a weight hanging from a spring will remain hanging until the weight is pulled down and released. when the weight is released the spring will bounce up and down. which of newton's laws explains why the spring will bounce?

Answers

Answer 1

This principle can be observed in other everyday scenarios, such as jumping on a trampoline or the recoil of a gun after firing.  Newton's Third Law of Motion is a fundamental principle in classical mechanics and explains why the spring will bounce when the weight is released.

The bouncing of the weight when released is explained by Newton's Third Law of Motion, which states that for every action there is an equal and opposite reaction. When the weight is released, the spring exerts an equal and opposite force on the weight, propelling it upwards and causing it to bounce. This is because when the weight is pulled down, it compresses the spring, storing potential energy. When the weight is released, the spring decompresses and the potential energy is released, propelling the weight in the opposite direction.

To learn more about Newton's Third Law ;

https://brainly.com/question/25998091

#SPJ11


Related Questions

a load of 12 kg stretches a spring to a total length of 15 cm, and a load of 30 kg stretches it to a length of 18 cm. find the natural (unstretched) length of the spring.

Answers

The natural length of the spring is therefore 12.97 cm.

The natural length of the spring is found by calculating the spring constant using the Hooke's law formula. Spring constant (k) = Force (F) / extension (x). The natural length of the spring refers to the length of the spring when it is not carrying any load. Hooke's law states that the force required to extend or compress a spring by a distance x is proportional to that distance. Mathematically, F=kx, where F is the force applied, x is the displacement from the equilibrium position, and k is the spring constant. To find the natural length of the spring, we need to calculate the spring constant.

To do this, we use the data given in the problem. A load of 12 kg stretches the spring to a total length of 15 cm. We can find the force applied by multiplying the load by the acceleration due to gravity (g), which is 9.8 m/s^2. Thus, F = mg = 12 * 9.8 = 117.6 N. The extension of the spring is given as x = 15 cm - x0, where x0 is the natural length of the spring. Thus, x = 0.15 m - x0. Substituting these values into Hooke's law, we get: k = F/x = 117.6/(0.15 - x0)

Similarly, when a load of 30 kg stretches the spring to a length of 18 cm, we can find the force applied as F = mg = 30 * 9.8 = 294 N. The extension is given as x = 0.18 m - x0. Substituting these values into Hooke's law, we get: k = F/x = 294/(0.18 - x0)

Now we have two equations for k, so we can set them equal to each other: 117.6/(0.15 - x0) = 294/(0.18 - x0) Cross-multiplying and simplifying, we get: 117.6(0.18 - x0) = 294(0.15 - x0) 21.168 - 117.6x0 = 44.1 - 294x0 176.4x0 = 22.932 x0 = 0.1297 m

The natural length of the spring is therefore 12.97 cm.

For more such questions on Hooke's law.

https://brainly.com/question/30611861#

#SPJ11

what is the distance between your eye and the image of the butterfly in the mirror? explain your answer.

Answers

The distance between your eye and the image of the butterfly in the mirror is: the same as the distance between your eye and the actual butterfly

The distance between your eye and the image of the butterfly in the mirror is the same as the distance between your eye and the actual butterfly, which is the sum of the distance from your eye to the mirror and the distance from the mirror to the butterfly.

To calculate this, we need to measure the distance from your eye to the mirror, which can be done using a ruler or tape measure, and then measure the distance from the mirror to the butterfly, which can be done using a ruler or tape measure as well. Once we have these two measurements, we can simply add them together to get the total distance between your eye and the image of the butterfly in the mirror.

To clarify further, let's use an example. If your eye is 10 cm away from the mirror and the butterfly is 30 cm away from the mirror, then the total distance between your eye and the image of the butterfly in the mirror is 40 cm. This is because 10 cm (from your eye to the mirror) + 30 cm (from the mirror to the butterfly) = 40 cm.

To know more about distance refer here:

https://brainly.com/question/15172156#

#SPJ11

Suppose the Moon were held in its orbit not by gravitational interaction with the Earth but by a long, mass-less cable attached to the center of the earth. What would be the tension in the cable?

Answers

Tension of approximately 2.7 x 10^20 N, will be observed in the cable.

If the Moon were held in its orbit by a long, mass-less cable attached to the center of the Earth, the tension in the cable would be equal to the force needed to keep the Moon in its circular path around the Earth. This force is the centripetal force, which is given by the equation,

Fc = mv^2/r

where Fc is the centripetal force, m is the mass of the Moon, v is the velocity of the Moon in its orbit, and r is the radius of the Moon's orbit.

The velocity of the Moon in its orbit can be calculated using the equation,

v = 2πr/T

where T is the period of the Moon's orbit.

Using the known values for the mass of the Moon, the radius of its orbit, and the period of its orbit, the tension in the cable can be calculated using the above equations. The result is a tension of approximately 2.7 x 10^20 N, which is an incredibly large force that is not physically possible to achieve with current technology.

To know more about Earth, here

brainly.com/question/20490748

#SPJ4

a 170-hz sound travels through pure helium. the wavelength of the sound is measured to be 5.92 m. what is the speed of sound in helium?

Answers

The speed of sound in pure helium is approximately 1006.4 m/s.

When a sound wave travels through a medium, it produces a series of compressions and rarefactions in the medium, which causes the particles of the medium to vibrate. The speed of sound in a particular medium depends on the physical properties of the medium, such as its density, elasticity, and temperature.

The speed of sound in helium can be calculated using the formula,

speed of sound = frequency x wavelength

Given that the frequency of the sound is 170 Hz and the wavelength is 5.92 m, we can plug in these values and get,

speed of sound = 170 Hz x 5.92 m

speed of sound = 1006.4 m/s

To know more about sound, here

brainly.com/question/17095610

#SPJ4

4. if the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis, in what possible direction is the wave traveling?

Answers

The possible direction in which an electromagnetic wave is traveling if the electric field is oscillating along the z-axis and the magnetic field is oscillating along the x-axis is the y-axis.

An electromagnetic wave is composed of two mutually perpendicular fields that oscillate perpendicular to the direction of the wave's propagation. They are the electric field and the magnetic field. An electromagnetic wave is created when a charged particle is accelerated. These waves can travel through a vacuum or any medium, including air and water, at the speed of light.

In this scenario, the electric field of the wave oscillates along the z-axis, while the magnetic field oscillates along the x-axis. As a result, the wave's propagation direction must be perpendicular to both fields. As a result, the wave must be propagating along the y-axis.This is why it's critical to comprehend the interplay between electric and magnetic fields in the context of electromagnetic waves.

It's also critical to recognize that an electromagnetic wave's direction of propagation is always perpendicular to the oscillation directions of the two fields, which are mutually perpendicular to each other.

for such more question on electromagnetic wave

https://brainly.com/question/24319848

#SPJ11

you compress a piston full of gas and do 8.4 joules of work on it. if the internal energy (u) of the system increases by 3.3 joules, how much heat (in joules) left the system (give your answer as a positive number)?

Answers

The amount of heat that left the system is 11.7 joules (given as a positive number).

When a piston is compressed fully with gas and 8.4 joules of work is done on it, and the internal energy (u) of the system is increased by 3.3 joules, we need to determine the amount of heat that left the system.

To determine the amount of heat that left the system, we need to use the First Law of Thermodynamics, which states that the change in internal energy (u) of a system is the sum of the heat (q) added to it and the work (w) done on it, which can be represented as:

u = q + w

Where, u = Change in internal energy of the system

q = Heat added to the system

w = Work done on the system

From the given information, w = -8.4 J (since work was done on the system), and u = 3.3 J.

Therefore, substituting these values in the above equation, we get:

3.3 J = q + (-8.4 J)3.3 J + 8.4 J

q = 11.7 J

For more question on heat click on

https://brainly.com/question/934320

#SPJ11

calculate the force required to stop a car of mass 1400 kg in 2 seconds if it is moving with a velocity of 10 m/s.

Answers

The force required to stop a car of mass 1400 kg in 2 seconds if it is moving with a velocity of 10 m/s is 7000 N in the opposite direction to the car's motion.

Calculate the force required to stop a car of mass 1400 kg in 2 seconds if it is moving with a velocity of 10 m/s.

To solve the given problem, we can use the equation:

F = (m * Δv) / Δt

where F = force

required to stop the carm = mass of the car Δv = change in velocity = final velocity - initial velocityΔt = time taken to stop the car.

Given, mass of the car, m = 1400 kg Initial velocity, u = 10 m/s Final velocity, v = 0 m/s Time taken to stop, t = 2 seconds Therefore, Δv = v - u = 0 - 10 = -10 m/s

Substituting the given values in the above equation, we get:

F = (m * Δv) / Δt = (1400 kg * (-10 m/s)) / (2 s) = -7000 N

Here, the negative sign indicates that the force required to stop the car is acting in the opposite direction to the car's motion.

for such more question on force

https://brainly.com/question/12785175

#SPJ11

the type of radiation affected by greenhouse gasses is group of answer choices uv radiation. ir radiation. visible radiation. gamma radiation.

Answers

Greenhouse gases are capable of absorbing: infrared radiation

Infrared radiation is a type of radiation affected by greenhouse gases. Greenhouse gases are capable of absorbing infrared radiation. Water vapor, carbon dioxide, and methane are the primary greenhouse gases. When the Earth receives energy from the sun, some of it is reflected and some is absorbed by the Earth.

The absorbed energy heats up the Earth's surface, which then radiates energy back out into the atmosphere in the form of infrared radiation. Greenhouse gases absorb some of this outgoing infrared radiation, which warms the atmosphere. This warming is known as the greenhouse effect.

The more greenhouse gases there are in the atmosphere, the more radiation they can absorb, and the warmer the Earth's surface will become. As a result, climate change can be caused by increases in greenhouse gases. As greenhouse gas levels rise, they absorb more of the outgoing radiation and the greenhouse effect becomes stronger. This causes the Earth's surface temperature to rise, leading to changes in the Earth's climate.

In summary, greenhouse gases are capable of absorbing infrared radiation, and as the concentration of greenhouse gases in the atmosphere increases, they become more effective at trapping heat and warming the Earth's surface, leading to changes in the Earth's climate.

To know more about greenhouse refer here:

https://brainly.com/question/1577730#

#SPJ11

Question 8 of 10
Which three statements describe mechanical waves?
A. The waves can travel through empty space.
B. The waves need matter to transfer energy.
C. The waves transfer energy by causing particles of matter to
move.
D. The waves can transfer energy through solids, liquids, and gases.

Please help!

Answers

A. The waves can travel through empty space.

D. The waves can transfer energy through solids, liquids, and gases.

C. The waves transfer energy by causing particles of matter to move.

Mechanical waves are waves that require matter to transfer energy.

These waves transfer energy by causing particles of matter to move in the direction of the wave. This type of wave can travel through solids, liquids, and gases, but not through empty space.

There are two types of mechanical waves, longitudinal and transverse. Longitudinal waves are waves that travel in the same direction as the vibration of particles, while transverse waves travel perpendicular to the vibration of particles. An example of a longitudinal wave is a sound wave, while an example of a transverse wave is a water wave.

Mechanical waves are important to us as they are responsible for transferring energy through various mediums. For example, sound waves are propagated through the air and enable us to hear sound. This type of wave also transfers energy through solids, such as the vibrating strings of a guitar, and liquids, such as the waves of an ocean.

In conclusion, mechanical waves are waves that require matter to transfer energy and can transfer energy through solids, liquids, and gases. These waves travel in the same direction as the vibration of particles (longitudinal) or perpendicular to the vibration of particles (transverse). Mechanical waves are important to us as they transfer energy

Learn more about Mechanical waves here:

https://brainly.com/question/26116832

#SPJ1

Hodan carried a box of (5,4)m. The box had a mass of 5kg. Hodan said that over 300J of work was done on the box. Is she correct, explain your answer​

Answers

Answer:

hdjsigosorodcdjjgjejfiroodofohov jdjvjwigioeofe

what principle states that the buoyant force experienced by an object is exactly equal to the weight of the fluid displaced?

Answers

The principle that states that the buoyant force experienced by an object is exactly equal to the weight of the fluid displaced is known as Archimedes' Principle. What is Archimedes' Principle? Archimedes' Principle is a scientific law that explains how objects behave in fluids (liquids and gases).

The buoyant force of an object in a fluid is equal to the weight of the fluid displaced by the object according to this principle. This principle is valid for any fluid and any object as long as the buoyancy and weight of the object and fluid are calculated correctly.

The force that causes objects to float or sink in fluids is known as buoyancy. The buoyant force on an object is the net upward force exerted by the fluid in which the object is submerged.

When an object is immersed in a fluid, the fluid exerts an upward force on the object. This buoyant force opposes the weight of the object and causes it to float if the buoyant force is greater than the weight of the object.

To know more about buoyant force refer here:

https://brainly.com/question/21990136#

#SPJ11

Using this circuit below, find the Norton's equivalent circuit about terminals a and b. Req and leg are the equivalent resistance and current used in the Norton's equivalent ciruict. V1 = 10 V, R1 = 4ohms, R2 = 8ohms „R₃ = 8ohms Select one: a. leq = -2.5 A, Req = 2 ohms b. leq = 2.5 A, Req = 2 ohms c. leq = 2.5 A, Req = 64 ohms d. leq = -2.5 A, Req = 12.8 ohms

Answers

The Norton's equivalent circuit and equivalent resistance of the given circuit is leq = 2.5 A, Req = 2 ohms. The correct answer is option b.

Norton's equivalent current, iNorton is calculated by dividing the voltage source by the series resistance of R2 and R3.

iNorton = V1 / (R2 + R3)

iNorton = 10 / (8 + 8)

iNorton = 0.625 A

Norton's equivalent resistance, RNorton is calculated by using the formula;

RNorton = R2 || R3

RNorton = (R2 x R3) / (R2 + R3)

RNorton = (8 x 8) / (8 + 8)RNorton = 4 ohms

Therefore, Norton's equivalent circuit is given by the current source of 0.625 A and the resistance of 4 ohms, connected across terminals a and b. The correct answer is option B; leq = 2.5 A, Req = 2 ohms.

To know more about equivalent resistance click here:

https://brainly.com/question/12286223

#SPJ11

what is the heat flux (w/m^2), due to radiation heat transfer, from a black body if the surface temperature is 600c? the convection heat transfer coefficient is 55 w/(m^2 c).

Answers

The total heat flux from the black body is 42643 W/m², due to radiation heat transfer, from a black body if the surface temperature is 600°C.

The heat flux due to radiation heat transfer from a black body can be calculated using the Stefan-Boltzmann law, which states that the heat flux is proportional to the fourth power of the temperature:

[tex]q(rad) = \sigma * \epsilon * A * T^4[/tex]

Where q(rad) is the heat flux (W/m²), σ is the Stefan-Boltzmann constant ([tex]5.67 * 10^{-8[/tex] W/m²K⁴), ε is the emissivity of the black body (assumed to be 1 for a perfect black body), A is the surface area of the black body, and T is the temperature in Kelvin.

To convert the temperature of 600°C to Kelvin, we add 273.15 K:

T = (600 + 273.15) K = 873.15 K

Assuming the black body has a unit surface area (A = 1 m²), the heat flux due to radiation can be calculated as:

[tex]q(rad) = \sigma * \epsilon * A * T^4 = 5.67 * 10^{-8} * 1 * 1 * (873.15)^4 = 14098[/tex] W/m²

The heat flux due to convection can be calculated using the following equation:

q(conv) = h * (T(surface) - T(air))

Where q(conv) is the heat flux (W/m²), h is the convection heat transfer coefficient (55 W/(m²°C)), T(surface) is the surface temperature (600°C), and T(air) is the air temperature (assumed to be 25°C).

To convert the surface temperature and air temperature to Kelvin, we add 273.15 K:

T(surface) = 600 + 273.15 = 873.15 K

T(air) = 25 + 273.15 = 298.15 K

Substituting the values, we get:

q(conv) = 55 * (873.15 - 298.15) = 28545 W/m²

Therefore, the total heat flux from the black body is:

q(total) = q(rad) + q(conv) = 14098 + 28545 = 42643 W/m²

learn more about heat flux

brainly.com/question/30708042

#SPJ4

The sound level produced by one singer is 71.8 dB. What would be the sound level produced by a chorus of 45 such singers (all singing at the same intensity at approximately the same distance as the original singer)? Answer in units of dB.

Answers

The sound level produced by a chorus of 45 singers would be approximately 88.3 dB.

How to find the sound level produced by a chorus of 45 singers?

Assuming that the sound level of each singer is independent and the same, the sound level produced by a chorus of 45 singers can be calculated using the following formula:

L2 = L1 + 10 log (N2/N1)

where:

L1 = the sound level of one singer = 71.8 dB

N1 = the number of singers in the original group = 1

N2 = the number of singers in the new group = 45

L2 = the sound level of the new group

Substituting the values in the formula, we get:

L2 = 71.8 + 10 log (45/1)

L2 = 71.8 + 10 log (45)

L2 = 71.8 + 16.5

L2 = 88.3 dB

Therefore, the sound level produced by a chorus of 45 singers would be approximately 88.3 dB, assuming all the singers are singing at the same intensity at approximately the same distance as the original singer.

Learn about sound level here https://brainly.com/question/15118883

#SPJ1

a baseball has a mass of 145 g. a pitcher throws the baseball so that it accelerates at a rate of 80 m/s2. how much force did the pitcher apply to the baseball?(1 point)

Answers

The amount of force that the pitcher applies to the baseball is 11.6N.

How to calculate force?

Force is a physical quantity that denotes ability to push, pull, twist or accelerate a body. It can be calculated by multiplying the mass of the object by its acceleration as follows;

Force = mass × acceleration

According to this question, a baseball has a mass of 145 g. A pitcher throws the baseball so that it accelerates at a rate of 80 m/s². The force applied on the baseball can be calculated as follows:

Force = 145/1000 kg × 80m/s²

Force = 11.6N

Learn more about force at: https://brainly.com/question/25116504

#SPJ1

if we say that the potential at the earth's surface is 0 v , what is the potential 1.6 km above the surface?

Answers

If we say that the potential at the earth's surface is 0 v , the potential 1.6 km above the surface is  - 6.2 × 10^6 V.

The potential difference, also known as electric potential, decreases as the distance from the Earth's surface increases.

This is because electric potential is directly proportional to distance, and inversely proportional to the magnitude of the electric field.

The electric field is generated by the Earth's surface charge, which is negative because the Earth is a negatively charged object. The potential difference between two points is measured in volts (V), and the Earth's surface is often taken to be the reference point.

If the potential at the Earth's surface is taken to be 0 V, the potential 1.6 km above the surface can be calculated as follows:

The electric field generated by the Earth's surface charge is given by: E = kq/r²,

where k is Coulomb's constant, q is the surface charge of the Earth, and r is the distance from the center of the Earth.

The potential difference between two points is given by: V = Ed,

where d is the distance between the two points.

Thus, the potential at a point 1.6 km above the Earth's surface is:

V = E × d = kq/r² × d = (9 × 10^9 N·m²/C²) × (- 5.52 × 10^5 C)/[(6.38 × 10^6 m + 1.6 × 10^3 m)²] × (1.6 × 10^3 m)

= - 6.2 × 10^6 V.

To learn more about electric potential:

https://brainly.com/question/12645463#

#SPJ11

an object falls freely from rest on a planet where the acceleration due to gravity is 20 m/s2. after 5 seconds, the object will have a speed of

Answers

Answer : If an object falls freely from rest on a planet where the acceleration due to gravity is 20 m/s2 then after 5 seconds, the object will have a speed of  100 m/s

This can be calculated using the equation v = a*t, where v is the velocity, a is the acceleration due to gravity, and t is the time elapsed. Therefore, in this case, v = 20 m/s2 * 5 s = 100 m/s.  These values are given in question, so we just have to put them in equation.

Since the object is falling freely, its acceleration remains constant and it follows a uniform acceleration motion. Therefore, the velocity of the object will increase linearly with time. After 10 seconds, the velocity will double to 200 m/s, and so on.

Know more about gravity here:

https://brainly.com/question/14874038

#SPJ11

a wrench is used to tighten a nut. a 15n perpendicular force is applied 50cm away from the axis of rotation, and moves a distance of 10 cm as it turns. what is the torque applied to the wrench?

Answers

The torque applied to the wrench can be calculated using the formula:

torque = force x distance

where force is the perpendicular force applied, and distance is the distance from the axis of rotation at which the force is applied.

So, torque = 15 N x 0.5 m = 7.5 Nm

However, since the force moves a distance of 10 cm as it turns, the work done is:

work = force x distance moved = 15 N x 0.1 m = 1.5 J

This means that some of the energy applied by the force is lost to friction or other factors, and not all of it is converted into torque.

Learn more about torque at: https://brainly.com/question/17512177

#SPJ11

g a research rocket is launched from boulder straight towards the south. how would the coriolis effect change the path of the rocket?

Answers

For a rocket launched southward from Boulder, the Coriolis effect would cause it to drift to the east, leading to a curved flight path rather than a straight one.

The Coriolis effect is an important force to consider when launching a research rocket from Boulder. The Coriolis effect is the result of Earth's rotation and will cause any object moving along the surface of the Earth to veer to the right in the Northern hemisphere and to the left in the Southern hemisphere.

This effect is most noticeable for objects traveling long distances, such as a rocket. As it continues to fly south, the Coriolis force will continue to act upon it, increasing the curvature of its path. The magnitude of the Coriolis force depends on the speed of the object and its distance from the poles. Therefore, the more time the rocket has to travel, the more it will be deflected from its intended path.

The Coriolis effect is an important factor to consider for any research rocket launch. It has the potential to affect the accuracy and success of the mission and must be taken into account when planning a launch trajectory.

For more such questions on Coriolis effect.

https://brainly.com/question/14290551#

#SPJ11

Complete Question:

A research rocket is launched from Boulder straight towards the south. How would the Coriolis effect change the path of the rocket?

which of the following is an advantage of digital imaging? increased patient radiation exposure, increased chemical usage, increased speed for viewing images

Answers

One of the advantages of digital imaging is increased speed for viewing images.

Digital imaging is a technology that enables doctors to take X-rays, MRIs, CT scans, and other medical images, and store them digitally.

Digital imaging provides many advantages over traditional film-based imaging, such as increased speed for viewing images.

Digital imaging is a medical technology that allows physicians to take, store, and view medical images in digital form. Digital imaging includes modalities such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound.

Digital imaging provides several benefits, such as increased speed, improved diagnostic accuracy, lower radiation exposure, and reduced chemical usage. It also enables doctors to view images in real-time, making it easier to detect and diagnose medical conditions.

Additionally, digital images can be easily shared between medical professionals, allowing for better communication and collaboration.

The advantages of digital imaging include increased speed for viewing images. Instead of waiting for film-based images to be developed, doctors can view digital images instantly. This can be particularly important in emergency situations, where time is critical.

Digital imaging also allows doctors to manipulate images, zooming in or out as needed, to get a clearer view of the affected area or to identify specific features or abnormalities.

To know more about digital imaging, refer here:

https://brainly.com/question/321434#

#SPJ4

a 60 kg dancer applies a horizontal force of -800 n on the dance floor. the dancer's acceleration will be

Answers

The acceleration of the dancer who applies a horizontal force of -800 N on the dance floor will be 13.33 m/s².

The formula used to calculate acceleration is as follows:F = m × a

where,F is the force,m is the mass, and,a is the acceleration

Substituting the given values in the above formula, we get:

-800 N = 60 kg × a

We can solve this equation for a, which will give us the acceleration of the dancer.

a = (-800 N) / (60 kg) = -13.33 m/s²

Therefore, the acceleration of the dancer will be 13.33 m/s².

To learn more about acceleration:

https://brainly.com/question/12550364#
#SPJ11

determine the capacitance of a teflon-filled parallel-plate capacitor having a plate area of 1.80 cm2 and a plate separation of 0.020 0 mm.

Answers

To determine the capacitance of a teflon-filled parallel-plate capacitor having a plate area of 1.80[tex]cm^{2}[/tex] and a plate separation of 0.0200 mm, we can use the formula for capacitance: C = εo εr A/d, when the values are plugged in, the capacitance is found to be [tex]1.54* 10^{-9}[/tex] Farads.

The capacitance of a teflon-filled parallel-plate capacitor having a plate area of 1.80[tex]cm^{2}[/tex] and a plate separation of 0.0200 mm is determined using the formula C = εo A/d, where C is the capacitance, εo is the permittivity of free space, A is the area of the plates, and d is the distance between the plates.

In this case, the capacitance is C = 8.85 x 10-12 A/d x 1.80[tex]cm^{2}[/tex]  / 0.0200 mm = [tex]1.54* 10^{-9}[/tex] Farads.

To explain this calculation further, the permittivity of free space is a constant value equal to [tex]8.85 * 10^{-12}[/tex] A/d, which is derived from the equation εo = 1/ (μoc2), where μo is the permeability of free space, and c is the speed of light. The area of the plates is given in the problem statement as 1.80 [tex]cm^{2}[/tex], and the distance between the plates is given as 0.0200 mm.

When these values are plugged into the formula, the capacitance is found to be [tex]1.54* 10^{-9}[/tex]Farads. In conclusion, the capacitance of a teflon-filled parallel-plate capacitor having a plate area of 1.80 [tex]cm^{2}[/tex] and a plate separation of 0.0200 mm is 1.54 x 10-9 Farads.

For more questions related to capacitance.

https://brainly.com/question/28445252

#SPJ11

what electric field strength is needed to create a 6.0 a a current in a 1.7- mm m m -diameter iron wire?

Answers

The electric field strength needed to create a 6.0 A current in a 1.7-mm-diameter iron wire is 5.5 x 105 V/m.

The electric field strength needed to create a 6.0 A current in a 1.7-mm-diameter iron wire, we can use Ohm's law, which states that the voltage (V) equals the current (I) multiplied by the resistance (R).

Since the resistance of an iron wire is given by R=ρL/A, where ρ is the resistivity, L is the length of the wire, and A is its cross-sectional area, we can rearrange Ohm's law to get the voltage V=IR.

For the given wire, the cross-sectional area is A=πd2/4, where d is the diameter of the wire, the resistance to be R=ρL/(πd2/4).

V=IR, and rearranging to solve for I, we get I=V/R. The electric field strength needed to create a 6.0 A current in a 1.7-mm-diameter iron wire to be E=V/L=V/(ρL/A)=Vπd2/(4ρL).

The electric field strength needed for a given wire of any diameter and any length. However, for the given parameters, electric field strength to be E=6.0/(1.7 x 10-3 x 10-2/(4 x 10-7 x 8.0))=5.5 x 105 V/m.


The electric field strength needed to create a 6.0 A current in a 1.7-mm-diameter iron wire is 5.5 x 105 V/m.

to know more about electric field refer here:

https://brainly.com/question/15800304#

#SPJ11

A long solenoid has 100 turns/cm and carries current i. an electron moves within the solenoid in a circle of radius 2.30 cm perpendicular to the solenoid axis. the speed of the electron is 0.0460c (c speed of light). find the current i in the solenoid.

Answers

The current in the solenoid becomes 3.56 A.

How to find current in the solenoid?

Number of turns in the solenoid, n = 100 turns/cm

Radius of the circular path of electron, r = 2.30 cm

Speed of electron, v = 0.0460c, where c is the speed of light

To find: Current in the solenoid, i

Formula used: Magnetic field inside the solenoid,

B = μ0ni Where, μ0 = 4π × 10⁻⁷ T m/A is the permeability of free spaceSolution:

The force on a moving electron in a magnetic field is given by

F = Bev

Where B is the magnetic field, e is the charge of an electron and v is its velocity.

The force acting on the electron provides the necessary centripetal force for the electron to move in a circle of radius r.

So,

Bev = (mev²)/r

where me is the mass of an electron

On simplifying the above equation, we get

Be = (mev)/r

Put the value of B from the formula of magnetic field inside the solenoid, B = μ0ni

we get

μ0ni = (mev)/r

Solve for i,

i = (mev)/(μ0nr)

Substitute the given values and solve

i = (9.109 × 10⁻³¹ kg × 0.0460c × 3 × 10⁸ m/s)/(4π × 10⁻⁷ T m/A × 100 turns/cm × 2.30 cm)i

= 3.56 A

Therefore, the current in the solenoid is 3.56 A.

Learn more about Magnetic field.

brainly.com/question/14848188

#SPJ11

a particle travels 17 times around a 15-cm radius circle in 30 seconds. what is the average speed (in m/s) of the particle?

Answers

The average speed of the particle is  4.7 calculated by dividing the total distance traveled by the time taken.


The particle's average speed in m/s is 4.7. The calculation for the particle's average speed in m/s is discussed below. Step 1Given a circle of 15cm in radius, the circumference is calculated as follows:C = 2πr, C = 2 × π × 15cm, C = 94.25cm.

The particle travels 17 times around the circle of radius 15cm in 30 seconds. Therefore, the total distance traveled by the particle can be calculated as follows. Total Distance = 17 × Circumference. Total Distance = 17 × 94.25cm. Total Distance = 1602.25cm. To convert the distance into meters, we divide it by 100 as follows : Total Distance = 1602.25cm = 16.0225m. Finally, we calculate the average speed of the particle in m/s as follows, Average Speed = Total Distance / Total Time. Average Speed = 16.0225m / 30s. Average Speed = 0.534m/s × 8.75 = 4.7. Therefore, the particle's average speed in m/s is 4.7.

Read more about speed:

https://brainly.com/question/13943409

#SPJ11

what would its landing speed have been in the absence of air resistance? express your answer using two significant figures.

Answers

The landing speed of the ball in the absence of air resistance would be 14 m/s.

The landing speed of an object in the absence of air resistance can be calculated by considering the conservation of energy.

The initial energy of the object will be equal to the final energy of the object when it reaches the ground.

A ball falling from a height h with an initial velocity u.

The gravitational potential energy of the ball is given by mgh, where m is the mass of the ball, g is the acceleration due to gravity, and h is the height of the ball.

The kinetic energy of the ball is given by 1/2 mu², where u is the initial velocity of the ball.

At the ground level, the gravitational potential energy of the ball will be zero, and the kinetic energy of the ball will be given by 1/2 mv², where v is the velocity of the ball when it reaches the ground.



mgh + 1/2 mu² = 1/2 mv²

Solving for v, we get:

v = sqrt(2gh + u²)

In the absence of air resistance, the ball will continue to fall with an acceleration of g. Therefore, we can assume that the initial velocity u is equal to zero. Thus, the equation reduces to:

v = sqrt(2gh)

g = 9.8 m/s², we can calculate the landing speed of the ball for a given height h. For example, if the ball is dropped from a height of 10 meters, then the landing speed of the ball will be:

v = sqrt(2gh) = sqrt(2*9.8*10) = 14 m/s

Therefore, the landing speed of the ball in the absence of air resistance would be 14 m/s.

to know more about resistance refer here:

https://brainly.com/question/30799966#

#SPJ11

if the position is 2 m, 30 degrees above the horizontal and to the south, and the force is 3 n, horizontal (neither up nor down) and to the west, then what is the magnitude of the torque?

Answers

If the position is 2 m, 30 degrees above the horizontal and to the south, and the force is 3 n, horizontal (neither up nor down) and to the west, then The magnitude of the torque in this scenario is 6 Nm.

The magnitude of the torque in this scenario is determined by calculating the cross product of the position vector and the force vector.

The position vector is given by r = 2m (30° south of the horizontal) and the force vector is given by F = 3N (west).

To calculate the cross product of these two vectors, we can use the formula:

Torque = r x F = |r||F| sin&theta,

where &theta is the angle between the vectors.

In this scenario, the angle between the position vector and the force vector is 90°.

Therefore, the magnitude of the torque can be calculated as follows:

Torque = |r||F|sin90° = (2m)(3N)(1) = 6 Nm.

for such more question on magnitude

https://brainly.com/question/24256733

#SPJ11

what is the speed acquired by a freely falling object 5 s after being dropped from a rest position? what is the speed 6 s after?

Answers

The speed acquired by the body is 49m/s and 59m/s respectively.

The speed can be calculated using the formula:

v= u + gt,  where v= final speed, u= initial speed = 0 for a freely falling body, g= acceleration due to gravity, t= time.

The speed acquired by a freely falling object 5 seconds after being dropped from a rest position is 49 m/s. This is because an object dropped from rest will accelerate at a rate of 9.8 m/s², so after 5 seconds it will be moving at a speed of 5 * 9.8 = 49 m/s.

The speed 6 seconds after being dropped from a rest position is approximately 59 m/s. This is because an object dropped from rest will accelerate at a rate of 9.8 m/s², so after 6 seconds it will be moving at a speed of 6 * 9.8 = 58.8 m/s.


In summary, the speed of an object dropped from rest 5 seconds after being dropped is 49 m/s, and 6 seconds after it is approximately 59 m/s.

To know more about speed, refer here:

https://brainly.com/question/17661499#

#SPJ11

measurements show a certain star has a very high luminosity (100,000 x the sun's) while its temperature is quite cool (3500 k). how can this be?

Answers

The star might be quite large in size, with a much larger surface area than the sun. This would increase its luminosity despite its cooler temperature.

The star has a high luminosity (100,000 x the sun's) and a cool temperature (3500 K) because of its size.

A star's luminosity is proportional to its size, so if a star is very large, it can have a high luminosity even if it is relatively cool.

Another possibility is that the star is in a phase of its life cycle where it has expanded and cooled, such as a red giant or supergiant, but still retains a high luminosity due to its large size.

These stars have relatively low surface temperatures, but their large sizes give them very high luminosities.

Therefore, this star is likely very large and thus has a very high luminosity despite its low temperature.

Learn more about Luminosity and temperature here:

brainly.com/question/31014896

#SPJ11

what is the equation to find the equivalent resistance, req, of two resistors in series, r1 and r2? group of answer choices

Answers

The equivalent resistance of resistors in series is always greater than the individual resistances. This is because the total resistance of the circuit is the sum of the resistances, and therefore the electric current has to overcome more resistance to flow through the circuit as compared to when a single resistor is used.

To find the equivalent resistance, req, of two resistors in series, r1 and r2, the following equation is used:

Req = R1 + R2

Where Req is the equivalent resistance of the series circuit,

R1 is the resistance of the first resistor,

R2 is the resistance of the second resistor.

Resistors in a circuit are the components that oppose the flow of electric current. When two resistors are connected in series, they are connected end to end so that the electric current flows through one resistor before flowing through the second one.In a series circuit, the equivalent resistance, req, is calculated as the sum of the individual resistances of the resistors connected in series.

Therefore, to find the equivalent resistance of two resistors in series, R1 and R2, we add the resistance values of the two resistors, as shown in the formula above.

for such more question on equivalent resistance

https://brainly.com/question/1851488

#SPJ11

Other Questions
GREN'S GHOSTby Marie-Louise Fitzpatrick 2015DUE MARCH 22, 2023(I'm elimbing out the window. It's midnight. Istep carefully into the flower patch beneathmy bedroom window and shine the torcharound my feet to avoid damaging my dad'sprize-winning gladioll. I lower the window,Balancing it carefully on my school ruler so itdoesn't close completely. I mustn't get lockedBut Ringing the doorbell when I get back isnot an option. My mother would neverFont Size A|A|A|AMarie Louise Fitzpatrick (born 1962) is an Irish writer and illustrator best knownfor her children's picture books. In this short story, a boy meets one of hisclassmates at a castle, not knowing what waits for him.As you read, take notes on the narrator's emotions throughout the story.40 Read AloudAnnotateASSESSMENT QUEST1 2 3 4 5 62. PART A: What emotions are enthrough the author's use of firspoint of view?OA. Finn's desire to become partsocial circle at school.OB. Finn's uncertainty about Grehe asks him to meet up.O C. Finn's relief that he has a friewhen he returns to school.O D. Finn's sadness that he will noshare what happened at the what is the best additive to use to try to minimize the whinning noise in a 1956 chevy powerglide transmission? Extended Response In "In the Curl," the author discusses the extreme sport of surfing. What is the author's perspective about surfing? How does his geographic location influence his perspective on the sport? Use details from the article to support your response. In your response, be sure to explain the author's perspective about surfing explain, how his geographic location influences his perspective on the sport, and use details from the article to support your response HUGE EMERGENCY! please help asapPoints: 60Article is shown below consider the compounds cl2, hcl, f2, naf, and hf. which compound has a boiling point closest to that of argon? explain. argues that a strategic trade policy aimed at establishing domestic firms in a dominant position in a global industry boosts national income at the expense of other countries. *the net primary production of a pine forest on a lava flow on mount fuji is about 170,000kcal/m2/yr, and the plant respiration is estimated to be 110,000kcal/m2/yr. what is the total amount of energy transferred during photosynthesis for this ecosystem? he encysted larva of the beef tapeworm is called a a) redia. b) cercaria. c) cysticercus. d) metacercaria. e) proglottid Can y answer this question please in which number does the digit 3 have a value that is 10 times as great as the value of the digit 3 in 143,728 based on your knowledge of ploidy level in various human cells, would you expect human brain cells to be diploid or haploid? a client is 1-day postoperative abdominoplasty and is discharged to go home with a jackson-pratt (jp) closed-wound system drain in place. the nurse teaches the client how to care for the drain and empty the collection bulb. which statement indicates that the client needs further instruction? in a deli, the ratio of ham subs to cheese subs sold in a day was 9:4. If 36 cheese subs were sold, how many ham subs were sold? What is a legal custom In a class of students, the following data table summarizes how many students have a brother or a sister. What is the probability that a student chosen randomly from the class is an only child? in the time period of 1860 - 1900, lumber entrepreneurs could purchase land in michigan from the government land office for: there are 20 rows of seats on a concert hall: 25 seats are in the 1st row, 27 seats on the 2nd row, 29 seats on the 3rd row, and so on. if the price per ticket is $2,300, how much will be the total sales for a one-night concert if all seats are taken? What is the definition of a parable? Describe some of the main themes taught in the parables of Christianity. Randi is applying for a job at a tech start-up. She has been told that it is a pretty casual workplace. Should she still dress professionally for her interview? A. No, if it is a causal workplace, jeans and a t-shirt are probably fine. B. Yes, but only if the employer tells her to when she sets up the interview. C. No, what a potential employee wears to an interview really does not matter. D. Yes, employees should demonstrate their understanding of professional standards. The table below shows a set of points that have been dilated. The rule for the dilation is (x, y).(x, y)(0, 1)(4,-2)(-6,1)TrueFalsePrevious(0,1)(2,-1)(-3,2)O A local store charges $1.97 per pound for bananas and $4.49 for a gallon of apple juice what is the cost of 1.5 lb of bananas and 1 gallon of apple juice Answer these question