Answer:
As it goes down, weight does work on the toboggan and it ends up converting gravitational potential energy to kinetic energy.
1. weight
2. gravitational potential energy to kinetic energy.
Explanation:
As it goes down, weight does work on the toboggan and it ends up converting gravitational potential energy to kinetic energy.
work done by toboggan = weight × distance
W = mg and the distance is down the icy slope
By using law of conservation of energy, energy can neither be created nor destroyed, but can be conserve from one form to another in a closed system.
Toboggan converts gravitational potential energy (mgh) to kinetic energy(¹/₂mv²)
Two positive charges are located at x = 0, y = 0.3m and x = 0, y = -.3m respectively. Third point charge q3 = 4.0 μC is located at x = 0.4 m, y = 0.
A) Make a careful sketch of decent size that illustrates all force vectors with directions and magnitudes.
B) What is the resulting vector of the total force on charge q1 exerted by the other two charges using vector algebra?
Answer:
0.46N
Explanation:
See attached file
A wooden artifact from a Chinese temple has a 14C activity of 41.0 counts per minute as compared with an activity of 58.2 counts per minute for a standard of zero age. You may want to reference (Pages 913 - 916) Section 21.4 while completing this problem. Part A From the half-life for 14C decay, 5715 yr, determine the age of the artifact. Express your answer using two significant figures. t
Answer:
Explanation:
The relation between activity and number of radioactive atom in the sample is as follows
dN / dt = λ N where λ is disintegration constant and N is number of radioactive atoms
For the beginning period
dN₀ / dt = λ N₀
58.2 = λ N₀
similarly
41 = λ N
dividing
58.2 / 41 = N₀ / N
N = N₀ x .70446
formula of radioactive decay
[tex]N=N_0e^{-\lambda t }[/tex]
[tex].70446 =e^{-\lambda t }[/tex]
- λ t = ln .70446 = - .35
t = .35 / λ
λ = .693 / half life
= .693 / 5715
= .00012126
t = .35 / .00012126
= 2886.36
= 2900 years ( rounding it in two significant figures )
what is electric field strength
Answer:
Electric field strengh is a measure of the strength of an electric field at a given point in space, equal to the field would induce on a unit electric charge at that point.
Electric field strength is also known as Electric Field Intensity .
Explanation:
Electric Field is also defined as force per charge. The unit will be force unit divided by charge unit. In this case, it will be Newton/Coulomb or N/C.
Please mark me as the brainliest!!!
Thanks!!!
A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 11 times the instantaneous velocity. Determine the equations of motion if the following is true?
a. the mass is initially released from rest from a point 1 meter below the equilibrium position
b. the mass is initially released from a point 1 meter below the equilibrium position with an upward velocity of 11 m/s
Answer:
Let [tex]x(t)[/tex] denote the position (in meters, with respect to the equilibrium position of the spring) of this mass at time [tex]t[/tex] (in seconds.) Note that this question did not specify the direction of this motion. Hence, assume that the gravity on this mass can be ignored.
a. [tex]\displaystyle x(t) = -\frac{9}{7}\, e^{-2 t} + \frac{2}{7}\, e^{-9 t}[/tex].
b. [tex]\displaystyle x(t) = \frac{2}{7}\, e^{-2 t} - \frac{9}{7}\, e^{-9 t}[/tex].
Explanation:
Let [tex]x[/tex] denote the position of this mass (in meters, with respect to the equilibrium position of the spring) at time [tex]t[/tex] (in seconds.) Let [tex]x^\prime[/tex] and [tex]x^{\prime\prime}[/tex] denote the first and second derivatives of [tex]x[/tex], respectively (with respect to time [tex]t[/tex].)
[tex]x^\prime[/tex] would thus represent the velocity of this mass.[tex]x^{\prime\prime}[/tex] would represent the acceleration of this mass.Constructing the ODEConstruct an equation using [tex]x[/tex], [tex]x^\prime[/tex], and [tex]x^{\prime\prime}[/tex], with both sides equal the net force on this mass.
The first equation for the net force on this mass can be found with Newton's Second Law of motion. Let [tex]m[/tex] denote the size of this mass. By Newton's Second Law of motion, the net force on this mass would thus be equal to:
[tex]F(\text{net}) = m\, a = m\, x^{\prime\prime}[/tex].
The question described another equation for the net force on this mass. This equation is the sum of two parts:
The restoring force of the spring: [tex]F(\text{spring}) = -k\, x[/tex], where [tex]k[/tex] denotes the constant of this spring.The damping force: [tex]F(\text{damping}) = - 11\,x^\prime[/tex] according to the question. Note the negative sign in this expression- the damping force should always oppose the direction of motion.Assume that there's no other force on this mass. Combine the restoring force and the damping force obtain an expression for the net force on this mass:
[tex]F(\text{net}) = -k\, x - 11\, x^\prime[/tex].
Combine the two equations for the net force on this mass to obtain:
[tex]m\, x^{\prime\prime} = -k\, x - 11\, x^\prime[/tex].
From the question:
Size of this mass: [tex]m = 1\; \rm kg[/tex].Spring constant: [tex]k = 18\; \rm N \cdot m^{-1}[/tex].Hence, the equation will become:
[tex]x^{\prime\prime} = -18\, x - 11\, x^\prime[/tex].
Rearrange to obtain:
[tex]x^{\prime\prime} + 11\, x^\prime + 18\; x = 0[/tex].
Finding the general solution to this ODE[tex]x^{\prime\prime} + 11\, x^\prime + 18\; x = 0[/tex] fits the pattern of a second-order homogeneous ODE with constant coefficients. Its auxiliary equation is:
[tex]m^2 + 11\, m + 18 = 0[/tex].
The two roots are:
[tex]m_1 = -2[/tex], and[tex]m_2 = -9[/tex].Let [tex]c_1[/tex] and [tex]c_2[/tex] denote two arbitrary real constants. The general solution of a second-order homogeneous ODE with two distinct real roots [tex]m_1[/tex] and [tex]m_2[/tex] is:
[tex]x = c_1\, e^{m_1\cdot t} + c_2\, e^{m_2\cdot t}[/tex].
For this particular ODE, that general solution would be:
[tex]x = c_1\, e^{-2 t} + c_2\, e^{-9 t}[/tex].
Finding the particular solutions to this ODENote, that if [tex]x(t) = c_1\, e^{-2 t} + c_2\, e^{-9 t}[/tex] denotes the position of this mass at time [tex]t[/tex], then [tex]x^\prime(t) = -2\,c_1\, e^{-2 t} -9\, c_2\, e^{-9 t}[/tex] would denote the velocity of this mass at time
The position at time [tex]t = 0[/tex] would be [tex]x(0) = c_1 + c_2[/tex].The velocity at time [tex]t = 0[/tex] would be [tex]x^\prime(0) = -2\, c_1 - 9\, c_2[/tex].For section [tex]\rm a.[/tex]:
[tex]\left\lbrace\begin{aligned}& x(0) = -1 \\ &x^\prime(0) = 0\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 + c_2 = -1 \\ &-2\, c_1 - 9\, c_2 = 0\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 = -\frac{9}{7} \\ &c_2 = \frac{2}{7}\end{aligned}\right.[/tex].
Hence, the particular solution for section [tex]\rm a.[/tex] will be:
[tex]\displaystyle x(t) = -\frac{9}{7}\, e^{-2 t} + \frac{2}{7}\, e^{-9 t}[/tex].
Similarly, for section [tex]\rm b.[/tex]:
[tex]\left\lbrace\begin{aligned}& x(0) = -1 \\ &x^\prime(0) = 11\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 + c_2 = -1 \\ &-2\, c_1 - 9\, c_2 = 11\end{aligned}\right. \implies \left\lbrace\begin{aligned} &c_1 = \frac{2}{7} \\ &c_2 = -\frac{9}{7}\end{aligned}\right.[/tex].
Hence, the particular solution for section [tex]\rm b.[/tex] will be:
[tex]\displaystyle x(t) = \frac{2}{7}\, e^{-2 t} - \frac{9}{7}\, e^{-9 t}[/tex].
A Young's interference experiment is performed with blue-green laser light. The separation between the slits is 0.500 mm, and the screen is located 3.10 m from the slits. The first bright fringe is located 3.22 mm from the center of the interference pattern. What is the wavelength of the laser light?
Answer:
λ = 5.2 x 10⁻⁷ m = 520 nm
Explanation:
From Young's Double Slit Experiment, we know the following formula for the distance between consecutive bright fringes:
Δx = λL/d
where,
Δx = fringe spacing = distance of 1st bright fringe from center = 0.00322 m
L = Distance between slits and screen = 3.1 m
d = Separation between slits = 0.0005 m
λ = wavelength of light = ?
Therefore,
0.00322 m = λ(3.1 m)/(0.0005 m)
λ = (0.00322 m)(0.0005 m)/(3.1 m)
λ = 5.2 x 10⁻⁷ m = 520 nm
An insulated beaker with negligible mass contains liquid water with a mass of 0.285 kg and a temperature of 75.2 ∘C How much ice at a temperature of -22.8 ∘C must be dropped into the water so that the final temperature of the system will be 32.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to be 3.34×105 J/kg
Answer:
Explanation:
We shall apply the theory of
heat lost = heat gained .
heat lost by water = mass x specific heat x temperature diff
= .285 x 4190 x ( 75.2 - 32 ) = 51587.28 J
heat gained by ice to attain temperature of zero
= m x 2100 x 22.8 = 47880 m
heat gained by ice in melting = latent heat x mass
= 334000m
heat gained by water at zero to become warm at 32 degree
= m x 4190 x 32 = 134080 m
Total heat gained = 515960 m
So
515960 m = 51587.28
m = .1 kg
= 100 gm
Experts, ACE, Genius... can anybody calculate for the Reactions at supports A and B please? Will give brainliest! Given: fb = 300 kN/m, fc = 100 kN/m, Dy = 300 kN, spanAB = 6m, span BC = 6m, spanCD = 6m
Answer:
Support at Cy = 1.3 x 10³ k-N
Support at Ay = 200 k-N
Explanation:
given:
fb = 300 k-N/m
fc = 100 k-N/m
D = 300 k-N
L ab = 6 m
L bc = 6 m
L cd = 6 m
To get the reaction A or C.
take summation of moment either A or C.
Support Cy:
∑ M at Ay = 0
(( x1 * F ) + ( D * Lab ) + ( D * L bc + D * L cd )
Cy = -------------------------------------------------------------------
( L ab + L bc )
Cy = 1.3 x 10³ k-N
Support Ay:
Since ∑ F = 0, A + C - F - D = 0
A = F + D - C
Ay = 200 k-N
Answer:
i was going to but its to late
Explanation:
An appliance with a 20.0-2 resistor has a power rating of 15.0 W. Find the maximum current which can flow safely through the appliance g
Q: An appliance with a 20 Ω resistor has a power rating of 15.0 W. Find the maximum current which can flow safely through the appliance g
Answer:
0.866 A
Explanation:
From the question,
P = I²R............................. Equation 1
Where P = power, I = maximum current, R = Resistance.
Make I the subject of the equation
I = √(P/R).................... Equation 2
Given: P = 15 W, R = 20 Ω
Substitute these values into equation 2
I = √(15/20)
I = √(0.75)
I = 0.866 A
Hence the maximum current that can flow safely through the appliance = 0.866 A
23.15. Can an object carry a charge of 2.0 10-19 C?
Answer:
Ok, the minimal quantity of charge that we can find is on the electron or in the proton (the magnitude is the same, but the sign is different)
Where the charge of a single proton is:
C = 1.6x10^-19 C
Now, you need to remember that when we are working with charges, we are working with discrete math:
What means that?
If the minimum positive is the charge of one proton, then the consecutive charge will be the charge of two protons (there is no somethin in between)
So the consecutive charge will be:
C = 2*1.6x10^-19 C = 3.2x10^-19 C.
So, because we are working in discrete math, we can not have any object that has charge between 1.6x10^-19 C and 3.2x10^-19 C.
Particularly, 2.0x10^-19 C is in that range, so we can conclude that:
No, an object can not carry a charge of 2.0x10^-19 C.
"Neon signs need 12,000 V to operate. If a transformer operates off a 240 V source and has 1000 turns in its primary coil, how may turns must the secondary coil have
Answer:
50000 turns
Explanation:
Vp / Vs = Np / Ns
240 / 12000 = 1000 / Ns
Ns = 50000 turns
21. What is the most likely outcome of decreasing the frequency of incident light on a diffraction grating?
A. lines become narrower
B. distance between lines increases
C. lines become thicker
D. distance between lines decreases
Answer:
B.distance between lines increases
Answer:
A. Lines become narrower
Explanation:
I got it right on my quiz!
I hope this helps!! :))
The magnitude of the Poynting vector of a planar electromagnetic wave has an average value of 0.939 W/m2. The wave is incident upon a rectangular area, 1.5 m by 2.0 m, at right angles. How much total electromagnetic energy falls on the area during 1.0 minute
Answer:
The total energy is [tex]T = 169.02 \ J[/tex]
Explanation:
From the question we are told that
The Poynting vector (energy flux ) is [tex]k = 0.939 \ W/m^2[/tex]
The length of the rectangle is [tex]l = 1.5 \ m[/tex]
The width of the rectangle is [tex]w = 2.0 \ m[/tex]
The time taken is [tex]t = 1 \ minute = 60 \ s[/tex]
The total electromagnetic energy falls on the area is mathematically represented as
[tex]T = k * A * t[/tex]
Where A is the area of the rectangle which is mathematically represented as
[tex]A= l * w[/tex]
substituting values
[tex]A= 2 * 1.5[/tex]
[tex]A= 3 \ m^2[/tex]
substituting values
[tex]T = 0.939 * 3 * 60[/tex]
[tex]T = 169.02 \ J[/tex]
Three point charges (some positive and some negative) are fixed to the corners of the same square in various ways, as the drawings show. Each charge, no matter what its algebraic sign, has the same magnitude. In which arrangement (if any) does the net electric field at the center of the square have the greatest magnitude?
Answer:
The magnitude of the net field located at the center of the square is the same in every of arrangement of the charges.
What is the change in internal energy of the system (∆U) in a process in which 10 kJ of heat energy is absorbed by the system and 70 kJ of work is done by the system?
Answer:
Explanation:
According to first law of thermodynamics:
∆U= q + w
= 10kj+(-70kJ)
-60kJ
, w = + 70 kJ
(work done on the system is positive)
q = -10kJ ( heat is given out, so negative)
∆U = -10 + (+70) = +60 kJ
Thus, the internal energy of the system decreases by 60 kJ.
Two metal sphere each of radius 2.0 cm, have a center-to-center separation of 3.30 m. Sphere 1 has a chrage of +1.10 10^-8 C. Sphere 2 has charge of -3.60 10^-8C. Assume that the separation is large enough for us to assume that the charge on each sphere iss uniformly distribuuted.
A) Calculate the potential at the point halfway between the centers.
B) Calculate the potential on the surface of sphere 1.
C) Calculate the potential on the surface of sphere 2.
Answer:
A) V = -136.36 V , B) V = 4.85 10³ V , C) V = 1.62 10⁴ V
Explanation:
To calculate the potential at an external point of the spheres we use Gauss's law that the charge can be considered at the center of the sphere, therefore the potential for an external point is
V = k ∑ [tex]q_{i} / r_{i}[/tex]
where [tex]q_{i}[/tex] and [tex]r_{i}[/tex] are the loads and the point distances.
A) We apply this equation to our case
V = k (q₁ / r₁ + q₂ / r₂)
They ask us for the potential at the midpoint of separation
r = 3.30 / 2 = 1.65 m
this distance is much greater than the radius of the spheres
let's calculate
V = 9 10⁹ (1.1 10⁻⁸ / 1.65 + (-3.6 10⁻⁸) / 1.65)
V = 9 10¹ / 1.65 (1.10 - 3.60)
V = -136.36 V
B) The potential at the surface sphere A
r₂ is the distance of sphere B above the surface of sphere A
r₂ = 3.30 -0.02 = 3.28 m
r₁ = 0.02 m
we calculate
V = 9 10⁹ (1.1 10⁻⁸ / 0.02 - 3.6 10⁻⁸ / 3.28)
V = 9 10¹ (55 - 1,098)
V = 4.85 10³ V
C) The potential on the surface of sphere B
r₂ = 0.02 m
r₁ = 3.3 -0.02 = 3.28 m
V = 9 10⁹ (1.10 10⁻⁸ / 3.28 - 3.6 10⁻⁸ / 0.02)
V = 9 10¹ (0.335 - 180)
V = 1.62 10⁴ V
The velocity of an object is given by the following function defined on a specified interval. Approximate the displacement of the object on this interval by sub-dividing the interval into the indicated number of sub-intervals. Use the left endpoint of each sub-interval to compute the height of the rectangles.
v= 4t + 5(m/s) for 3 < t < 7; n = 4
The approximate displacement of the object is______m.
Answer:
The approximate displacement of the object is 23 m.
Explanation:
Given that:
v = 4t + 5 (m/s) for 3< t< 7; n= 4
The approximate displacement of the object can be calculated as follows:
The velocities at the intervals of t are :
3
4
5
6
the velocity at the intervals of t = 7 will be left out due the fact that we are calculating the left endpoint Reimann sum
n = 4 since there are 4 values for t, Then there is no need to divide the velocity values
v(3) = 4(3)+5
v(3) = 12+5
v(3) = 17
v(4)= 4(4)+5
v(4) = 16 + 5
v(4) = 21
v(5)= 4(5)+5
v(5) = 20 + 5
v(5) = 25
v(6) = 4(6)+5
v(6) = 24 + 5
v(6) = 29
Using Left end point;
[tex]= \dfrac{1}{4}(17+21+25+29)[/tex]
= 23 m
Zack is driving past his house. He wants to toss his physics book out the window and have it land in his driveway. If he lets go of the book exactly as he passes the end of the driveway. Should he direct his throw outward and toward the front of the car (throw 1), straight outward (throw 2), or outward and toward the back of the car (throw 3)? Explain.
Answer:
Zack should direct his throw outward and toward the back of the car.
Explanation:
As the car is moving forward, the book will be thrown with a forward component. Therefore, throwing this book backwards at a constant speed would cancel the motion of the car, allowing the book to have a greater chance of ending on the driveway. I say a greater chance as Zack may not have the exact timings as to land the book in his driveway. That too he may not have thrown the book with the right momentum.
The solution is throw 3.
I say a greater chance as Zack may not have the exact timings as to land the book in his driveway. That too he may not have thrown the book with the right momentum as the skydivers.
Which statement best applies Newton’s laws of motion?The statement that best applies Newton’s laws of motion to explain the skydiver’s motion is that an upward force balances the downward force of gravity on the skydiver. Newton's 3rd law often applies to skydiving.
When gravity is not acting upon the skydivers they would continue moving in the direction the vehicle they jumped from was moving. If no air resistance takes place, then the skydivers would still accelerating at 9.8 m/s until they hit the ground.
The skydiver after leaving the aircraft will accelerates downwards due to the force of gravity usually as there is no air resistance acting in the upwards direction, and there is a resultant force acting downwards, the skydiver will accelerates towards the ground.
Therefore, I say a greater chance as Zack may not have the exact timings as to land the book in his driveway. That too he may not have thrown the book with the right momentum as the skydivers.
Learn more about skydiver on:
https://brainly.com/question/29253407
#SPJ6
wrench is to Hammer as
Answer:
Pencil is to pen
Step by step explanation:
They are similar items, as they are both tools, but are different as to how they function.
A solid, homogeneous sphere with a mass of m0, a radius of r0 and a density of ρ0 is placed in a container of water. Initially the sphere floats and the water level is marked on the side of the container. What happens to the water level, when the original sphere is replaced with a new sphere which has different physical parameters? Notation: r means the water level rises in the container, f means falls, s means stays the same.
A)
The new sphere has a density of ρ = ρ0 and a mass of m < m0.
B)
The new sphere has a density of ρ = ρ0 and a radius of r > r0.
C)
The new sphere has a density of ρ < ρ0 and a mass of m = m0.
The options are r, f, and s. Rises, Falls, Stays the same.
Answer:
(a) f
(b) r
(c) s
Explanation:
There are two forces on the sphere: weight and buoyancy.
Sum of forces in the y direction:
∑F = ma
B − mg = 0
B = mg
Buoyancy is equal to the weight of the displaced fluid, or ρVg, where ρ is the density of the fluid and V is the displaced volume.
ρVg = mg
ρV = m
V = m/ρ
(a) The mass decreases, so the displaced volume decreases.
(b) The sphere's density is constant and its radius increases, which means its mass increases, so the displaced volume increases.
(c) The mass stays the same, so the displaced volume is the same.
A current carrying loop of wire lies flat on a table top. When viewed from above, the current moves around the loop in a counterclockwise sense.
(a) For points OUTSIDE the loop, the magnetic field caused by this current:________.
a. points straight up.
b. circles the loop in a clockwise direction.
c. circles the loop in a counterclockwise direction.
d. points straight down.
e. is zero.
(b) For points INSIDE the loop, the magnetic field caused by this current:________.
a. circles the loop in a counterclockwise direction.
b. points straight up.
c. points straight down.
d. circles the loop in a clockwise direction.
e. is zero
Answer:
D &B
Explanation:
Using Fleming right hand rule that States that if the fore-finger, middle finger and the thumb of left hand are stretched mutually perpendicular to each other, such that fore-finger points in the direction of magnetic field, the middle finger points in the direction of the motion of positive charge, then the thumb points to the direction of the force
An astronaut out on a spacewalk to construct a new section of the International Space Station walks with a constant velocity of 2.30 m/s on a flat sheet of metal placed on a flat, frictionless, horizontal honeycomb surface linking the two parts of the station. The mass of the astronaut is 71.0 kg, and the mass of the sheet of metal is 230 kg. (Assume that the given velocity is relative to the flat sheet.)
Required:
a. What is the velocity of the metal sheet relative to the honeycomb surface?
b. What is the speed of the astronaut relative to the honeycomb surface?
Answer:
Explanation:
Let the velocity of astronaut be u and the velocity of flat sheet of metal plate be v . They will move in opposite direction , so their relative velocity
= u + v = 2.3 m /s ( given )
We shall apply conservation of momentum law for the movement of astronaut and metal plate
mu = M v where m is mass of astronaut , M is mass of metal plate
71 u = 230 x v
71 ( 2.3 - v ) = 230 v
163.3 = 301 v
v = .54 m / s
u = 1.76 m / s
honeycomb will be at rest because honeycomb surface is frictionless . Plate will slip over it . Over plate astronaut is walking .
a ) velocity of metal sheet relative to honeycomb will be - 1.76 m /s
b ) velocity of astronaut relative to honeycomb will be + .54 m /s
Here + ve direction is assumed to be the direction of astronaut .
To work on your car at night, you use an extension cord to connect your work light to a power outlet near the door. How would the illumination provided by the light be affected by the length of the extension cord
Answer:
The longer the cord, the lower the illumination
Explanation:
The illumination provided by the light bulb will be reduced as the length of the extension cord increases. This is because the resistance provided by the wire increases with its length.
Long wires have more electrical resistance than shorter ones.
Let us consider this formula:
Resistance =[tex]\frac{\rho L}{A}[/tex]
From this formula, we can see that as the length increases, the resistance to current flow offered by the wire increases also provided the resistivity and cross-sectional area of the wire remain constant. As a result of this, the illumination will drop.
What is the requirement for the photoelectric effect? Select one: a. The incident light must have enough intensity b. The incident light must have a wavelength shorter than visible light c. The incident light must have at least as much energy as the electron work function d. Both b and c
Answer:
c. The incident light must have at least as much energy as the electron work function
Explanation:
In photoelectric effect, electrons are emitted from a metal surface when a light ray or photon strikes it. An electron either absorbs one whole photon or it absorbs none. After absorbing a photon, an electron either leaves the surface of metal or dissipate its energy within the metal in such a short time interval that it has almost no chance to absorb a second photon. An increase in intensity of light source simply increase the number of photons and thus, the number of electrons, but the energy of electron remains same. However, increase in frequency of light increases the energy of photons and hence, the
energy of electrons too.
Therefore, the energy of photon decides whether the electron shall be emitted or not. The minimum energy required to eject an electron from the metal surface, i.e. to overcome the binding force of the nucleus is called ‘Work Function’
Hence, the correct option is:
c. The incident light must have at least as much energy as the electron work function
A ball with a mass of 275 g is dropped from rest, hits the floor and rebounds upward. If the ball hits the floor with a speed of 2.10 m/s and rebounds with a speed of 1.90 m/s, determine the following.
a. magnitude of the change in the ball's momentum (Let up be in the positive direction.)
________ kg - m/s
b. change in the magnitude of the ball's momentum (Let negative values indicate a decrease in magnitude.)
_______ kg - m/s
c. Which of the two quantities calculated in parts (a) and (b) is more directly related to the net force acting on the ball during its collision with the floor?
A. Neither are related to the net force acting on the ball.
B. They both are equally related to the net force acting on the ball.
C. The change in the magnitude of the ball's momentum
D. The magnitude of the change in the ball's momentum
Answer:
a) The magnitude of the change in the ball's momentum is 1.1 kilogram-meters per second, b) The change in the magnitude of the ball's momentum is -0.055 kilogram-meters per second, c) D. The magnitude of the change in the ball's momentum.
Explanation:
a) This phenomenon can be modelled by means of the Principle of Momentum Conservation and the Impact Theorem, whose vectorial form is:
[tex]\vec p_{o} + Imp = \vec p_{f}[/tex]
Where:
[tex]\vec p_{o}[/tex], [tex]\vec p_{f}[/tex] - Initial and final momentums, measured in kilogram-meters per second.
[tex]Imp[/tex] - Impact due to collision, measured in kilogram-meters per second.
The impact experimented by the ball due to collision is:
[tex]Imp = \vec p_{f} - \vec p_{o}[/tex]
By using the definition of momentum, the expression is therefore expanded:
[tex]Imp = m \cdot (\vec v_{f}-\vec v_{o})[/tex]
Where:
[tex]m[/tex] - Mass of the ball, measured in kilograms.
[tex]\vec v_{o}[/tex], [tex]\vec v_{f}[/tex] - Initial and final velocities, measured in meters per second.
If [tex]m = 0.275\,kg[/tex], [tex]\vec v_{o} = -2.10\,j\,\left [\frac{m}{s} \right][/tex] and [tex]\vec v_{f} = 1.90\,j\,\left [\frac{m}{s} \right][/tex], the vectorial change of the linear momentum is:
[tex]Imp = (0.275\,kg)\cdot \left[1.90\,j+2.10\,j\right]\,\left[\frac{m}{s} \right][/tex]
[tex]Imp = 1.1\,j\,\left[\frac{kg\cdot m}{s} \right][/tex]
The magnitude of the change in the ball's momentum is 1.1 kilogram-meters per second.
b) The magnitudes of initial and final momentums of the ball are, respectively:
[tex]p_{o} = (0.275\,kg)\cdot \left(2.10\,\frac{m}{s} \right)[/tex]
[tex]p_{o} = 0.578\,\frac{kg\cdot m}{s}[/tex]
[tex]p_{f} = (0.275\,kg)\cdot \left(1.90\,\frac{m}{s} \right)[/tex]
[tex]p_{o} = 0.523\,\frac{kg\cdot m}{s}[/tex]
The change in the magnitude of the ball's momentum is:
[tex]\Delta p = p_{f}-p_{o}[/tex]
[tex]\Delta p = 0.523\,\frac{kg\cdot m}{s} - 0.578\,\frac{kg\cdot m}{s}[/tex]
[tex]\Delta p = -0.055\,\frac{kg\cdot m}{s}[/tex]
The change in the magnitude of the ball's momentum is -0.055 kilogram-meters per second.
c) The quantity calculated in part a) is more related to the net force acting on the ball during its collision with the floor, since impact is the product of net force, a vector, and time, a scalar, and net force is the product of the ball's mass and net acceleration, which creates a change on velocity.
In a nutshell, the right choice is option D.
Unpolarized light passes through a vertical polarizing filter, emerging with an intensity I0. The light then passes through a horizontal filter, which blocks all of the light; the intensity transmitted through the pair of filters is zero. Suppose a third polarizer with axis 45 ? from vertical is inserted between the first two.
What is the transmitted intensity now?
Express your answer in terms of I0. I got I0/8. But this is not right. I guess they want a number?
Answer:
I₂ = 0.25 I₀
Explanation:
To know the light transmitted by a filter we must use the law of Malus
I = I₀ cos² θ
In this case, the intensity of the light that passes through the first polarizer is I₀, it reaches the second polarized, which is at 45⁰, therefore the intensity I1 comes out of it.
I₁ = I₀ cos² 45
I₁ = I₀ 0.5
this is the light that reaches the third polarizer, which is at 45⁰ with respect to the second, from this comes the intensity I₂
I₂ = I₁ cos² 45
I₂ = (I₀ 0.5) 0.5
I₂ = 0.25 I₀
this is the intensity of the light transmitted by the set of polarizers
if a speed sound in air at o°c is 331m/s. what will be its value at 35 °c
Answer:
please brainliest!!!
Explanation:
V1/√T1 =V2/√T2
V1 = 331m/s
T1 = 0°C = 273k
V2 = ?
T2 = 35°c = 308k
331/√273 = V2/√308331/16.5 = V2/17.520.06 = V2/17.5V2 = 20.06 x 17.5 V2 = 351.05m/sAssume that a lightning bolt can be represented by a long straight line of current. If 15.0 C of charge passes by in a time of 1.5·10-3s, what is the magnitude of the magnetic field at a distance of 24.0 m from the bolt?
Answer:
The magnitude of the magnetic field is 8.333 x 10⁻⁷ T
Explanation:
Given;
charge on the lightening bolt, C = 15.0 C
time the charge passes by, t = 1.5 x 10⁻³ s
Current, I is calculated as;
I = q / t
I = 15 / 1.5 x 10⁻³
I = 10,000 A
Magnetic field at a distance from the bolt is calculated as;
[tex]B = \frac{\mu_o I}{2\pi r}[/tex]
where;
μ₀ is permeability of free space = 4π x 10⁻⁷
I is the current in the bolt
r is the distance of the magnetic field from the bolt
[tex]B = \frac{\mu_o I}{2\pi r} \\\\B = \frac{4\pi *10^{-7} 10000}{2\pi *24} \\\\B = 8.333 *10^{-5} \ T[/tex]
Therefore, the magnitude of the magnetic field is 8.333 x 10⁻⁷ T
An alternating current is supplied to an electronic component with a warning that the voltage across it should never exceed 12 V. What is the highest rms voltage that can be supplied to this component while staying below the voltage limit in the warning?
Answer:
The highest rms voltage will be 8.485 V
Explanation:
For alternating electric current, rms (root means square) is equal to the value of the direct current that would produce the same average power dissipation in a resistive load
If the peak or maximum voltage should not exceed 12 V, then from the relationship
[tex]V_{rms} = \frac{V_{p} }{\sqrt{2} }[/tex]
where [tex]V_{rms}[/tex] is the rms voltage
[tex]V_{p}[/tex] is the peak or maximum voltage
substituting values into the equation, we'll have
[tex]V_{rms} = \frac{12}{\sqrt{2} }[/tex] = 8.485 V
Will give brainliest ASAP! Please help (1/10 questions, will mark 5 stars and brainliest for all answers if correct)
Answer:
Option (A)
Explanation:
A 20 kg boy chases the butterfly with a speed of 2 meter per second.
Angle at which he runs is 70° North of West.
Therefore, Horizontal component (Vx) directing towards West will be,
Vx = v(Cos70°)
Vy = v(Sin70°)
Since momentum of a body is defined by,
Momentum = Mass × Velocity
Therefore, Westerly component of the momentum will be,
Momentum = 20 × (v)(Cos70°)
= 20 × 2Cos70°
= 13.68
≈ 13.7 kg-meter per second
Therefore, Option (A) will be the answer.
what is the mass of an oil drop having two extra electrons that is suspended motionless by the field between the plates
Answer:
m = 3,265 10⁻²⁰ E
Explanation:
For this exercise we can use Newton's second law applied to our system, which consists of a capacitor that creates the uniform electric field and the drop of oil with two extra electrons.
∑ F = 0
[tex]F_{e}[/tex] - W = 0
the electric force is
F_{e} = q E
as they indicate that the charge is two electrons
F_{e} = 2e E
The weight is given by the relationship
W = mg
we substitute in the first equation
2e E = m g
m = 2e E / g
let's put the value of the constants
m = (2 1.6 10⁻¹⁹ / 9.80) E
m = 3,265 10⁻²⁰ E
The value of the electric field if it is a theoretical problem must be given and if it is an experiment it can be calculated with measures of the spacing between plates and the applied voltage, so that the system is in equilibrium