (irs) inspector is to select 2 corporations from a list of 10 for tax audit purposes. of the 10 corporations, 6 earned profits and 4 incurred losses during the year for which the tax returns are to be audited. if the irs inspector decides to select the 2 corporations randomly, find the probability that: both corporations earned profits. one corporation incurred a loss. suppose the irs inspector selects 3 corporations from the list. what is the probability that at least 2 of them earned profits? Which of the following best describes the significance of the TATA box in eukaryotic promoters?a. It is the recognition site for a specific transcription factor.b. It sets the reading frame of the mRNA.c. It is the recognition site for ribosomal binding.d. Its significance has not yet been determined. How many oxygen atoms are there in 2 molecules of CH3ClO? Let be an angle in standard position. What is the terminal point (x,y) of = on the unit circle? Determine the slope of the line through the points (-1, 8) and (-1, -4). Plot the points on the graph. observe the moon and its position everyday for 2 weeks. Keep track of your observations about the shape (phase) of the moon and its position in the sky. Then compare your observation to the reported tides in your area. Report your findings. after throwing a bad shot a bowler intentionally steps on the foul line to remove the difficult spare set-up they were left with. how is this situation handled? a project whose critical path has an estimated time of 120 days with a variance of 100 has a 20% chance that the project will be completed before which day (rounded to nearest day)? The initial number of bacteria in a culture is 12,000 the culture doubles each day write an exponential function to model the population y of bacteria after X days which we used to determine how many bacteria present after 15 days do human eggs only have an X chromosome if sara's current salary is 25,000 per year and she is due to get a 3% raise this year in addition to a 2% cost of living increase, how much will her salary be after these increases take effect? a nurse is caring for a client who requires fluid restriction and may drink only 1 oz of water with each oral medication. how many milliliters of water should the nurse document as intake for the 3 separate medications the client receives during a 12-hr night shift? 03/08/23-how were fannie lou and septima clark similar? someone please help, im the only one with this assignment bc my teacher is mean someone please help, im begging! Write 4/8 in lowest terms what problem-solving strategy is guaranteed to produce a solution: insight algorithm dialectical thinking heuristic