A thin film with an index of refraction of 1.60 is placed in one of the beams of a Michelson interferometer. If this causes a shift of 8 bright fringes in the pattern produced by light of wavelength 580 nm, what is the thickness of the film

Answers

Answer 1

Answer:

3.867 μm

Explanation:

The index of refraction, μ = 1.6

Wavelength of the light, λ = 580 nm

N2 - N1 = (2L / λ) (n2 - n1), Making L subject of formula, we have

(N2 - N1) λ = 2L (n2 - n1)

L = [(N2 - N1) * λ] / 2(n2 - n1)

L = (8 * 580) / 2(1.6 - 1.0)

L = 4640 nm / 1.2

L = 3867 nm or 3.867 μm

Therefore we can come to the conclusion that the thickness of the film is 3.867 nm


Related Questions

which of the following statements is not true Negatively charged objects attract other negatively charged objects. Positively charged objects attract negatively charged objects. Positively charged objects attract neutral objects. Negatively chargers objects attract neutral objects.

Answers

Answer:

negatively charged object attract other negatively objects

Explanation:

opposites attract

Answer:

negativelycharged objects attract other negatively charged objects

Explanation:

unlike charges attract like charges repel

What is the relationship between the surface area of a parachute and the amount of air resistance it builds up when it is deployed by a sky diver?

Answers

Answer:

An open parachute increases the cross-sectional area of the falling skydiver and thus increases the amount of air resistance which he encounters. Once the parachute is opened, the air resistance overwhelms the downward force of gravity.

Explanation:

The larger a parachute, the greater the force.

Hope it helps you in a little way.

Two long parallel wires are separated by 11 cm. One of the wires carries a current of 54 A and the other carries a current of 45 A. Determine the magnitude of the magnetic force on a 4.3 m length of the wire carrying the greater current.

Answers

Explanation:

It is given that,

The separation between two parallel wires, r = 11 cm = 0.11 m

Current in wire 1, [tex]q_1=54\ A[/tex]

Current in wire 2, [tex]q_2=45\ A[/tex]

Length of wires, l = 4.3 m

We need to find the magnitude of the magnetic force on a 4.3 m length of the wire carrying the greater current. The magnetic force per unit length is given by :

[tex]\dfrac{F}{l}=\dfrac{\mu_o I_1I_2}{2\pi r}\\\\F=\dfrac{\mu_o I_1I_2l}{2\pi r}\\\\F=\dfrac{4\pi \times 10^{-7}\times 54\times 45\times 4.3}{2\pi \times 0.11}\\\\F=0.0189\ N[/tex]

So, the magnetic force on a 4.3 m length of the wire  on both of currents is F=0.0189 N.

A car starts from Hither, goes 50 km in a straight line to Yon, immediately turns around, and returns to Hither. The time for this round trip is 2 hours. The magnitude of the average velocity of the car for this round trip is:
A. 0
B. 50 km/hr
C. 100 km/hr
D. 200 km/hr
E. cannot be calculated without knowing the acceleration

Answers

Answer:

The average velocity for this trip is 0 km/hr

Explanation:

We know that average velocity = total displacement/total time.

Now, its displacement is d = final position - initial position.

Since the  car starts and ends at its initial position at Hither, if we assume its initial position is 0 km, then its final position is also 0 km.

So, its displacement is d = 0 km - 0 km = 0 km.

Since the total time for the round trip is 2 hours, the average velocity is

total displacement/ total time = 0 km/2 hr = 0 km/hr.

So the average velocity for this trip is 0 km/hr  

g A tube open at both ends, resonated at it's fundamental frequency, to a sound wave traveling at 330m/s. If the length of the tube is 4cm, find the frequency of the sound wave.

Answers

Answer:

frequency =4125Hz

Explanation:

L = 4cm = 0.04m

f =v/2L

f = 330/2 x 0.04

f = 4125Hz

A ​46-ton monolith is transported on a causeway that is 3500 feet long and has a slope of about 3.7. How much force parallel to the incline would be required to hold the monolith on this​ causeway?

Answers

Answer:

2.9tons

Explanation:

Note that On an incline of angle a from horizontal, the parallel and perpendicular components of a downward force F are:

parallel ("tangential"): F_t = F sin a

perpendicular ("normal"): F_n = F cos a

At a=3.7 degrees, sin a is about 0.064 and with F = 46tons:

F sin a ~~ (46 tons)*0.064 ~~ 2.9tons

Also see attached file

The required force parallel to the incline to hold the monolith on this​ causeway will be "2.9 tons".

Angle and Force

According to the question,

Angle, a = 3.7 degrees or,

Sin a = 0.064

Force, F = 46 tons

We know the relation,

Parallel (tangential), [tex]F_t[/tex] = F Sin a

By substituting the values,

                                       = 46 × 0.064

                                       = 2.9 tons

Thus the response above is appropriate answer.

Find out more information about Force here:

https://brainly.com/question/25239010

At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is increasing at a rate of 3.0 J/s, how fast is the current changing

Answers

Answer:

The current is changing at the rate of 0.20 A/s

Explanation:

Given;

inductance of the inductor, L = 5.0-H

current in the inductor, I = 3.0 A

Energy stored in the inductor at the given instant, E = 3.0 J/s

The energy stored in inductor is given as;

E = ¹/₂LI²

E = ¹/₂(5)(3)²

E = 22.5 J/s

This energy is increased by 3.0 J/s

E = 22.5 J/s + 3.0 J/s = 25.5 J/s

Determine the new current at this given energy;

25.5 = ¹/₂LI²

25.5 = ¹/₂(5)(I²)

25.5 = 2.5I²

I² = 25.5 / 2.5

I² = 10.2

I = √10.2

I = 3.194 A/s

The rate at which the current is changing is the difference between the final current and the initial current in the inductor.

= 3.194 A/s - 3.0 A/s

= 0.194 A/s

≅0.20 A/s

Therefore, the current is changing at the rate of 0.20 A/s.

The rate at which the current is changing is;

di/dt = 0.2 A/s

We are given;

Inductance; L = 5 H

Current; I = 3 A

Rate of Increase of energy; dE/dt = 3 J/s

Now, the formula for energy stored in inductor is given as;

E = ¹/₂LI²

Since we are looking for rate at which current is changing, then we differentiate both sides of the energy equation to get;

dE/dt = LI (di/dt)

Plugging in the relevant values gives;

3 = (5 × 3)(di/dt)

di/dt = 3/(5 × 3)

di/dt = 0.2 A/s

Read more at; https://brainly.com/question/13112120

Each of the boxes starts at rest and is then pulled for 2.0 m across a level, frictionless floor by a rope with the noted force. Which box has the highest final speed

Answers

Answer:

Explanation:

d

To understand the meaning of the variables in Gauss's law, and the conditions under which the law is applicable. Gauss's law is usually written
ΦE=∫E.dA =qencl/ϵ0
, where ϵ0=8.85×10−12C2/(N⋅m2) is the permittivity of vacuum.
How should the integral in Gauss's law be evaluated?
a. around the perimeter of a closed loop
b. over the surface bounded by a closed loop
c. over a closed surface

Answers

Answer:

Explanation:

jjjjjjjjjjjjjjjj

On a certain planet a body is thrown vertically upwards with an initial speed of 40 m / s. If the maximum height was 100 m, the acceleration due to gravity is

a) 15 m / s 2
b) 12.5 m / s 2
c) 8 m / s 2
d) 10 m / s 2

Answers

Answer:

C) 8 m/s²

Explanation:

Given:

v₀ = 40 m/s

v = 0 m/s

Δy = 100 m

Find: a

v² = v₀² + 2aΔy

(0 m/s)² = (40 m/s)² + 2a (100 m)

a = -8 m/s²

A 25 kg box sliding to the left across a horizontal surface is brought to a halt in a distance of 15 cm by a horizontal rope pulling to the right with 15 N tension.

Required:
a. How much work is done by the tension?
b. How much work is done by gravity?

Answers

B)is pills everything to the surface of the earth not sure about A

The work done by tensional force of the rope is 2.25 J and the work done by gravity is 36.75 J.

The given parameters;

mass of the box, m = 25 kgdistance traveled by the box, d = 15 cm = 0.15 mtension on the rope, T = 15 N

The work done by the tension is calculated as follows;

W = Fd

W = 15 x 0.15

W = 2.25 J

The work done by gravity is calculated as;

W = (25 x 9.8) x 0.15

W = 36.75 J

Thus, the work done by tensional force of the rope is 2.25 J and the work done by gravity is 36.75 J.

Learn more here: https://brainly.com/question/19498865

Consider the following three objects, each of the same mass and radius:
(1) a solid sphere
(2) a solid disk
(3) a hoop
All three are released from rest at the top of an inclined plane. The three objects proceed down the incline undergoing rolling motion without slipping. Use work-kinetic energy theorem to determine which object will reach the bottom of the incline first.
a) 1, 2, 3
b) 2, 3, 1
c) 3, 1, 2
d) 3, 2, 1
e) All three reach the bottom at the same time.

Answers

Answer:

Explanation:a 1

Suppose you are looking into the end of a long cylindrical tube in which there is a uniform magnetic field pointing away from you. If the magnitude of the field is decreasing with time the direction of the induced magnetic field is

Answers

Answer:

If the magnitude of the field is decreasing with time the direction of the induced magnetic field is CLOCKWISE

Explanation

This is because If the magnetic field decreases with time, the electric field will be produced in order to oppose the change in line with lenz law. Thus The right hand rule can be applied to find that the direction of electric field is in the clockwise direction.

In your own words, discuss how energy conservation applies to a pendulum. Where is the potential energy the most? Where is the potential energy the least? Where is kinetic energy the most? Where is kinetic energy the least?

Answers

Answer:

Explanation:

Energy conservation applies to the swinging of pendulum . When the bob is at one extreme , it is at some height from its lowest point . So it has some gravitational potential energy . At that time since it remains at rest its kinetic energy is zero or the least . As it goes down while swinging , its potential energy decreases and kinetic energy increases following conservation of mechanical energy . At the At the lowest point , its potential energy is least  and kinetic energy is maximum .

In this way , there is conservation of mechanical energy .

Si se deja caer una piedra desde un helicóptero en reposo, entonces al cabo de 20 s cual será la rapidez y la distancia recorrida por la piedra

Answers

Answer:

La piedra alcanza una rapidez de 196.14 metros por segundo y una distancia recorrida de 1961.4 metros en 20 segundos.

Explanation:

Si se excluye los efectos del arrastre por la viscosidad del aire, la piedra experimenta un movimiento de caída libre, es decir, que la piedra es acelerada por la gravedad terrestre. La distancia recorrida y la rapidez final de la piedra pueden obtenerse con la ayuda de las siguientes ecuaciones cinemáticas:

[tex]v = v_{o} + g\cdot t[/tex]

[tex]y - y_{o} = v_{o}\cdot t + \frac{1}{2}\cdot g \cdot t^{2}[/tex]

Donde:

[tex]v[/tex], [tex]v_{o}[/tex] - Rapideces final e inicial de la piedra, medidas en metros por segundo.

[tex]t[/tex] - Tiempo, medido en segundos.

[tex]g[/tex] - Aceleración gravitacional, medida en metros por segundo al cuadrado.

[tex]y[/tex]. [tex]y_{o}[/tex] - Posiciones final e inicial de la piedra, medidos en metros.

Si [tex]v_{o} = 0\,\frac{m}{s}[/tex], [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{o} = 0\,m[/tex], entonces:

[tex]v = 0\,\frac{m}{s} +\left(-9.807\,\frac{m}{s^{2}} \right) \cdot (20\,s)[/tex]

[tex]v = -196.14\,\frac{m}{s}[/tex]

[tex]y-y_{o} = \left(0\,\frac{m}{s} \right)\cdot (20\,s) + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (20\,s)^{2}[/tex]

[tex]y-y_{o} = -1961.4\,m[/tex]

La piedra alcanza una rapidez de 196.14 metros por segundo y una distancia recorrida de 1961.4 metros en 20 segundos.

A person can survive a feet-first impact at a speed of about 12 m/s (27 mi/h) on concrete, 15 m/s (34 mi/h) on soil, and 34 m/s (76 mi/h) on water. What is the reason for the different values for different surfaces

Answers

Answer:

Different surfaces have different impact force during collision which depends on the time it takes the person to come to rest after collision.

Explanation:

Given;

speed on concrete = 12 m/s (27 mi/h)

speed on soil = 15 m/s (34 mi/h)

speed on water = 34 m/s (76 mi/h)

The impact force on this person during collision is rate of change of momentum;

[tex]F = \frac{\delta P}{\delta t}[/tex]

During collision, the force exerted on this person depends on how long the collision lasts; that is, how long it takes for this person to come to rest after collision with each of the surfaces.

The longer the time of collision, the smaller the force exerted by each.

It takes shorter time for the person to come to rest on concrete surface than on soil surface, also it takes shorter time for the person to come to rest on soil surface than on water surface.

As a result of the reason above, the force exerted on the person during collision by the concrete surface is greater than that of soil surface which is  greater than that of water surface.

A car travels at 100 km / h, collides head-on against a pole. Assuming the vehicle stopped at 2.2 seconds after impact, calculate the magnitude of the deceleration suffered by the driver.

Answers

Answer:

12.6 m/s²

Explanation:

First, convert to m/s.

100 km/h × (1000 m/km) × (1 hr / 3600 s) = 27.8 m/s

a = Δv / Δt

a = (0 m/s − 27.8 m/s) / 2.2 s

a = -12.6 m/s²

The intensity of sunlight at the Earth's distance from the Sun is 1370 W/m2. (a) Assume the Earth absorbs all the sunlight incident upon it. Find the total force the Sun exerts on the Earth due to radiation pressure. N (b) Explain how this force compares with the Sun's gravitational attraction.

Answers

Answer:

F= 3.56e22N

Explanation:

Using the force of radiation acting on the earth which is

force = radiation pressure x area = (intensity/c)xpi R^2

force = 1370W/m^2 x pi x( 6.37x10^6m)^2/3x10^8m/s

force = 5.82x10^8 N

But the sun's gravitational attraction means the magnitude of the solar gravitational force on earth: If that's the case, the answer is approx 10^22 N:

F=GMm/r^2

G=6.67x10^(-11)=6.67e-11

M=mass sun = 2x10^30kg=2e30

m=mass earth = 6x10^24kg

r=earth sun distance = 1.5x10^11m

F=(6.6e-11)(2e30)(6e24)/(1.5e11)^2 =

F= 3.56e22N

A cylinder is closed by a piston connected to a spring of constant 2.20 10^3 N/m. With the spring relaxed, the cylinder is filled with 5.00 L of gas at a pressure of 1.00 atm and a temperature of 20.0°C. The piston has a cross sectional area of 0.0100 m^2 and negligible mass. What is the pressure of the gas at 250 °C?

Answers

Answer:

1.3515x10^5pa

Explanation:

Plss see attached file

You are pushing a 60 kg block of ice across the ground. You exert a constant force of 9 N on the block of ice. You let go after pushing it across some distance d, and the block leaves your hand with a velocity of 0.85 m/s. While you are pushing, the work done by friction between the ice and the ground is 3 Nm (3 J). Assuming that the ice block was stationary before you push it, find d.

Answers

Answer: d = 33 cm or 0.33 m

Explanation: In physics, Work is the amount of energy transferred to an object to make it move. It can be expressed by:

W = F.d.cosθ

F is the force applied to the object, d is the displacement and θ is the angle formed between the force and the displacement.

For the ice block, the angle is 0, i.e., force and distance are at the same direction, so:

W = F.d.cos(0)

W = F.d

To determine d:

d = [tex]\frac{W}{F}[/tex]

d = [tex]\frac{3}{9}[/tex]

d = 0.33 m

The distance d the block ice moved is 33 cm.

Why would physics be used to study light emitted by a star?
O A. Stars form interesting shapes in the sky.
B. Light is very pretty.
O C. The positions of stars control our lives.
O D. Light is a form of energy.

Answers

Answer:

O D.

Explanation:

Physics has an aspect that deals with the study of energy

Answer:

D. Light is a form of energy

Explanation:

A scientist is testing the seismometer in his lab and has created an apparatus that mimics the motion of the earthquake felt in part (a) by attaching the test mass to a spring. If the test mass weighs 13 N, what should be the spring constant of the spring the scientist use to simulate the relative motion of the test mass and the ground from part (a)?

Answers

Complete Question

The complete question is shown on the first uploaded image  

Answer:

a

 [tex]a_{max} = 0.00246 \ m/s^2[/tex]

b

   [tex]k =722.2 \ N/m[/tex]

Explanation:

From the question we are told that

     The  amplitude is [tex]A = 1.8 \ cm = 0.018 \ m[/tex]

     The period is [tex]T = 17 \ s[/tex]

    The test weight is  [tex]W = 13 \ N[/tex]

Generally the radial acceleration is mathematically represented as

        [tex]a = w^2 r[/tex]

at maximum angular acceleration

       [tex]r = A[/tex]

So  

       [tex]a_{max} = w^2 A[/tex]

Now [tex]w[/tex] is the angular velocity which is mathematically represented as

      [tex]w = \frac{2 * \pi }{T}[/tex]

Therefore

       [tex]a_{max} = [\frac{2 * \pi}{T} ]^2 * A[/tex]

substituting values

       [tex]a_{max} = [\frac{2 * 3.142}{17} ]^2 * 0.018[/tex]

       [tex]a_{max} = 0.00246 \ m/s^2[/tex]

Generally this test weight is mathematically represented as

     [tex]W = k * A[/tex]

Where k is the spring constant

Therefore

        [tex]k = \frac{W}{A}[/tex]

substituting values        

      [tex]k = \frac{13}{0.018}[/tex]

     [tex]k =722.2 \ N/m[/tex]

A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 26 m/s when a 60 kg skydiver drops out by releasing his grip on the glider.
What is the glider's speed just after the skydiver lets go?

Answers

Answer:

The glider’s speed after the skydiver lets go is 26 m/s

Explanation:

To calculate the glider’s speed just after the skydiver lets go, we will need to use the conservation of momentum

Mathematically;

mv = mv + mv

so 680 * 26 = (680-60)v + 60 * 26

17680 = 620v + 1560

17680-1560 = 620v

16120 = 620v

v = 16120/620

v = 26 m/s

A string of mass 60.0 g and length 2.0 m is fixed at both ends and with 500 N in tension. a. If a wave is sent along this string, what will be the wave's speed? A second wave is sent in the string, what is the new speed of each of the two waves?

Answers

Answer:

a

The  speed of  wave is   [tex]v_1 = 129.1 \ m/s[/tex]

b

The new speed of the two waves is [tex]v = 129.1 \ m/s[/tex]

Explanation:

From the question we are told that

    The mass of the string is  [tex]m = 60 \ g = 60 *10^{-3} \ kg[/tex]

    The length is  [tex]l = 2.0 \ m[/tex]

    The tension is  [tex]T = 500 \ N[/tex]

Now the velocity of the first wave is mathematically represented as

     [tex]v_1 = \sqrt{ \frac{T}{\mu} }[/tex]

Where  [tex]\mu[/tex] is the linear density which is mathematically represented as

      [tex]\mu = \frac{m}{l}[/tex]

substituting values    

     [tex]\mu = \frac{ 60 *10^{-3}}{2.0 }[/tex]

     [tex]\mu = 0.03\ kg/m[/tex]

So

   [tex]v_1 = \sqrt{ \frac{500}{0.03} }[/tex]

   [tex]v_1 = 129.1 \ m/s[/tex]

Now given that the Tension, mass and length are constant the velocity of the second wave will same as that of first wave (reference PHYS 1100 )

     

A 269-turn solenoid is 102 cm long and has a radius of 2.3 cm. It carries a current of 3.9 A. What is the magnetic field inside the solenoid near its center?

Answers

Answer:

Magnitude of the magnetic field inside the solenoid near its centre is 1.293 x 10⁻³ T

Explanation:

Given;

number of turns of solenoid, N = 269 turn

length of the solenoid, L = 102 cm = 1.02 m

radius of the solenoid, r = 2.3 cm = 0.023 m

current in the solenoid, I = 3.9 A

Magnitude of the magnetic field inside the solenoid near its centre is calculated as;

[tex]B = \frac{\mu_o NI}{l} \\\\[/tex]

Where;

μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

[tex]B = \frac{4\pi*10^{-7} *269*3.9}{1.02} \\\\B = 1.293 *10^{-3} \ T[/tex]

Therefore, magnitude of the magnetic field inside the solenoid near its centre is 1.293 x 10⁻³ T

If a 20kg mass hangs from a spring, whose elastic constant is 1800 N / m, the value of the spring elongation is

Answers

Explanation:

F = kx

mg = kx

(20 kg) (10 m/s²) = (1800 N/m) x

x = 0.11 m

You throw a stone vertically upward with a speed of 26.0 m/s. (a) How fast is it moving when it reaches a height of 15.0 m? (b) How much time is required to reach this height when it's falling down? a. 19.5 m/s , b. 4.51 s a. 17.9 m/s , b. 0.620 s a. 19.5 m/s , b. 0.800 s a. 17.9 m/s , b. 4.28 s a. 380 m/s , b. 8 s

Answers

Answer:

ok well

Explanation:

teghe

Answer:

v = 19.5 m/s

t = 4.51 s

Explanation:

a)

given:

height is 15m from the ground

initial velocity Vi = 26 m/s

acceleration a or g = 9.81 m/s²

formula: Vf² = Vi² + 2aΔy

26² = Vi² + 2 (9.81) 15

Vi = 19.5 m/s

now you can calculate the time by using the equations below:

Δy = 1/2 (Vi + Vf) t

Vf = Vi + a t

Δy = Vi t + 1/2 a t

time must be 4.51 s

As more energy from fossil fuels and other fuels is released on Earth, the overall temperature of Earth tends to rise. Discuss how temperature equilibrium explains why Earth’s temperature cannot rise indefinitely.

Answers

Answer:

processes are competitive and reach a thermal equilibrium where the absorbed energy is equal to the energy emitted, this is the equilibrium temperature of the planet.

Explanation:

The temperature of planet Earth is due to two main types of process, internal and external.

Internal processes are all chemical processes that occur that release heat into the environment or due to gases that trap heat on the planet, greenhouse effect

External processes is heating due to energy coming from the Sun. This includes direct heating of the surface by the absorption of energy and reflects of energy in different atmospheric layers.

These are the two terms that heat the Earth

In addition there are several processes so the planet loses energy,

* energy radiation to outer space that is a few degrees kelvin, for which there is a permanent emission

* endothermic processes that need to absorb heat to perform, this lowers the temperature of the system

* liquid (water) system that absorbs large amounts of heat to change state and temperature.

These processes are competitive and reach a thermal equilibrium where the absorbed energy is equal to the energy emitted, this is the equilibrium temperature of the planet.

Therefore it is impossible for the temperature to increase indefinitely since the emission would increase by decreasing the value

Two identical small charged spheres are a certain distance apart, and each one initially experiences an electrostatic force of magnitude F due to the other. With time, charge gradually leaks off of both spheres. Calculate the magnitude of the electrostatic force, when each of the spheres has lost half of its initial charge. (Your answer will be a function of F, since no values are giving)

Answers

Answer:

1/4F

Explanation:

We already know thatThe electrostatic force is directly proportional to the product of the charge, from Coulomb's law.

So F α Qq

But if it is now half the initial charges, then

F α (1/2)Q *(1/2)q

F α (1/4)Qq

Thus the resultant charges are each halved is (1/4) and the first initial force experienced at full charge.

Thus the answer will be 1/4F

A 7.0-kg shell at rest explodes into two fragments, one with a mass of 2.0 kg and the other with a mass of 5.0 kg. If the heavier fragment gains 100 J of kinetic energy from the explosion, how much kinetic energy does the lighter one gain?

Answers

Answer:

39.94m/s.

Explanation:

Kinetic energy is expressed as KE = 1/2 mv² where;

m is the mass of the body

v is the velocity of the body.

For the heavier shell;

m = 5kg

KE gained = 100J

Substituting this values into the formula above to get the velocity v;

100 = 1/2 * 5 * v²

5v² = 200

v² = 200/5

v² = 40

v = √40

v = 6.32 m/s

Note that after the explosion, both body fragments will possess the same velocity.

For the lighter shell;

mass = 2.0kg and v = 6.32m/s

KE of the lighter shell = 1/2 * 2 * 6.32²

KE of the lighter shell = 6.32²

KE of the lighter shell= 39.94m/s

Hence, the lighter one gains a kinetic energy of 39.94m/s.

The gain in the kinetic energy of the smaller fragment is 249.64 J.

The given parameters;

Mass of the shell, m = 7.0 kgMass of one fragment, m₁ = 2.0 kgMass of the second fragment, m₂ = 5.0 kgKinetic energy of heavier fragment, K.E₁ = 100 J

The velocity of the heavier fragment is calculated as follows;

[tex]K.E = \frac{1}{2} mv^2\\\\mv^2 = 2K.E\\\\v^2 = \frac{2K.E}{m} \\\\v= \sqrt{\frac{2K.E}{m} } \\\\v = \sqrt{\frac{2 \times 100}{5} }\\\\v = 6.32 \ m/s[/tex]

Apply the principle of conservation of linear momentum to determine the velocity of the smaller fragment as;

[tex]m_1 u_1 + m_2 u_2 = v(m_1 + m_2)\\\\-6.32(5) \ + 2u_2 = 0(7)\\\\-31.6 + 2u_2 = 0\\\\2u_2 = 31.6\\\\u_2 = \frac{31.6}{2} \\\\u_2 = 15.8 \ m/s[/tex]

The gain in the kinetic energy of the smaller fragment is calculated as follows;

[tex]K.E_2 = \frac{1}{2} mu_2^2\\\\K.E_2 = \frac{1}{2} \times 2 \times (15.8)^2\\\\K.E_2 = 249.64 \ J[/tex]

Thus, the gain in the kinetic energy of the smaller fragment is 249.64 J.

Learn more about conservation of linear momentum here: https://brainly.com/question/7538238

Other Questions
Exercise 1 - Questions 1. Hold the grating several inches from your face, at an angle. Look at the grating that you will be using. Record what details you see at the grating surface. 0 Words 2. Hold the diffraction grating up to your eye and look through it. Record what you see. Be specific. 0 Words 3. Before mounting the diffraction grating, look through the opening that you made for your grating. Record what you see across the back of your spectroscope. What are the coordinates of the image of L for a dilation with center (0, 0) and scale factor 4? Ash Lee bought a new Brunswick boat for $17,000. He made a $2,500 down payment on it. The bank's loan was for 60 months. Finance charges totaled $4,900. His monthly payment is: Choose the items below that correctly describe some aspect of Joseph Campbells heros journey. Select all that apply. The hero must leave his common world. All forces in the new region are evil. The hero has no help on her journey. The new region is exciting, and, yet, wonderfully safe. The hero returns with power that she can give to others. The hero must venture forth. The hero encounters powers and overcomes them. Alex has built a garden shed in the shape shown. (A) Alex plans to paint the outside of the shed, including the roof but not the floor. One can of paint can cover 6m^2 . How many cans of paint will Alex need. (B)If one can of paint costs $25.50, what will the cost be including 13% tax. quin es Kasin de las Mil y una noches What is the range of the function? The Home minister........ in Surkhet this morning.(arrive) can someone help me please Which of these lymphoid organs destroys bacteria before it can breach the intestinal wall and generates "memory" lymphocytes for long-term memory? whats 20x20? thank you To decrease a number by 40%, what do we multiply by??? During the ____________step in activity-based costing, overhead costs in each activity cost pool are assigned to products.a. first b. secondc. third d. fourth Fill in the blanks.1. The phylum contains most common animals you are familiar with suas eagles, dogs, foxes, and frogs.2. While the earth is home to many members of this phylum, earthworms area member of3. The most successful phylum on earth is which contains insects,spiders, and crustaceans.4. An animal that molts it exoskeleton is called a(n).5. are cells that have the potential to become any type of cell; they havnot yet received their genetic programming.6. All members of the animal kingdom are multicellular, heterotrophic and7. A starfish is a bilaterian deuterostome with symmetrical adults.8. Complete the chart by describing what kinds of organs or tissues each typegerm layer becomes:Moi Read the passage from Sugar Changed the World.A fire was lit in a giant iron cauldron, and the certificates of 2,300 Indians were tossed into the flamesthe first major act of Satyagraha. "I am not property," the Indians were showing. "I am not your victim," they were demonstrating. "I have the power of my conscience," they were proving. The quiet strength of the Indian community shook the South African government. And by June 1914 it gave in; the Black Act was taken off the books. The Indians had insisted that they were not mere workers but were citizensand finally the government could not resist.What evidence do the authors include to support the central idea of this passage?The burning of certificates and the repeal of the Black Act show that the Indians reclaimed their power.The Black Act shows that the South African government saw the Indians as property.The burning of certificates and the act of Satyagraha show how the Indians had to comply with the Black Act.The presence of 2,300 Indians shows that the community in South Africa was large enough to revolt. The sum of Jasons age and his brothers age is 55. Jason is 7 years younger than his brother. How old is Jason? The speed at which a ball bits the ground is proportional to theheight to which the ball rebounds. If the ball hits the ground ata speed of 20 miles per hour and rebounds to a height of 10 feet,then how fast must it be traveling (in miles per hour) to reboundto a height of 15 feet? The basic approaches to cleaning contaminated soil include:_________. A. Air stripping/aeration, activated carbon, and chemical precipitation B. Containment, off-site containment, on- or off-site treatment, or disposal If you wrote the numbers from 1-8, and it equals to three, how do you make the statement true if you can't change the 3 but you could connect two or more numbers to make the statement true if you also can only do subtraction? Which equation represents a line that has a slope of 2/3 and a y-intercept of 4?