A string of negligible mass passes over a fixed pulley and supports a 2m mass at one end. In it At the other end of the rope there is a mass m and, moving from it by means of a resource of constant k, there is another mass m. Find the equations of motion of the system by Lagrange's method and by Hamilton method. In the figure represents the rest length of the resource and x its displacement.

Answers

Answer 1

By applying Lagrange's method and Hamilton's method, we can derive the equations of motion for a system consisting of a string with negligible mass passing over a fixed pulley.

At one end of the string, there is a 2m mass, while at the other end, there is a mass m connected to another mass m via a resource with constant k. Using Lagrange's method, we start by defining the generalized coordinates of the system. Let x denote the displacement of the resource from its rest position, and let θ represent the angular displacement of the pulley. The Lagrangian of the system can be expressed as L = T - V, where T is the kinetic energy and V is the potential energy. The kinetic energy T of the system consists of the kinetic energies of the masses and the resource. The potential energy V includes the potential energy due to gravity and the potential energy stored in the resource. By applying the Lagrange equations, we can derive the equations of motion for the system. On the other hand, Hamilton's method involves defining the generalized momenta as the partial derivatives of the Lagrangian with respect to the generalized coordinates' rates of change. By applying the Hamiltonian equations, we can obtain the equations of motion for the system. Overall, both Lagrange's method and Hamilton's method provide mathematical frameworks to derive the equations of motion for mechanical systems. While Lagrange's method focuses on energy considerations, Hamilton's method incorporates momentum considerations. These methods are valuable tools for analyzing the dynamics of complex systems in physics and engineering.

Learn more about kinetic energy here:

https://brainly.com/question/999862

#SPJ11


Related Questions

Design a excel file of an hydropower turgo turbine in Sizing and Material selection.
Excel file must calculate the velocity of the nozel, diameter of the nozel jet, nozzle angle, the runner size of the turgo turbine, turbine blade size, hub size, fastner, angular velocity,efficiency,generator selection,frequnecy,flowrate, head and etc.
(Note: File must be in execl file with clearly formulars typed with all descriptions in the sheet)

Answers

Designing an excel file for a hydropower turbine (Turgo turbine) involves calculating different values that are essential for its operation. These values include the velocity of the nozzle, diameter of the nozzle jet, nozzle angle, runner size of the turbine, turbine blade size, hub size, fastener, angular velocity, efficiency, generator selection, frequency, flow rate, head, etc.

To create an excel file for a hydropower turbine, follow these steps:Step 1: Open Microsoft Excel and create a new workbook.Step 2: Add different sheets to the workbook. One sheet can be used for calculations, while the others can be used for data input, output, and charts.Step 3: On the calculation sheet, enter the formulas for calculating different values. For instance, the formula for calculating the velocity of the nozzle can be given as:V = (2 * g * H) / (√(1 - sin²(θ / 2)))Where V is the velocity of the nozzle, g is the acceleration due to gravity, H is the head, θ is the nozzle angle.Step 4: After entering the formula, label each column and row accordingly. For example, the velocity of the nozzle formula can be labeled under column A and given a name, such as "Nozzle Velocity Formula".Step 5: Add a description for each formula entered in the sheet.

The explanation should be clear, concise, and easy to understand. For example, a description for the nozzle velocity formula can be given as: "This formula is used to calculate the velocity of the nozzle in a hydropower turbine. It takes into account the head, nozzle angle, and acceleration due to gravity."Step 6: Repeat the same process for other values that need to be calculated. For example, the formula for calculating the diameter of the nozzle jet can be given as:d = (Q / V) * 4 / πWhere d is the diameter of the nozzle jet, Q is the flow rate, and V is the velocity of the nozzle. The formula should be labeled, given a name, and described accordingly.Step 7: Once all the formulas have been entered, use the data input sheet to enter the required data for calculation. For example, the data input sheet can contain fields for flow rate, head, nozzle angle, etc.Step 8: Finally, use the data output sheet to display the calculated values. You can also use charts to display the data graphically. For instance, you can use a pie chart to display the percentage efficiency of the turbine. All the sheets should be linked correctly to ensure that the data input reflects on the calculation sheet and output sheet.

To know more about turbines visit:

https://brainly.com/question/25105919

#SPJ11

Determine the moment of this force about point B. Express your
answer in terms of the unit vectors i, j, and k.
The pipe assembly is subjected to the 80-NN force.

Answers

Given, The pipe assembly is subjected to the 80-NN force. We need to determine the moment of this force about point B using the unit vectors i, j, and k.In order to determine the moment of the force about point B, we need to determine the position vector and cross-product of the force.

The position vector of the force is given by AB. AB is the vector joining point A to point B. We can see that the coordinates of point A are (1, 1, 3) and the coordinates of point B are (4, 2, 2).Therefore, the position vector AB = (3i + j - k)We can also determine the cross-product of the force. Since the force is only in the y-direction, the vector of force can be represented as F = 80jN.Now, we can use the formula to determine the cross-product of F and AB.

The formula for cross-product is given as: A × B = |A| |B| sinθ nWhere, |A| |B| sinθ is the magnitude of the cross-product vector and n is the unit vector perpendicular to both A and B.Let's determine the cross-product of F and AB:F × AB = |F| |AB| sinθ n= (80 j) × (3 i + j - k)= 240 k - 80 iWe can see that the cross-product is a vector that is perpendicular to both F and AB. Therefore, it represents the moment of the force about point B. Thus, the main answer is 240k - 80i.

To learn more about force here:

brainly.com/question/13191643

#SPJ11

Assembly syntax, and 16-bit Machine Language opcode of
Load Immediate (73)
Add (6)
Negate (84)
Compare (49)
Jump (66) / Relative Jump (94),
Increment (65)
Branch if Equal (18)
Clear (43)

Answers

The assembly syntax and 16-bit machine language opcodes for the given instructions are as follows:

Load Immediate (73):

Assembly Syntax: LDI Rd, K

Opcode: 73

Add (6):

Assembly Syntax: ADD Rd, Rs

Opcode: 6

Negate (84):

Assembly Syntax: NEG Rd

Opcode: 84

Compare (49):

Assembly Syntax: CMP Rd, Rs

Opcode: 49

Jump (66) / Relative Jump (94):

Assembly Syntax: JMP label

Opcode: 66 (Jump), 94 (Relative Jump)

Increment (65):

Assembly Syntax: INC Rd

Opcode: 65

Branch if Equal (18):

Assembly Syntax: BREQ label

Opcode: 18

Clear (43):

Assembly Syntax: CLR Rd

Opcode: 43

Please note that the assembly syntax and opcodes provided above may vary depending on the specific assembly language or machine architecture being used.

to  learn more about assembly syntax.

https://brainly.com/question/31060419

A 2mx 2m solar absorber plate is at 400 K while it is exposed to solar irradiation. The surface is diffuse and its spectral absorptivity is a = 0, for λ >1 >0.5 μm a=0.8, for 0.5 u m> > λ μm a = 0, for lym> > λ2um a =0.9 for 1 > λ 2 μm Determine absorptivity, reflectivity and emissivity of the absorber plate (15 points)

Answers

A 2m x 2m solar absorber plate is at 400 K while it is exposed to solar irradiation.

The surface is diffuse and its spectral absorptivity is as follows:a = 0, for λ >1 >0.5 μma = 0.8, for 0.5 µm > λ > 2 µma = 0, for λ > 2 µma =0.9 for 1 µm > λ > 2 µm

To find out the absorptivity, reflectivity, and emissivity of the absorber plate, let's use the following equations: Absorptivity (α) + Reflectivity (ρ) + Transmissivity (τ) = 1Absorptivity (α) = aEmittance (ε) = aAbsorptivity (α) = 0.9 (for 1 > λ > 2 µm) and 0.8 (for 0.5 µm > λ > 2 µm)Reflectivity (ρ) = 1 - α (Absorptivity + Emissivity + Transmissivity)

The reflectivity can be calculated as follows:α = 0.9 (for 1 > λ > 2 µm)ρ = 1 - αρ = 1 - 0.9ρ = 0.1α = 0.8 (for 0.5 µm > λ > 2 µm)ρ = 1 - αρ = 1 - 0.8ρ = 0.2α = 0 (for λ > 2 µm)ρ = 1 - αρ = 1 - 0ρ = 1

The reflectivity is calculated to be 0.1, 0.2, and 1, respectively, for the above wavelength ranges. The emissivity can be found using the following equation:ε = α = 0.9 (for 1 > λ > 2 µm)ε = α = 0.8 (for 0.5 µm > λ > 2 µm)ε = α = 0 (for λ > 2 µm)

Therefore, the absorptivity, reflectivity, and emissivity of the absorber plate are as follows: For 1 µm > λ > 2 µm: Absorptivity (α) = 0.9 Reflectivity (ρ) = 0.1 Emissivity (ε) = 0.9For 0.5 µm > λ > 2 µm: Absorptivity (α) = 0.8Reflectivity (ρ) = 0.2 Emissivity (ε) = 0.8For λ > 2 µm: Absorptivity (α) = 0 Reflectivity (ρ) = 1 Emissivity (ε) = 0.

To know more about solar absorber plate visit:

brainly.com/question/14937321

#SPJ11

Question A pendulum has a length of 250mm. What is the systems natural frequency

Answers

The natural frequency of a system refers to the frequency at which the system vibrates or oscillates when there are no external forces acting upon it.

The natural frequency of a pendulum is dependent upon its length. Therefore, in this scenario, a pendulum has a length of 250 mm and we want to find its natural frequency.Mathematically, the natural frequency of a pendulum can be expressed using the formula:

f = 1/2π √(g/l)

where, f is the natural frequency of the pendulum, g is the gravitational acceleration and l is the length of the pendulum.

Substituting the given values into the formula, we get :

f= 1/2π √(g/l)

= 1/2π √(9.8/0.25)

= 2.51 Hz

Therefore, the natural frequency of the pendulum is 2.51 Hz. The frequency can also be expressed in terms of rad/s which can be computed as follows:

ωn = 2πf

= 2π(2.51)

= 15.80 rad/s.

Hence, the system's natural frequency is 2.51 Hz or 15.80 rad/s. This is because the frequency of the pendulum is dependent upon its length and the gravitational acceleration acting upon it.

To know more about pendulum visit:

https://brainly.com/question/29268528

#SPJ11

Efficiency of home furnace can be improved by preheating combustion air using hot flue gas. The flue gas has temperature of Tg = 1000°C, specific heat of c = 1.1 kJ/kg°C and is available at the rate of 12 kg/sec. The combustion air needs to be delivered at the rate of 15 kg/sec, its specific heat is ca 1.01 kJ/kg°C and its temperature is equal to the room temperature, i.e. Tair,in = 20°C. The overall heat transfer coefficient for the heat exchanger is estimated to be U = 80 W/m2°C. (i) Determine size of the heat exchanger (heat transfer surface area A) required to heat the air to Tair,out 600°C assuming that a single pass, cross-flow, unmixed heat exchanger is used. (ii) Determine temperature of flue gases leaving heat exchanger under these conditions. (iii) Will a parallel flow heat exchanger deliver the required performance and if yes, will it reduce/increase its size, i.e. reduce/increase the heat transfer area A? (iv) Will use of a counterflow heat exchanger deliver the required performance and, if yes, will it reduce/increase its size, i.e. reduce/increase the heat transfer area A?

Answers

i) The size of the heat exchanger required is approximately 13.5 m².

ii) The temperature of the flue gases leaving the heat exchanger T_flue,out ≈ 311.36°C.

iii) To achieve the desired outlet temperature of 600°C for the combustion air, a counterflow heat exchanger is needed.

iv) The required surface area A remains the same for a counterflow heat exchanger, so the size of the heat exchanger does not change.

To solve this problem, we can use the energy balance equation for the heat exchanger.

The equation is given by:

Q = m_air × c_air × (T_air,out - T_air,in) = m_flue × c_flue × (T_flue,in - T_flue,out)

Where:

Q is the heat transfer rate (in watts or joules per second).

m_air is the mass flow rate of combustion air (in kg/s).

c_air is the specific heat of combustion air (in kJ/kg°C).

T_air,in is the inlet temperature of combustion air (in °C).

T_air,out is the desired outlet temperature of combustion air (in °C).

m_flue is the mass flow rate of flue gas (in kg/s).

c_flue is the specific heat of flue gas (in kJ/kg°C).

T_flue,in is the inlet temperature of flue gas (in °C).

T_flue,out is the outlet temperature of flue gas (in °C).

Let's solve the problem step by step:

(i) Determine the size of the heat exchanger (heat transfer surface area A) required to heat the air to T_air,out = 600°C assuming a single pass, cross-flow, unmixed heat exchanger is used.

We can rearrange the energy balance equation to solve for A:

A = Q / (U × ΔT_lm)

Where ΔT_lm is the logarithmic mean temperature difference given by:

ΔT_lm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)

ΔT1 = T_flue,in - T_air,out

ΔT2 = T_flue,out - T_air,in

Plugging in the values:

ΔT1 = 1000°C - 600°C = 400°C

ΔT2 = T_flue,out - 20°C (unknown)

We need to solve for ΔT2 by substituting the values into the energy balance equation:

Q = m_air × c_air × (T_air,out - T_air,in) = m_flue × c_flue × (T_flue,in - T_flue,out)

15 kg/s × 1.01 kJ/kg°C × (600°C - 20°C) = 12 kg/s × 1.1 kJ/kg°C × (1000°C - T_flue,out)

Simplifying:

9090 kJ/s = 13200 kJ/s - 13.2 kJ/s * T_flue,out

13.2 kJ/s × T_flue,out = 4110 kJ/s

T_flue,out = 311.36°C

Now we can calculate ΔT2:

ΔT2 = T_flue,out - 20°C

ΔT2 = 311.36°C - 20°C

ΔT2 = 291.36°C

Now we can calculate ΔT_lm:

ΔT_lm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)

ΔT_lm = (400°C - 291.36°C) / ln(400°C / 291.36°C)

ΔT_lm ≈ 84.5°C

Finally, we can calculate the required surface area A:

A = Q / (U × ΔT_lm)

A = 9090 kJ/s / (80 W/m²°C × 84.5°C)

A ≈ 13.5 m²

Therefore, the size of the heat exchanger required is approximately 13.5 m².

(ii) Determine the temperature of flue gases leaving the heat exchanger under these conditions.

We already determined the temperature of the flue gases leaving the heat exchanger in part (i): T_flue,out ≈ 311.36°C.

(iii) In a parallel flow heat exchanger, the hot and cold fluids flow in the same direction. The temperature difference between the two fluids decreases along the length of the heat exchanger. In this case, a parallel flow heat exchanger will not deliver the required performance because the outlet temperature of the flue gases is significantly higher than the desired outlet temperature of the combustion air.

To achieve the desired outlet temperature of 600°C for the combustion air, a counterflow heat exchanger is needed.

(iv) In a counterflow heat exchanger, the hot and cold fluids flow in opposite directions. This arrangement allows for better heat transfer and can achieve a higher temperature difference between the two fluids. A counterflow heat exchanger can deliver the required performance in this case.

To determine if the size of the heat exchanger will be reduced or increased, we need to recalculate the required surface area A using the new ΔT1 and ΔT2 values for a counterflow heat exchanger.

ΔT1 = 1000°C - 600°C = 400°C

ΔT2 = T_flue,out - T_air,in = 311.36°C - 20°C = 291.36°C

ΔT_lm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)

ΔT_lm = (400°C - 291.36°C) / ln(400°C / 291.36°C)

ΔT_lm ≈ 84.5°C

A = Q / (U × ΔT_lm)

A = 9090 kJ/s / (80 W/m²°C * 84.5°C)

A ≈ 13.5 m²

The required surface area A remains the same for a counterflow heat exchanger, so the size of the heat exchanger does not change.

Learn more about combustion click;

https://brainly.com/question/31123826

#SPJ4

Sketch a 1D, 2D, and 3D element type of your choice. (sketch 3 elements) Describe the degrees of freedom per node and important input data for each structural element. (Material properties needed, etc

Answers

i can describe typical 1D, 2D, and 3D elements and their characteristics. 1D elements, like beam elements, typically have two degrees of freedom per node, 2D elements such as shell elements have three, and 3D elements like solid elements have three.

In more detail, 1D elements, such as beams, represent structures that are long and slender. Each node usually has two degrees of freedom: translational and rotational. Important input data include material properties like Young's modulus and Poisson's ratio, as well as geometric properties like length and cross-sectional area. 2D elements, such as shells, model thin plate-like structures. Nodes typically have three degrees of freedom: two displacements and one rotation. Input data include material properties and thickness. 3D elements, like solid elements, model volume. Each node typically has three degrees of freedom, all translational. Input data include material properties.

Learn more about finite element analysis here:

https://brainly.com/question/13088387

#SPJ11

A fluid in a fire hose with a 46.5 mm radius, has a velocity of 0.56 m/s. Solve for the power, hp, available in the jet at the nozzle attached at the end of the hose if its diameter is 15.73 mm. Express your answer in 4 decimal places.

Answers

Given data: Radius of hose

r = 46.5m

m = 0.0465m

Velocity of fluid `v = 0.56 m/s`

Diameter of the nozzle attached `d = 15.73 mm = 0.01573m`We are supposed to calculate the power, hp available in the jet at the nozzle attached to the hose.

Power is defined as the rate at which work is done or energy is transferred, that is, P = E/t, where E is the energy (J) and t is the time (s).Now, Energy E transferred by the fluid is given by the formula E = 1/2mv² where m is the mass of the fluid and v is its velocity.We can write m = (ρV) where ρ is the density of the fluid and V is the volume of the fluid. Volume of the fluid is given by `V = (πr²l)`, where l is the length of the hose through which fluid is coming out, which can be assumed to be equal to the diameter of the nozzle or `l=d/2`.

Thus, `V = (πr²d)/2`.Energy transferred E by the fluid can be expressed as Putting the value of V in the above equation, we get .Now, the power of the fluid P, can be written as `P = E/t`, where t is the time taken by the fluid to come out from the nozzle.`Putting the given values of r, d, and v, we get Thus, the power available in the jet at the nozzle attached to the hose is 0.3011 hp.

To know more about Radius visit :

https://brainly.com/question/13449316

#SPJ11

Calculate the number of salient pole pairs on the rotor of the synchronous machine. with rated power of 4000 hp, 200 rpm, 6.9 kV, 50 Hz. Submit your numerical answer below.

Answers

The number of salient pole pairs on the rotor of the synchronous machine is determined to be 374.

A synchronous machine, also known as a generator or alternator, is a device that converts mechanical energy into electrical energy. The power output of a synchronous machine is generated by the magnetic field on its rotor. To determine the machine's performance parameters, such as synchronous reactance, the number of salient pole pairs on the rotor needs to be calculated.

Here are the given parameters:

- Rated power (P): 4000 hp

- Speed (n): 200 rpm

- Voltage (V): 6.9 kV

- Frequency (f): 50 Hz

The synchronous speed (Ns) of the machine is given by the formula: Ns = (120 × f)/p, where p represents the number of pole pairs.

In this case, Ns = 6000/p.

The rotor speed (N) can be calculated using the slip (s) equation: N = n = (1 - slip)Ns.

The slip is determined by the formula: s = (Ns - n)/Ns.

By substituting the values, we find s = 0.967.

Therefore, N = n = (1 - s)Ns = (1 - 0.967) × (6000/p) = 195.6/p volts.

The induced voltage in each phase (E) is given by: E = V/Sqrt(3) = 6.9/Sqrt(3) kV = 3.99 kV.

The voltage per phase (Vph) is E/2 = 1.995 kV.

The flux per pole (Øp) can be determined using the equation: Øp = Vph/N = 1.995 × 10³/195.6/p = 10.19/p Webers.

The synchronous reactance (Xs) is calculated as: Xs = (Øp)/(3 × E/2) = (10.19/p)/(3 × 1.995 × 10³/2) = 1.61/(p × 10³) Ω.

The impedance (Zs) is given by jXs = j1.61/p kΩ.

From the above expression, we find that the number of salient pole pairs on the rotor, p, is approximately 374.91. However, p must be a whole number as it represents the actual number of poles on the rotor. Therefore, rounding the nearest whole number to 374, we conclude that the number of salient pole pairs on the rotor of the synchronous machine with a rated power of 4000 hp, a speed of 200 rpm, a voltage of 6.9 kV, and a frequency of 50 Hz is 374.

In summary, the number of salient pole pairs on the rotor of the synchronous machine is determined to be 374.

Learn more about salient pole

https://brainly.com/question/31676341

#SPJ11

Project report about developed the fidget spinner concept
designs and followed the steps to eventually build a fully
assembled and functional fidget spinner. ( at least 900 words)

Answers

Fidget Spinners have revolutionized the way children and adults relieve stress and improve focus. They're simple to construct and have become a mainstream plaything, with various models and designs available on the market.

Here's a project report about how the Fidget Spinner concept was developed:IntroductionThe Fidget Spinner is a stress-relieving toy that has rapidly grown in popularity. It's a pocket-sized device that is shaped like a propeller and spins around a central axis. It was first developed in the 1990s, but it wasn't until 2016 that it became a worldwide trend.

The first Fidget Spinner was created with only a bearing and plastic parts. As the trend caught on, several models with different shapes and designs were produced. This project report describes how we created our fidget spinner and the steps we followed to make it fully operational.

To know more about Fidget Spinners visit:

https://brainly.com/question/3903294

#SPJ11

What is the zeroth law of thermodynamics? b.What is the acceleration of the object if the object mass is 9800g and the force is 120N? (Formula: F= ma) c.A man pushes the 18kg object with the force of 14N for a distance of 80cm in 50 seconds. Calculate the work done. (Formula: Work=Fd)

Answers

The zeroth law of thermodynamics is the law that states that if two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium with each other.

Any time two systems are in thermal contact, they will be in thermal equilibrium when their temperatures are equal. The zeroth law of thermodynamics states that if two systems are both in thermal equilibrium with a third system, they are in thermal equilibrium with each other.

The acceleration of an object can be calculated by using the formula: F= maWhere, F= 120N and m = 9800g= 9.8 kg (mass of the object)Thus, 120 = 9.8 x aSolving for a,a = 120/9.8a = 12.24 m/s²Thus, the acceleration of the object is 12.24 m/s².b) Work can be calculated by using the formula: Work= F x dWhere, F = 14N, d= 80cm = 0.8m (distance)Work = 14 x 0.8Work = 11.2JThus, the work done by the man is 11.2J.

To know more about zeroth law visit:

https://brainly.com/question/12937141

#SPJ11

A vapor-compression refrigeration system utilizes a water-cooled intercooler with ammonia as the refrigerant. The evaporator and condenser temperatures are -10 and 40°C, respectively. The mass flow rate of the intercooler water is 0.35 kg/s with a change in enthalpy of 42 kJ/kg. The low-pressure compressor discharges the refrigerant at 700 kPa. Assume compression to be isentropic. Sketch the schematic and Ph diagrams of the system and determine: (a) the mass flow rate of the ammonia refrigerant, (b) the capacity in TOR, (c) the total compressor work, and (d) the COP.

Answers

In a vapor-compression refrigeration system with an ammonia refrigerant and a water-cooled intercooler, the goal is to determine the mass flow rate of the refrigerant, the capacity in TOR (ton of refrigeration), the total compressor work, and the coefficient of performance (COP).

To determine the mass flow rate of the ammonia refrigerant, we need to apply mass and energy balance equations to the system. The mass flow rate of the intercooler water and its change in enthalpy can be used to calculate the heat transfer in the intercooler and the heat absorbed in the evaporator. The capacity in TOR can be calculated by converting the heat absorbed in the evaporator to refrigeration capacity. TOR is a unit of refrigeration capacity where 1 TOR is equivalent to 12,000 BTU/hr or 3.517 kW.

The total compressor work can be calculated by considering the isentropic compression process and the pressure ratio across the compressor. The work done by the compressor is equal to the change in enthalpy of the refrigerant during compression. The COP of the refrigeration system can be determined by dividing the refrigeration capacity by the total compressor work. COP represents the efficiency of the system in providing cooling for a given amount of work input. Schematic and Ph diagrams can be sketched to visualize the system and understand the thermodynamic processes involved. These diagrams aid in determining the properties and states of the refrigerant at different stages of the cycle.

Learn more about mass flow from here:

https://brainly.com/question/30763861

#SPJ11

a) Interpret how stability can be determined through Bode Diagram. Provide necessary sketch. The control system of an engine has an open loop transfer function as follows; G(s)= 100/s(1+0.1s)(1+0.2s)
(i) Determine the gain margin and phase margin. (ii) Plot the Bode Diagram on a semi-log paper. (iii) Evaluate the system's stability.

Answers

To determine stability using a Bode diagram, we analyze the gain margin and phase margin of the system.

(i) Gain Margin and Phase Margin:

The gain margin is the amount of gain that can be added to the system before it becomes unstable, while the phase margin is the amount of phase lag that can be introduced before the system becomes unstable.

To calculate the gain margin and phase margin, we need to plot the Bode diagram of the given open-loop transfer function.

(ii) Bode Diagram:

The Bode diagram consists of two plots: the magnitude plot and the phase plot.

For the given transfer function G(s) = 100/(s(1+0.1s)(1+0.2s)), we can rewrite it in the form G(s) = K/(s(s+a)(s+b)), where K = 100, a = 0.1, and b = 0.2.

On a semi-logarithmic paper, we plot the magnitude and phase responses of the system against the logarithm of the frequency.

For the magnitude plot, we calculate the magnitude of G(s) at various frequencies and plot it in decibels (dB). The magnitude is given by 20log₁₀(|G(jω)|), where ω is the frequency.

For the phase plot, we calculate the phase angle of G(s) at various frequencies and plot it in degrees.

(iii) System Stability:

The stability of the system can be determined based on the gain margin and phase margin.

If the gain margin is positive, the system is stable.

If the phase margin is positive, the system is stable.

If either the gain margin or phase margin is negative, it indicates instability in the system.

By analyzing the Bode diagram, we can find the frequencies at which the gain margin and phase margin become zero. These frequencies indicate potential points of instability.

Lear More About Bode diagram

brainly.com/question/28029188

#SPJ11

A rigid (closed) tank contains 10 kg of water at 90°C. If 8 kg of this water is in the liquid form and the rest is in the vapor form. Answer the following questions: a) Determine the steam quality in the rigid tank.
b) Is the described system corresponding to a pure substance? Explain.
c) Find the value of the pressure in the tank. [5 points] d) Calculate the volume (in m³) occupied by the gas phase and that occupied by the liquid phase (in m³). e) Deduce the total volume (m³) of the tank.
f) On a T-v diagram (assume constant pressure), draw the behavior of temperature with respect to specific volume showing all possible states involved in the passage of compressed liquid water into superheated vapor.
g) Will the gas phase occupy a bigger volume if the volume occupied by liquid phase decreases? Explain your answer (without calculation).
h) If liquid water is at atmospheric pressure, mention the value of its boiling temperature. Explain how boiling temperature varies with increasing elevation.

Answers

a) The steam quality in the rigid tank can be calculated using the equation:

Steam quality = mass of vapor / total mass of water

In this case, the mass of vapor is 2 kg (10 kg - 8 kg), and the total mass of water is 10 kg. Therefore, the steam quality is 0.2 or 20%.

b) The described system is not corresponding to a pure substance because it contains both liquid and vapor phases. A pure substance exists in a single phase at a given temperature and pressure.

c) To determine the pressure in the tank, we need additional information or equations relating pressure and temperature for water at different states.

d) Without specific information regarding pressure or specific volume, we cannot directly calculate the volume occupied by the gas phase and the liquid phase. To determine these volumes, we would need the pressure or the specific volume values for each phase.

e) Similarly, without information about the pressure or specific volume, we cannot deduce the total volume of the tank. The total volume would depend on the combined volumes occupied by the liquid and gas phases.

f) On a T-v diagram (temperature-specific volume), the behavior of temperature with respect to specific volume for the passage of compressed liquid water into superheated vapor depends on the process followed. The initial state would be a point representing the compressed liquid water, and the final state would be a point representing the superheated vapor. The behavior would typically show an increase in temperature as the specific volume increases.

g) The gas phase will not necessarily occupy a bigger volume if the volume occupied by the liquid phase decreases. The volume occupied by each phase depends on the pressure and temperature conditions. Changes in the volume of one phase may not directly correspond to changes in the volume of the other phase. Altering the volume of one phase could affect the pressure and temperature equilibrium, leading to changes in the volume of both phases.

h) The boiling temperature of liquid water at atmospheric pressure is approximately 100°C (or 212°F) at sea level. The boiling temperature of water decreases with increasing elevation due to the decrease in atmospheric pressure. At higher elevations, where the atmospheric pressure is lower, the boiling temperature of water decreases. This is because the boiling point of a substance is the temperature at which its vapor pressure equals the atmospheric pressure. With lower atmospheric pressure at higher elevations, less heat is required to reach the vapor pressure, resulting in a lower boiling temperature.

To learn more about volume

brainly.com/question/28058531

#SPJ11

To design a simply supported RCC slab for a roof of a hall 4000x9000 mm inside dimension, with 250 mm wall all around, consider the following data: d= 150 mm, design load intensity=15 kN/m², M25, Fe415. a. Find the effective span and load per unit width of the slab. b. Find the ultimate moment per unit width of the slab. c. Find the maximum shear force per unit width of the slab. d. Find the effective depth required from ultimate moment capacity consideration and comment on the safety. e. Is it necessary to provide stirrups for such a section?

Answers

Stir rups are not necessary in this slab design.

How to solve the problems

a. The effective span of the slab is the longer dimension of the hall: 9000 mm or 9 m.

The load per unit width (w) is equal to the design load intensity: 15 kN/m.

b. The ultimate moment (Mu) per unit width of the slab can be found using the formula for a simply supported slab under uniformly distributed load: Mu = w*L²/8.

Mu = 15 kN/m * (9 m)² / 8

= 151.88 kNm/m.

c. The maximum shear force (Vu) per unit width of the slab can also be found using a formula for a simply supported slab under uniformly distributed load: Vu = w*L/2.

Vu = 15 kN/m * 9 m / 2

= 67.5 kN/m.

d. Given a clear cover of 25mm and a bar diameter of 12mm, the effective depth (d) is calculated as follows:

d = 150 mm - 25 mm - 12 mm / 2 = 132.5 mm.

The ultimate moment of resistance (Mr) provided by the slab can be given by Mr = 0.138 * f * (d)²,

where fc is 25 N/mm² for M25 concrete.

Mr = 0.138 * 25 N/mm² * (132.5 mm)² = 482.25 kNm/m.

e. Since Mr > Mu (482.25 kNm/m > 151.88 kNm/m), the slab is safe for the bending moment. Therefore, stir rups are not necessary in this slab design.

Read mroe on Engineering here https://brainly.com/question/17169621

#SPJ4

Draw the block rapresentation of the following ficter (i) y(n)=x(n)−y(n−2) (2) y(n)=x(n)+3x(n−1)+2x(n−2)−y(n−3) (3) y(n)=x(n)+x(n−4)+x(n−3)+x(n−4)−y(n−2)

Answers

In the block diagrams, the arrows represent signal flow, the circles represent summation nodes (additions), and the boxes represent delays or memory elements.  

Here are the block representations of the given filters:

(i) y(n) = x(n) - y(n-2)

  x(n)     y(n-2)        y(n)

  +---(+)---|         +--(-)---+

  |        |         |       |

  |        +---(+)---+       |

  |        |                |

  +---(-)---+                |

           |                |

           +----------------+

(2) y(n) = x(n) + 3x(n-1) + 2x(n-2) - y(n-3)

  x(n)       x(n-1)       x(n-2)      y(n-3)       y(n)

  +---+---(+)---+---(+)---+---(+)---|         +---(-)---+

  |   |        |        |        |         |          |

  |   |        |        |        +---(+)---+          |

  |   |        |        |        |                     |

  +---+        |        +---(+)---+                     |

  |            |        |                              |

  |            +---(+)--+                              |

  |            |        |                              |

  +---(+)------+------+                              |

  |        |                                           |

  +---(+)--+                                           |

  |        |                                           |

  +---(-)--|                                           |

           +-------------------------------------------+

(3) y(n) = x(n) + x(n-4) + x(n-3) + x(n-4) - y(n-2)

  x(n)     x(n-4)       x(n-3)       x(n-4)      y(n-2)       y(n)

  +---+---(+)---+---(+)---+---(+)---+---(+)---|         +---(-)---+

  |   |        |        |        |        |         |          |

  |   |        |        |        |        +---(+)---+          |

  |   |        |        |        |        |                     |

  +---+        |        +---(+)---+        +---(+)-------------+

  |            |        |                 |

  +---(+)------+------+                 |

  |        |                            |

  +---(+)--|                            |

  |        +----------------------------+

  |

  +---(+)--+

  |        |

  +---(+)--+

  |        |

  +---(-)--+

The input signals x(n) are fed into the system and the output signals y(n) are obtained after passing through the various blocks and operations.

Know more about  block diagrams here:

https://brainly.com/question/13441314

#SPJ11

A concrete-coated steel gas pipeline is to be laid between two offshore platforms in 100 m water depth where the maximum environmental conditions include waves of 20 m wave height and 14 s period. The pipeline outside diameter is 46 cm, and the clay bottom slope is 1 on 100. Determine the submerged unit weight of the pipe. Assume linear wave theory is valid and that the bottom current is negligible.

Answers

Diameter of the pipeline (d) = 46 cm = 0.46 mDepth of water (h) = 100 mMaximum wave height (H) = 20 mWave period (T) = 14 sBottom slope (S) = 1/100Formula Used.

Submerged weight = (pi * d² / 4) * (1 - ρ/γ)Where, pi = 3.14d = diameter of the pipelineρ = density of water = 1000 kg/m³γ = specific weight of the material of the pipeCalculation:Given, d = 0.46 mρ = 1000 kg/m³γ = ?We need to find the specific weight (γ)Submerged weight = (pi * d² / 4) * (1 - ρ/γ)

The formula for finding submerged weight can be rewritten as:γ = (pi * d² / 4) / (1 - ρ/γ)Substituting the values of pi, d and ρ in the above formula, we get:γ = (3.14 * 0.46² / 4) / (1 - 1000/γ)Simplifying the above equation, we get:γ = 9325.56 N/m³Thus, the submerged unit weight of the pipe is 9325.56 N/m³. Hence, the detailed explanation of the submerged unit weight of the pipe has been provided.

To know more about diameter visit:

brainly.com/question/33279161

#SPJ11

Slider crank kinematic and force analysis. Plot of input and
output angles.

Answers

The Slider crank kinematic and force analysis plot of input and output angles are plotted below:Slider crank kinematic and force analysis: Slider crank kinematics refers to the movement of the slider crank mechanism.

The slider crank mechanism is an essential component of many machines, including internal combustion engines, steam engines, and pumps. Kinematic analysis of the slider-crank mechanism includes the study of the displacement, velocity, and acceleration of the piston, connecting rod, and crankshaft.

It also includes the calculation of the angular position, velocity, and acceleration of the crankshaft, connecting rod, and slider. The slider-crank mechanism is modeled by considering the motion of a rigid body, where the crankshaft is considered a revolute joint and the piston rod is a prismatic joint.

To know more about kinematic visit:

https://brainly.com/question/26407594

#SPJ11

An industrial plant absorbs 500 kW at a line voltage of 480 V with a lagging power factor of 0.8 from a three-phase utility line. The apparent power absorbed is most nearly O a. 625 KVA O b. 500 KVA O c. 400 KVA O d. 480 KVA

Answers

So, the most nearly apparent power absorbed is 625 KVA.Answer: The correct option is O a. 625 KVA.

The solution is as follows:The formula to find out the apparent power is

S = √3 × VL × IL

Here,VL = 480 V,

P = 500 kW, and

PF = 0.8.

For a lagging power factor, the apparent power is always greater than the real power; thus, the value of the apparent power will be greater than 500 kW.

Applying the above formula,

S = √3 × 480 × 625 A= 625 KVA.

So, the most nearly apparent power absorbed is 625 KVA.Answer: The correct option is O a. 625 KVA.

To know more about industrial visit;

brainly.com/question/32029094

#SPJ11

Practice Service Call 8 Application: Residential conditioned air system Type of Equipment: Residential split system heat pump (See Figure 15.45.) Complaint: System heats when set to cool. Symptoms: 1. System heats adequately. 2. With thermostat fan switch on, the fan operates properly. 3. Outdoor fan motor is operating. 4. Compressor is operating. 5. System charge is correct. 6. R to O on thermostat is closed. 7. 24 volts are being supplied to reversing valve solenoid.

Answers

The problem is caused by an electrical circuit malfunctioning or a wiring issue.

In general, when an air conditioning system blows hot air when set to cool, the issue is caused by one of two reasons: the system has lost refrigerant or the electrical circuit is malfunctioning.

The following are the most likely reasons:

1. The thermostat isn't working properly.

2. The reversing valve is malfunctioning.

3. The defrost thermostat is malfunctioning.

4. The reversing valve's solenoid is malfunctioning.

5. There's a wiring issue.

6. The unit's compressor isn't functioning correctly.

7. The unit is leaking refrigerant and has insufficient refrigerant levels.

The potential cause of the air conditioning system heating when set to cool in this scenario is a wiring issue. The system is heating when it's set to cool, and the symptoms are as follows:

the system heats well, the fan operates correctly when the thermostat fan switch is turned on, the outdoor fan motor is running, the compressor is running, the system charge is correct, R to O on the thermostat is closed, and 24 volts are supplied to the reversing valve solenoid.

Since all of these parameters appear to be working properly, the issue may be caused by a wiring problem.

To know more about circuit visit:

https://brainly.com/question/12608516

#SPJ11

Represent the system below in state space in phase-variable form s² +2s +6 G(s) = s³ + 5s² + 2s + 1

Answers

The system represented in state space in phase-variable form, with the given transfer function s² + 2s + 6 = s³ + 5s² + 2s + 1, is described by the state equations: x₁' = x₂, x₂' = x₃, x₃' = -(5x₃ + 2x₂ + x₁) + x₁''' and the output equation: y = x₁

To represent the given system in state space in phase-variable form, we'll start by defining the state variables. Let's assume the state variables as:

x₁ = s

x₂ = s'

x₃ = s''

Now, let's differentiate the state variables with respect to time to obtain their derivatives:

x₁' = s' = x₂

x₂' = s'' = x₃

x₃' = s''' (third derivative of s)

Next, we'll express the given transfer function in terms of the state variables. The transfer function is given as:

G(s) = s³ + 5s² + 2s + 1

Since we have x₁ = s, we can rewrite the transfer function in terms of the state variables as:

G(x₁) = x₁³ + 5x₁² + 2x₁ + 1

Now, we'll substitute the state variables and their derivatives into the transfer function:

G(x₁) = (x₁³ + 5x₁² + 2x₁ + 1) = x₁''' + 5x₁'' + 2x₁' + x₁

This equation represents the dynamics of the system in state space form. The state equations can be written as:

x₁' = x₂

x₂' = x₃

x₃' = -(5x₃ + 2x₂ + x₁) + x₁'''

The output equation is given by:

y = x₁

Learn more about state visit:

https://brainly.com/question/33222795

#SPJ11

Question 5 (a) Draw the sketch that explain the changes occurs in the flow through oblique and normal shock waves? (5 marks) (b) The radial velocity component in an incompressible, two-dimensional flow (v, = 0) is: V, = 2r + 3r2 sin e Determine the corresponding tangential velocity component (ve) required to satisfy conservation of mass. (10 marks) (c) Air enters a square duct through a 1.0 ft opening as is shown in figure 5-c. Because the boundary layer displacement thickness increases in the direction of flow, it is necessary to increase the cross-sectional size of the duct if a constant U = 2.0 ft/s velocity is to be maintained outside the boundary layer. Plot a graph of the duct size, d, as a function of x for 0.0 SX S10 ft, if U is to remain constant. Assume laminar flow. The kinematic viscosity of air is v = 1.57 x 10-4 ft2/s. (10 marks) U= 2 ft/s 1 ft dux) 2 ft/s

Answers

Part a)The oblique shock wave occurs when a supersonic flow over a wedge or any angled surface. The normal shock wave occurs when a supersonic flow is blocked by a straight surface or an object.

The normal shock wave has a sharp pressure rise and velocity decrease downstream of the wave front, while the oblique shock wave has a gradual pressure rise and velocity decrease downstream of the wave front. The oblique shock wave can be calculated by the wedge angle and the Mach number of the upstream flow. The normal shock wave can be calculated by the Mach number of the upstream flow only. Part b)Given radial velocity component, V, = 2r + 3r2 sin e

Required tangential velocity component (v?) to satisfy conservation of mass. Here, u, = 0 and

v, = 2r + 3r2 sin e.

Conservation of mass is given by Continuity equation, in polar coordinates, as : r(∂u/∂r) + (1/r)(∂v/∂θ) = 0 Differentiating the given expression of u with respect to r we get, (∂u/∂r) = 0

Similarly, Differentiating the given expression of v with respect to θ, we get, (∂v/∂θ) = 6r sin θ

From continuity equation, we have r(∂u/∂r) + (1/r)(∂v/∂θ) = 0

Substituting the values of (∂u/∂r) and (∂v/∂θ), we get:r(0) + (1/r)(6r sin θ) = 0Or, 6 sin θ

= 0Or,

sin θ = 0

Thus, the required tangential velocity component (v?) to satisfy conservation of mass is ve = r(∂θ/∂t) = r(2) = 2r.

Part c)GivenU = 2.0 ft/s kinematic viscosity of air, v = 1.57 × 10-4 ft2/sAt x = 0

duct size, d1 = 1.0 ft

At x = 10 ft,

duct size, d2 = ?

Reynolds number for the laminar flow can be calculated as: Re = (ρUd/μ) Where, ρ = density of air = 0.0023769 slug/ft3μ = dynamic viscosity of air = 1.57 × 10-4 ft2/s

U = velocity of air

= 2.0 ft/s

d = diameter of duct

Re = (ρUd/μ)

= (0.0023769 × 2 × d/1.57 × 10-4)

For laminar flow, Reynolds number is less than 2300.

Thus, Re < 2300 => (0.0023769 × 2 × d/1.57 × 10-4) < 2300

=> d < 0.0726 ft or 0.871 inches or 22.15 mm

Assuming the thickness of the boundary layer to be negligible at x = 0, the velocity profile for the laminar flow in the duct at x = 0 is given by the Poiseuille’s equation:u = Umax(1 - (r/d1)2)

Here, Umax = U = 2 ft/s

Radius of the duct at x = 0 is r = d1/2 = 1/2 ft = 6 inches.

Thus, maximum velocity at x = 0 is given by:u = Umax(1 - (r/d1)2)

= 2 × (1 - (6/12)2)

= 0.5 ft/s

Let the velocity profile at x = 10 ft be given by u = Umax(1 - (r/d2)2)

The average velocity of the fluid at x = 10 ft should be U = 2 ft/s

As the boundary layer thickness increases in the direction of flow, it is necessary to increase the cross-sectional area of the duct for the same flow rate.Using the continuity equation,Q = A1 U1 = A2 U2

Where,Q = Flow rate of fluid

A1 = Area of duct at x

= 0A2

= Area of duct at x

= 10ftU1 = Velocity of fluid at x

= 0U2 = Velocity of fluid at x

= 10ft

Let d be the diameter of the duct at x = 10ft.

Then, A2 = πd2/4

Flow rate at x = 0 is given by,

Q = A1 U1 = π(1.0)2/4 × 0.5

= 0.3927 ft3/s

Flow rate at x = 10 ft should be the same as flow rate at x = 0.So,0.3927

= A2 U2

= πd2/4 × 2Or, d2

= 0.6283 ft = 7.54 inches

Thus, the diameter of the duct at x = 10 ft should be 7.54 inches or more to maintain a constant velocity of 2.0 ft/s.

To know more about velocity, visit:

https://brainly.com/question/30559316

#SPJ11

1. (a) Let A and B be two events. Suppose that the probability that neither event occurs is 3/8. What is the probability that at least one of the events occurs? (b) Let C and D be two events. Suppose P(C)=0.5,P(C∩D)=0.2 and P((C⋃D) c)=0.4 What is P(D) ?

Answers

(a) The probability that at least one of the events A or B occurs is 5/8.

(b) The probability of event D is 0.1.

(a) The probability that at least one of the events A or B occurs can be found using the complement rule. Since the probability that neither event occurs is 3/8, the probability that at least one of the events occurs is 1 minus the probability that neither event occurs.

Therefore, the probability is 1 - 3/8 = 5/8.

(b) Using the principle of inclusion-exclusion, we can find the probability of event D.

P(C∪D) = P(C) + P(D) - P(C∩D)

0.4 = 0.5 + P(D) - 0.2

P(D) = 0.4 - 0.5 + 0.2

P(D) = 0.1

Therefore, the probability of event D is 0.1.

To know more about probability visit:

https://brainly.com/question/15270030

#SPJ11

A small aircraft has a wing area of 50 m², a lift coefficient of 0.45 at take-off settings, and a total mass of 5,000 kg. Determine the following: a. Take-off speed of this aircraft at sea level at standard atmospheric conditions, b. Wing loading and c. Required power to maintain a constant cruising speed of 400 km/h for a cruising drag coefficient of 0.04.

Answers

a. The take-off speed of the aircraft is approximately 79.2 m/s.

b. The wing loading is approximately 100 kg/m².

c. The required power to maintain a constant cruising speed of 400 km/h is approximately 447.2 kW.

a. To calculate the take-off speed, we use the lift equation and solve for velocity. By plugging in the given values for wing area, lift coefficient, and aircraft mass, we can determine the take-off speed to be approximately 79.2 m/s. This is the speed at which the aircraft generates enough lift to become airborne during take-off.

b. Wing loading is the ratio of the aircraft's weight to its wing area. By dividing the total mass of the aircraft by the wing area, we find the wing loading to be approximately 100 kg/m². Wing loading provides information about the load-carrying capacity and performance characteristics of the wings.

c. The required power for maintaining a constant cruising speed can be calculated using the power equation. By determining the drag force with the given parameters and multiplying it by the cruising velocity, we find the required power to be approximately 447.2 kW. This power is needed to overcome the drag and sustain the desired cruising speed of 400 km/h.

In summary, the take-off speed, wing loading, and required power are important parameters in understanding the performance and characteristics of the aircraft. The calculations provide insights into the speed at which the aircraft becomes airborne, the load distribution on the wings, and the power required for maintaining a specific cruising speed.

Learn more about Aircraft

brainly.com/question/32264555

#SPJ11

Q5
Question 5 What is the Australian standard number for tensile testing (i.e.) "metallic materials - tensile testing at ambient temperatures"?

Answers

An Australian standard number refers to a unique identification number assigned to a specific standard published by Standards Australia. The Australian standard number for tensile testing of metallic materials at ambient temperatures is AS 1391.

AS 1391 is the Australian standard that specifically addresses the tensile testing of metallic materials at ambient temperatures. This standard provides guidelines and requirements for conducting tensile tests on metallic materials to determine their mechanical properties.

Tensile testing is a widely used method for evaluating the mechanical behavior and performance of metallic materials under tensile forces. It involves subjecting a specimen of the material to a gradually increasing axial load until it reaches failure.

AS 1391 outlines the test procedures, specimen preparation methods, and reporting requirements for tensile testing at ambient temperatures. It ensures consistency and standardization in conducting these tests, allowing for accurate and reliable comparison of material properties across different laboratories and industries in Australia.

The Australian standard number for tensile testing of metallic materials at ambient temperatures is AS 1391. This standard provides guidelines and requirements for conducting tensile tests to evaluate the mechanical properties of metallic materials. Adhering to this standard ensures consistency and reliability in conducting tensile tests in Australia

To know more about Australia, visit;
https://brainly.com/question/24053414
#SPJ11

Design a circuit which counts seconds, minutes and hours and displays them on the 7-segement display in 24 hour format. The clock frequency available is 36 KHz. Assume that Binary to BCD converter and BCD to 7-Segement display is already available for the design.

Answers

The 24-hour clock has two digits for hours, two digits for minutes, and two digits for seconds. Binary Coded Decimal (BCD) is a technique for representing decimal numbers using four digits in which each decimal digit is represented by a 4-bit binary number.

A 7-segment display is used to display the digits from 0 to 9.
Here is the circuit that counts seconds, minutes, and hours and displays them on the 7-segment display in 24-hour format:

Given the clock frequency of 36 KHz, the number of pulses per second is 36000. The seconds counter requires 6 digits, or 24 bits, to count up to 59. The minutes counter requires 6 digits, or 24 bits, to count up to 59. The hours counter requires 5 digits, or 20 bits, to count up to 23.The clock signal is fed into a frequency divider that produces a 1 Hz signal. The 1 Hz signal is then fed into a seconds counter, minutes counter, and hours counter. The counters are reset to zero when they reach their maximum value.

When the seconds counter reaches 59, it generates a carry signal that increments the minutes counter. Similarly, when the minutes counter reaches 59, it generates a carry signal that increments the hours counter.

The outputs of the seconds, minutes, and hours counters are then converted to BCD format using a binary to BCD converter. Finally, the BCD digits are fed into a BCD to 7-segment display decoder to produce the display on the 7-segment display.Here's a block diagram of the circuit: Block diagram of the circuit

To know more about frequency  visit:

https://brainly.com/question/29739263
#SPJ11

A double threaded right-handed worm gear transmits 15 hp at 1150 rpm. The pitch of the worm is 0.75 inches and pitch diameter of 3 inches. The pressure angle is 14.5 deg and the coefficient of friction is 0.12. Determine the following: a) the normal diametral pitch b) the power output of gear c) the diametral pitch d) the pitch line velocity of worm e) the expected value of the tangential force on worm f) the expected value of the separating force.

Answers

The normal diametral pitch is 0.2123 inches, the pitch line velocity of the worm is 899.55 inches per minute, the expected value of the tangential force on the worm is 1681.33 pounds, and the expected value of the separating force is 201.76 pounds.

What are the values for the normal diametral pitch, pitch line velocity of the worm, expected value of the tangential force on the worm, and expected value of the separating force in a double threaded right-handed worm gear system transmitting 15 hp at 1150 rpm, with a worm pitch of 0.75 inches, pitch diameter of 3 inches, pressure angle of 14.5 deg, and coefficient of friction of 0.12?

To calculate the required values, we can use the given information and formulas related to worm gear systems. Here are the calculations and explanations for each part:

The normal diametral pitch (Pn) can be calculated using the formula:

  Pn = 1 / (pi * module)

  where module = (pitch diameter of worm) / (number of threads)

  In this case, the pitch diameter of the worm is 3 inches and it is a double-threaded worm gear. So the number of threads is 2.

  Pn = 1 / (pi * (3 / 2))

  Pn ≈ 0.2123 inches

b) The power output of the gear (Pout) can be calculated using the formula:

  Pout = Pin * (efficiency)

  where Pin is the power input and efficiency is the efficiency of the gear system.

  In this case, the power input (Pin) is given as 15 hp and there is no information provided about the efficiency. Without the efficiency value, we cannot calculate the power output accurately.

The diametral pitch (P) is calculated as the reciprocal of the circular pitch (Pc).

  P = 1 / Pc

  The circular pitch (Pc) is calculated as the circumference of the pitch circle divided by the number of teeth on the gear.

  Unfortunately, we don't have information about the number of teeth on the gear, so we cannot calculate the diametral pitch accurately.

The pitch line velocity of the worm (V) can be calculated using the formula:

  V = pi * pitch diameter of worm * RPM / 12

  where RPM is the revolutions per minute.

  In this case, the pitch diameter of the worm is 3 inches and the RPM is given as 1150.

  V = pi * 3 * 1150 / 12

  V ≈ 899.55 inches per minute

The expected value of the tangential force on the worm can be calculated using the formula:

  Ft = (Pn * P * W) / (2 * tan(pressure angle))

  where W is the transmitted power in pound-inches.

  In this case, the transmitted power (W) is calculated as:

  W = (Pin * 63025) / (RPM)

  where Pin is the power input in horsepower and RPM is the revolutions per minute.

  Given Pin = 15 hp and RPM = 1150, we can calculate W:

  W = (15 * 63025) / 1150

  W ≈ 822.5 pound-inches

  Now, we can calculate the expected value of the tangential force (Ft):

  Ft = (0.2123 * P * 822.5) / (2 * tan(14.5 deg))

  Ft ≈ 1681.33 pounds

The expected value of the separating force (Fs) can be calculated using the formula:

  Fs = Ft * friction coefficient

  where the friction coefficient is given as 0.12.

  Using the calculated Ft ≈ 1681.33 pounds, we can calculate Fs:

  Fs = 1681.33 * 0.12

  Fs ≈ 201.76 pounds

Therefore, we have calculated values for a), d), e), and f) based on the provided information and applicable formulas. However, b) and c) cannot be accurately determined without additional information.

Learn more about diametral pitch

brainly.com/question/31426143

#SPJ11

Methane gas at 120 atm and −18°C is stored in a 20−m³ tank. Determine the mass of methane contained in the tank, in kg, using the
(a) ideal gas equation of state. (b) van der Waals equation. (c) Benedict-Webb-Rubin equation.

Answers

The mass of methane contained in the tank, in kg, using

(a) ideal gas equation of state = 18.38 kg

(b) van der Waals equation = 18.23 kg

(c) Benedict-Webb-Rubin equation = 18.21 kg.

(a) Ideal gas equation of state is

PV = nRT

Where, n is the number of moles of gas

R is the gas constant

R = 8.314 J/(mol K)

Therefore, n = PV/RT

We have to find mass(m) = n × M

Mass of methane in the tank, using the ideal gas equation of state is

m = n × Mn = PV/RTn = (1.2159 × 10⁷ Pa × 20 m³) / (8.314 J/(mol K) × 255 K)n = 1145.45 molm = n × Mm = 1145.45 mol × 0.016043 kg/molm = 18.38 kg

b) Van der Waals equation

Van der Waals equation is (P + a/V²)(V - b) = nRT

Where, 'a' and 'b' are Van der Waals constants for the gas. For methane, the values of 'a' and 'b' are 2.25 atm L²/mol² and 0.0428 L/mol respectively.

Therefore, we can write it as(P + 2.25 aP²/RT²)(V - b) = nRT

At given conditions, we have

P = 120 atm = 121.59 × 10⁴ Pa

T = 255 K

V = 20 m³

n = (P + 2.25 aP²/RT²)(V - b)/RTn = (121.59 × 10⁴ Pa + 2.25 × (121.59 × 10⁴ Pa)²/(8.314 J/(mol K) × 255 K) × (20 m³ - 0.0428 L/mol))/(8.314 J/(mol K) × 255 K)n = 1138.15 molm = n × Mm = 1138.15 mol × 0.016043 kg/molm = 18.23 kg

(c) Benedict-Webb-Rubin equation Benedict-Webb-Rubin (BWR) equation is given by(P + a/(V²T^(1/3))) × (V - b) = RT

Where, 'a' and 'b' are BWR constants for the gas. For methane, the values of 'a' and 'b' are 2.2538 L² kPa/(mol² K^(5/2)) and 0.0387 L/mol respectively.

Therefore, we can write it as(P + 2.2538 aP²/(V²T^(1/3)))(V - b) = RT

At given conditions, we haveP = 120 atm = 121.59 × 10⁴ PaT = 255 KV = 20 m³n = (P + 2.2538 aP²/(V²T^(1/3)))(V - b)/RTn = (121.59 × 10⁴ Pa + 2.2538 × (121.59 × 10⁴ Pa)²/(20 m³)² × (255 K)^(1/3) × (20 m³ - 0.0387 L/mol))/(8.314 J/(mol K) × 255 K)n = 1135.84 molm = n × Mm = 1135.84 mol × 0.016043 kg/molm = 18.21 kg

Learn more about ideal gas equation at

https://brainly.com/question/15046679

#SPJ11

What is spectrum (spectra) plot? o Amplitude-frequency plot o Amplitude-time plot o Amplitude-phase lag plot

Answers

A spectrum plot or spectra plot is an amplitude-frequency plot that shows how much energy (amplitude) is in each frequency component of a given signal. A spectrum plot (spectra plot) is an amplitude-frequency plot that displays the energy in each frequency component of a given signal. This plot is used to represent a signal in the frequency domain.

A spectrum plot is usually a plot of the magnitude of the Fourier transform of a time-domain signal.

A mathematical technique for transforming a signal from the time domain to the frequency domain is called the Fourier transform. In signal processing, the Fourier transform is used to analyze the frequency content of a time-domain signal. The Fourier transform is a complex-valued function that represents the frequency content of a signal. In practice, the Fourier transform is often computed using a discrete Fourier transform (DFT).

The amplitude is a measure of the strength of a signal. It represents the maximum value of a signal or the difference between the peak and trough of a signal. The amplitude is usually measured in volts or decibels (dB). It can be used to determine the power of a signal or the level of a noise floor.

To learn more about "Amplitude" visit: https://brainly.com/question/3613222

#SPJ11

A single stage reciprocating compressor takes 1m of air per minute and 1.013 bar and 15°C and delivers at 7 bar. Assuming Adiabatic law (n=1.35) and no clearance. Calculate: 1.1. Mass flow rate (1.226 kg/min) 1.2. Delivery Temperature (475.4 K) 1.3. Indicated power (4.238 kW) This same compressor is now driven at 300 rpm, has a stroke to bore ratio of (1,5:1), it has a mechanical efficiency for the compressor of 85% and motor transmission efficiency of 90%. Calculate: 1.4. Volume per cycle (0.00333 m²/cycle) 1.5. Cylinder bore diameter (141.4 mm) 1.6. Power to the compressor (4.99 kW) 1.7. Motor power needed (5.54 kW) 1.8. The isothermal power (3.265 kW) 1.9. The isothermal efficiency (77%)

Answers

Therefore, the delivery temperature is 475.4 K.1.3. Calculation of Indicated Power The indicated power of the compressor can be calculated using the formula, Power = P * Q * n Where P is the pressure, Q is the flow rate, and n is the polytropic index.

Motor power = Power to compressor / η_tHere,

Power to compressor = 4.99 kW and

η_t = 0.90

So, the motor power needed is 5.54 kW.1.8. Calculation of Isothermal Power Isothermal Power can be calculated using the formula, P1V1/T1 = P2V2/T2 So, the isothermal power is 3.265 kW.1.9.

Calculation of Isothermal Efficiency The isothermal efficiency can be calculated using the formula, Isothermal efficiency = (Isothermal power / Indicated power) * 100 Substituting the values, we get,

Isothermal efficiency = (3.265 / 4.238) * 100 = 77%

Therefore, the isothermal efficiency is 77%.

To know more about temperature visit:

https://brainly.com/question/7510619

#SPJ11

Other Questions
Compare and Contrast Cross-Functional sourcing team and traditional procurement team? Illustrate with Two (2) examples to support your answers. Critically discuss the relationship between your choice of procurement team and achievement of companys performances Average meridional speed of a turbine is 125m/s. Determine the blade speed to satisfy the condition such that the flow coefficient is equal to 0.6. Assume that the machine is an incompressible flow machine Two Gears are connected toeach other inside a gear box.Gear A has a circumference of(29)*pi meters and Gear B hasa Circumference of (14)*pimeters. If Gear A has an angularacceleration of (11) rad/s2 andan angular velocity of (19)rad/s at certain time,t. Findthe angular acceleration of GearB.Help me to answer this problem Thanks. Capacity Broak Even A company has two options for manufacturing boots. The manual process has monthly fixed costs of $27044 and variable costs of $7.75 per pair of boots and an automated process with fixed costs of $70471 per month and variable costs of $2.42 per pair of boots. They expect to sell each pair of boots for $90. What is the monthly break-even quantity (aumber of units) for the manual process? (round to a whole number) How do cells at the end of meiosis differ from germ line cells that have not yet undergone meiosis? they are identical to the cells that have not yet undergone meiosis they contain twice the amount of DNA they contain half the amount of DNA they contain the same amount of DNA Show that the circulation around an infinitesimally small rectangular path of dimensions 8x and Sy in Cartesian coordinates is directly related to the local vorticity multiplied by the area enclosed by the path need help asap !! very confused !!In a gel electrophoresis machine, the PCR product fragment will always migrate from positive electrode towards the negative electrode. a. Trueb. False Potassium cyanide is a toxic substance, and the median lethal dose depends on the mass of the person dose of KCN for a person weighing 155 lb (70.3 kg) is 9.5010-3 mol. What volume of a 0.0540 M KCN Boolean AlgebraF=AB+AC'+C+ AD+AB'C+ABC From the options (a)-(e) below, choose the answer that best fits the following statement about epidermal layers: Contains a single layer of columnar cells that are able to produce new cells. a. Stratum Spinosum b. Stratum Corneum c. Stratum Basale d. Stratum Granulosum e. Stratum Lucidum Compare exocytosis with endocytosis. Use diagrams in your answer. determine the 1st order different equation relating to Vc to theinputs.Determine the 1st order differential equ to relating (t >0) the + 20v inputs. 1/2 F 12 201 + vc 1 605 n LA t=0 7V where is the SA node located? 2. Which node is the primarypacemaker of the heart? 3.Where does the impulse go when it leavesthe atrioventricular node? 4.What is the intrinsic rate of the AVnote 5.W The electric field of a plane electromagnetic wave in empty space is given by E = 5e((300-400)-r-2rwr) in volts per meter. Calculate the associated magnetic field. Find the wavelength and the frequenc Which was the first kingdom of Eurayotic organisms to evolve? O Protista 0 Animalia O Fungi O Plantae For this application, you will write about the conflict within the story you read in this lesson, "Amigo Brothers." In one paragraph, answer the following questions:What is the conflict in the story? (Or, what problem do the characters face?)How did the conflict or problem get more complicated? Identify at least two moments.How did the conflict resolve? (Or, how did the characters solve the problem?) Question 3: K-Log produces cereals that are sold in boxes labeled to contain 490 grams. If the cereal content is below 490 grams, K-Log may invite auditor's scrutiny. Filling much more than 490 grams costs the company since it essentially means giving away more of the product. Accordingly, K-Log has set specification limits at 500+ 10 grams for the weight of cereal boxes. Currently a filling machine fills the boxes. The boxes weigh on average 485 grams with a standard deviation of 10 grams. a) Determine the process capability Cp ratio and the process capability index Cpk. b) Briefly comment on the implication of your finding in part a). c) Calculate the probability that a randomly selected cereal box will not conform to specifications. d) For a process capability index of 2, determine what process targets (in terms of mean and standard deviation of the filling process) are needed. (Hint: What are the required process characteristics to achieve 6-sigma?) If the diameter of the field rein at (4000) is 3 mm and the number of stomata is 11 with Same magnification. Calculate stomata number / mm? URGENT please answer quickly and type youranswersThe government spends $3 billion to purchase police equipment.Explain why aggregate demand might increase by more or less than $3billion. Define and describe some examples of Healthcare AssociatedInfections (HAIs).What are The OSHA Blood-borne Exposure Standard? DescribethemWhat are CLABSI Prevention and mention them.