Answer: 255
255 turns are required to create 25 ohms of secondary impedance.
Explanation:
Given that,
Number of turns in primary wire N₁ = 900
impedance on Primary wire Z₁ = 400 ohms
Number of turns in Secondary wire N₂ = ?
impedance on Secondary wire Z₂ = 25 ohms
we know that, the relationship between turn and impedance is
Zp / Zs = ( Np / Ns )²
(Primary impedance / secondary impedance) = Number of turns in primary wire / Number of turns in secondary wire)²
there fore
Z₁ / Z₂ = ( N₁ / N₂ )²
Now we substitute
( 400 / 25 ) = ( 900 / N₂ )²
400 / 25 = 900² / N₂²
we cross multiple to get our N₂
400 × N₂² = 900² × 25
N₂² = ( 900² × 25 ) / 400
N₂² = ( 810000 × 25 ) / 400
N₂² = 20250000 / 400
N₂² = 50625
N₂ = √50625
N₂ = 225
Therefore 255 turns are required to create 25 ohms of secondary impedance.
A series circuit contains four resistors. In the circuit, R1 is 80 , R2 is 60 , R3 is 90 , and R4 is 100 . What is the total resistance? A. 330 B. 250 C. 460 D. 70.3
A wall 0.12 m thick having a thermal diffusivity of 1.5 × 10-6 m2/s is initially at a uniform temperature of 97°C. Suddenly one face is lowered to a temperature of 20°C, while the other face is perfectly insulated. Use the explicit finite-difference technique with space and time increments of 30 mm and 300 s to determine the temperature distribution at at 45 minutes.
Answer:
at t = 45 s :
To = 61.7⁰c, T1 = 55.6⁰c, T2 = 49.5⁰c, T3 = 34.8⁰C
Explanation:
Wall thickness = 0.12 m
thermal diffusivity = 1.5 * 10^-6 m^2/s
Δt ( time increment ) = 300 s
Δ x = 0.03 m ( dividing wall thickness into 4 parts assuming the system to be one dimensional )
using the explicit finite-difference technique
Detailed solution is attached below
When you shift your focus, everything you
see is still in perfect focus.
True or false
Answer:
true
Explanation:
true
Answer:
I believe this is true
Explanation:
If your looking at something and you look at something else everything is still in perfect view and clear, in focus.
hope this helps :)
Consider a solid round elastic bar with constant shear modulus, G, and cross-sectional area, A. The bar is built-in at both ends and subject to a spatially varying distributed torsional load t(x) = p sin( 2π L x) , where p is a constant with units of torque per unit length. Determine the location and magnitude of the maximum internal torque in the bar.
Answer:
[tex]\t(x)_{max} =\dfrac{p\times L}{2\times \pi}[/tex]
Explanation:
Given that
Shear modulus= G
Sectional area = A
Torsional load,
[tex]t(x) = p sin( \frac{2\pi}{ L} x)[/tex]
For the maximum value of internal torque
[tex]\dfrac{dt(x)}{dx}=0[/tex]
Therefore
[tex]\dfrac{dt(x)}{dx} = p cos( \frac{2\pi}{ L} x)\times \dfrac{2\pi}{L}\\ p cos( \frac{2\pi}{ L} x)\times \dfrac{2\pi}{L}=0\\cos( \frac{2\pi}{ L} x)=0\\ \dfrac{2\pi}{ L} x=\dfrac{\pi}{2}\\\\x=\dfrac{L}{4}[/tex]
Thus the maximum internal torque will be at x= 0.25 L
[tex]t(x)_{max} = \int_{0}^{0.25L}p sin( \frac{2\pi}{ L} x)dx\\t(x)_{max} =\left [p\times \dfrac{-cos( \frac{2\pi}{ L} x)}{\frac{2\pi}{ L}} \right ]_0^{0.25L}\\t(x)_{max} =\dfrac{p\times L}{2\times \pi}[/tex]
Cold water at 20 degrees C and 5000 kg/hr is to be heated by hot water supplied at 80 degrees C and 10,000 kg/hr. You select from a manufacturer's catalog a shell-and-tube heat exchanger (one shell with two tube passes) having a UA value of 11,600 W/K. Determine the hot water outlet temperature.
Answer:
59°C
Explanation:
Given that, Cc = McCp,c = 5000 /3600 × 4178 = 5803.2(W/K)
and Ch = MhCp,h = 10000 / 3600 × 4188 = 11634.3(W/K)
Therefore the minimum and maximum heat capacities are:
Cmin = Cc = 5803.2(W/K)
Cmax = Ch = 11634.3(W/K)
The capacity ratio is:
Cr = Cmin / Cmax = 0.499 = 0.5
The maximum possible heat transfer rate is:
Qmax = Cmin (Th,i - Tc,i) = 5803.2 (80 - 20) = 348192(W)
And the number of transfer units is: NTU = UA / Cmin = 11600 / 5803.2 = 1.99
Given that from the appropriate graph in the handouts we can read = 0.7. So the actual heat transfer rate is: Qact = Qmax = 0.7 × 348192 = 243734.4(W)
Hence, the outlet hot temperature is: Th,o = Th,i - Qact / Ch = 59°C