a weighted coin has a 0.664 probability of landing on heads. if you toss the coin 18 times, what is the probability of getting heads exactly 11 times?

Answers

Answer 1

The probability of getting heads exactly 11 times is 0.17

How to determine the probability

To determine the probability, we can use the binomial distribution.

The formula is expressed as;

P (X=11) = ¹⁸C₁₁ ×  (0.664)¹¹ ×  (0.336)⁷

Such that the parameters;

P (X=11);  probability of getting exactly 11 heads from the toss ¹⁸C₁₁ is the number of combinations (0.664)¹¹ is the probability of getting heads 11 times   (0.336)⁷is the probability of getting tails 7 times

Substitute the values;

P (X=11) =  ¹⁸C₁₁ ×  (0.664)¹¹ ×  (0.336)⁷

Find the combination

= 31834 × 0. 011 × 0. 00048

= 0.17

Learn more about probability at: https://brainly.com/question/25870256

#SPJ4

Answer 2

Answer:

0.17

Step-by-step explanation:

this is the knewton answer


Related Questions

t/f) the estimated p-hat is a random variable. with different samples, we will get slightly different p-hats. true false

Answers

True, the estimated p-hat is a random variable and will vary slightly with different samples.

The estimated p-hat is the proportion of successes in a sample, used to estimate the population proportion. As it is calculated based on a sample, the p-hat will vary slightly with different samples. This is because each sample is unique and may not perfectly represent the population. Therefore, the estimated p-hat is considered a random variable. However, as the sample size increases, the variability in the p-hat decreases, leading to a more accurate estimate of the population proportion.

In summary, the estimated p-hat is a random variable and will vary slightly with different samples. It is important to consider the sample size when interpreting the variability of the p-hat and its accuracy in estimating the population proportion.

To know more about Random Variables visit:

https://brainly.com/question/30789758

#SPJ11

Which of the following sets are bases of R??
1. S, = {(1,0, 0), (1, 1, 0), (1, 1, 1)}.
2. S, = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)).
3. S; = { (1, 1, 0), (0, 1, 1)).
4. S4 = {(1, 1, 0), (0, 1, 1), (1, 0, -1)}.

Answers

Sets 2 and 4 are bases of R since their vectors are linearly independent and span R³, while sets 1 and 3 do not meet these criteria.

To determine if a set is a basis of R, we need to check two conditions: linear independence and spanning the entire space. Set 2 is a basis of R because its vectors are linearly independent and span R³.

The vectors in set 4 are also linearly independent and span R³, making it a basis as well. However, set 1 fails the linear independence criterion because the third vector can be expressed as a linear combination of the first two. Similarly, set 3 does not span R³ since it lacks the (1, 0, 0) vector.

Therefore, sets 1 and 3 are not bases of R.


Learn more about Sets click here :brainly.com/question/28492445

#SPJ11

can
you please help me with detailed work?
1. Find for each of the following: 2-x² 1+x dx a) y=In- e) y = x³ Inx b) y = √√x+¹=x² f) In(x + y)= ex-y c) y = 52x+3 g) y=x²-5 d) y = e√x + x² +e² h) y = log3 ਤੇ

Answers

The integral of 52x+3 dx is 26x^4 + C and the integral of (2 - x²)/(1 + x) dx is ln|1 + x| + x + C.

a) To find the integral of (2 - x²)/(1 + x) dx, we can use the method of partial fractions.

First, factorize the denominator:

1 + x = (1 - (-x))

Now, we can express the fraction as a sum of two partial fractions:

(2 - x²)/(1 + x) = A/(1 - (-x)) + B

To find the values of A and B, we can multiply both sides by the denominator (1 + x):

2 - x² = A(1 + x) + B(1 - (-x))

Expanding and simplifying, we have:

2 - x² = (A + B) + (A - B)x

Equating the coefficients of the like terms, we get two equations:

A + B = 2 ----(1)

A - B = -1 ----(2)

Solving these equations, we find A = 1 and B = 1.

Substituting back into the partial fractions, we have:

(2 - x²)/(1 + x) = 1/(1 - (-x)) + 1

Integrating, we get:

∫ (2 - x²)/(1 + x) dx = ∫ 1/(1 - (-x)) dx + ∫ 1 dx

= ln|1 - (-x)| + x + C

= ln|1 + x| + x + C

Therefore, the integral of (2 - x²)/(1 + x) dx is ln|1 + x| + x + C.

b) To find the integral of √(√x+¹ + x²) dx, we can simplify the expression by recognizing the form of the integral.

Let u = √x+¹, then du = 1/2(√x+¹)' dx = 1/2(1/2√x) dx = 1/4(1/√x) dx.

Rearranging, we have dx = 4√x du.

Substituting the values, we get:

∫ √(√x+¹ + x²) dx = ∫ √u + u² 4√x du

= 4∫ (u + u²) du

= 4(u^2/2 + u^3/3) + C

= 2u^2 + 4u^3/3 + C

Substituting back u = √x+¹, we have:

∫ √(√x+¹ + x²) dx = 2(√x+¹)^2 + 4(√x+¹)^3/3 + C

Therefore, the integral of √(√x+¹ + x²) dx is 2(√x+¹)^2 + 4(√x+¹)^3/3 + C.

c) To find the integral of 52x+3 dx, we can use the power rule for integration.

Using the power rule, the integral of x^n dx is (x^(n+1))/(n+1), where n ≠ -1.

Therefore, the integral of 52x+3 dx is (52/(1+1))x^(1+1+1) + C,

which simplifies to 26x^4 + C.

Therefore, the integral of 52x+3 dx is 26x^4 + C.

To learn more about “integral” refer to the https://brainly.com/question/30094386

#SPJ11

At the given point, find the slope of the curve, the line that is tangent to the curve, or the line that is normal to the curve, as requested 5x?y- * cos y = 67, tangent at (1,1) 3x O A. y=- 2x+ 2 OB. y = - 2x + x OC. y = xx OD. = - 2x + 3x

Answers

The line that is tangent to the curve 5x⋅sin(y) - cos(y) = 67 at the point (1,1) is given by the equation y = -π/2x + 3π/2. The correct option is A.

To find the slope of the tangent line, we need to find the derivative of the function with respect to x and evaluate it at the point (1,1). Taking the derivative of 5x⋅sin(y) - cos(y) = 67 implicitly with respect to x,

we get 5⋅sin(y) + 5x⋅cos(y)⋅y' + sin(y)⋅y' + cos(y)⋅y' = 0.

Simplifying, we have (5⋅sin(y) + sin(y))⋅y' + 5x⋅cos(y)⋅y' + cos(y)⋅y' = 0.

Substituting the point (1,1) into the equation, we have (5⋅sin(1) + sin(1))⋅y' + 5⋅cos(1)⋅y' + cos(1)⋅y' = 0.

Evaluating the trigonometric functions, we get (5⋅sin(1) + sin(1) + 5⋅cos(1) + cos(1))⋅y' = 0. Simplifying further, we have (6⋅sin(1) + 6⋅cos(1))⋅y' = 0.

Since y' cannot be zero (as it represents the slope of the tangent line), we set the coefficient of y' equal to zero: 6⋅sin(1) + 6⋅cos(1) = 0. Solving this equation gives sin(1) + cos(1) = 0.

The line that satisfies the equation y = -π/2x + 3π/2 has a slope of -π/2. Comparing this slope with the slope obtained from the equation sin(1) + cos(1) = 0, we see that they are equal. Therefore, the line y = -π/2x + 3π/2 is the tangent line to the curve at the point (1,1). Therefore, the correct option is A. y = -π/2x + 3π/2.

To know more about tangent, refer here:

https://brainly.com/question/32258856#

#SPJ11

Complete question:

At the given point, find the slope of the curve, the line that is tangent to the curve, or the line that is normal to the curve, as requested 5x?y- * cos y = 67, tangent at (1,1) 3x

A. y=- π/ 2x+ 3π/2

B. y = - 2πx + x

C. y = πx

D. = - 2πx + 3π

Consider the following functions. f(x) = 81 – x2, g(x) = (x + 2 = (a) Find (f + g)(x). (f + g)(x) = State the domain of the function. (Enter your answer using interval notation.) (b) Find (f - g)(x). (f - g)(x) = = State the domain of the function. (Enter your answer using interval notation.) (c) Find (fg)(x). (fg)(x) = State the domain of the function. (Enter your answer using interval notation.) (d) Find g (6)x). () State the domain of the function. (Enter your answer using interval notation.) Consider the following. f(x) = x? + 6, 9(x) = VX (a) Find the function (fog)(x). (fog)(x) = Find the domain of (fog)(x). (Enter your answer using interval notation.) (b) Find the function (gof)(x). (gof)(x) = Find the domain of (gof)(x). (Enter your answer using interval notation.) (c) Find the function (f o f(x). (fof)(x) = Find the domain of (fon(x). (Enter your answer using interval notation.) (d) Find the function (gog)(x). (9 0 g)(x) = Find the domain of g 0 g)(x). (Enter your answer using interval notation.)

Answers

The function (f + g)(x) is given by √(81 - x^2) + √(x + 4), and its domain is [-4, 9].

To find (f + g)(x), we need to add the functions f(x) and g(x):

f(x) = √(81 - x²)

g(x) = √(x + 4)

(f + g)(x) = f(x) + g(x)

= √(81 - x²) + √(x + 4)

The domain of the function (f + g)(x) will be the intersection of the domains of f(x) and g(x). Let's determine the domains of f(x) and g(x) first.

For f(x) = √(81 - x²), the radicand (81 - x²) must be non-negative, so:

81 - x²≥ 0

To solve this inequality, we can factor it:

(9 + x)(9 - x) ≥ 0

The critical points are x = -9 and x = 9. We can create a sign chart to determine the sign of the expression (9 + x)(9 - x) for different intervals:

(-∞, -9) | +  | -  | +  |

-9    | 0  | -  | +  |

9     | +  | -  | +  |

(9, ∞) | +  | -  | +  |

From the sign chart, we see that the expression (9 + x)(9 - x) is non-negative (≥ 0) for x ∈ [-9, 9]. Therefore, the domain of function f(x) is [-9, 9].

For g(x) = √(x + 4), the radicand (x + 4) must also be non-negative:

x + 4 ≥ 0

Solving this inequality, we find:

x ≥ -4

Therefore, the domain of g(x) is x ≥ -4.

To determine the domain of (f + g)(x), we take the intersection of the domains of f(x) and g(x). Since f(x) is defined for x in [-9, 9] and g(x) is defined for x ≥ -4, the domain of (f + g)(x) will be the intersection of these intervals:

Domain of (f + g)(x) = [-9, 9] ∩ (-4, ∞) = [-4, 9]

So, the domain of the function (f + g)(x) is [-4, 9].

Therefore, the function (f + g)(x) is given by √(81 - x²) + √(x + 4), and its domain is [-4, 9].

To know more about function check the below link:

https://brainly.com/question/2328150

#SPJ4

Incomplete question:

Consider the following functions.

f(x)=√81-x², g(x) = √x+4

(a) Find (f+g)(x).

(f + g)(x) =

State the domain of the function. (Enter your answer using interval notation.)

I flip a fair coin twice and count the number of heads. let h represent getting a head and t represent getting a tail. the sample space of this probability model is:
A. S = (HH, HT, TH, TT).
B. S = (1,2)
C. S = {0, 1,2).
D. S = [HH. HT, TT).

Answers

The sample space for this probability model is A. S = (HH, HT, TH, TT). Each outcome represents a different combination of heads and tails obtained from the two flips of the coin.

The sample space for flipping a fair coin twice and counting the number of heads consists of four outcomes: HH, HT, TH, and TT.

When flipping a fair coin twice, we consider the possible outcomes for each flip. For each flip, we can either get a head (H) or a tail (T). Since there are two flips, we have two slots to fill with either H or T.

To determine the sample space, we list all the possible combinations of H and T for the two flips. These combinations are HH, HT, TH, and TT.

To learn more about probability model, refer:-

https://brainly.com/question/31197772

#SPJ11

please help ASAP!

The owners of the resort want to expand and build a row of condos at the western base of the mountain. Because of the amount of snow, the area gets most winters, it is important to have the pitch (steepness) of the roof of each condo at least 60°. To make the condos appealing to skiers and boarders, they want to model the condos after their cabins, but on a larger scale. The cabins have an A-line roof that forms an isosceles triangle as shown, with the base angles at 65°. The base length is 8m. Note: the slant height is the length of the side of the roof. Hint: Lesson 4.03, pages 261 268 in the resource guide Diagram absied correctiv IME Part A What is the slant height of the roof of the cabin? Round to the nearest tenth of a meter. Part B The roofs of the condos to be built will have a base length of 10.6 m. What will the slant height of the roof be on one of the houses? Round to the nearest tenth of a meter. Cabin Condo 65° 70" Appropriate work CONTACT THE ACTION DE NO Correct answer Kombed correcthy, jahel Styles​

Answers

A. The slant height of the roof of the cabin is approximately 4.41 meters.

B. The slant height of the roof for one of the condos will be approximately 5.84 meters.

How did we get the values?

To find the slant height of the roof of the cabin, use the properties of an isosceles triangle. In this case, the base angles of the triangle are 65° each, and the base length is 8m.

Part A: Slant height of the cabin roof

To find the slant height, use the sine function. The formula for the slant height (s) in terms of the base length (b) and the base angle (A) is:

s = b / (2 x sin(A))

Substituting the values:

A = 65°

b = 8m

s = 8 / (2 x sin(65°))

Using a calculator, we find:

s ≈ 8 / (2 x 0.9063) ≈ 4.41m

Therefore, the slant height of the roof of the cabin is approximately 4.41 meters.

Part B: Slant height of the condo roof

For the condo roofs, the base length is given as 10.6m.

Using the same formula as before:

A = 65°

b = 10.6m

s = 10.6 / (2 x sin(65°))

Using a calculator:

s ≈ 10.6 / (2 x 0.9063) ≈ 5.84m

Therefore, the slant height of the roof for one of the condos will be approximately 5.84 meters.

learn more about isosceles triangle: https://brainly.com/question/1475130

#SPJ1

11,12,13 please
Differentiate. 11) f(x)=√1-10x + (1 - 5x)2² A) f(x)=¹+2(1-5x) 2√1-10x C) f(x) = -- 5 √1-10x - 10(1-5x) 5x+5 x-3 A) f(x) = C) f(x) = 13) f(x) = 3x(4x + 2)4 12) f(x) = II 5x +5 x-3 -80 (x-3)2 A)

Answers

The first derivative of the function given in the question is [tex]f(x) = \sqrt(1 - 10x) + (1 - 5x)^2[/tex] is [tex]f'(x) = 2(1 - 5x)\sqrt(1 - 10x) - 10(1 - 5x)(1 - 5x)^2/(5x + 5(x - 3))[/tex].

To differentiate the given function f(x), we need to apply the chain rule and the power rule. Let's break down the function and differentiate each part separately.

[tex]f(x) = \sqrt(1 - 10x) + (1 - 5x)^2[/tex]

First, let's differentiate the square term, [tex](1 - 5x)^2[/tex]. Applying the power rule, we get:

[tex]d/dx[(1 - 5x)^2] = 2(1 - 5x)(-5) = -10(1 - 5x)[/tex]

Next, let's differentiate the square root term, √(1 - 10x). Applying the chain rule, we have:

[tex]d/dx[\sqrt(1 - 10x)] = (1/2)(1 - 10x)^{-1/2}(-10) = -5(1 - 10x)^{-1/2}[/tex]

Now, we can combine the derivatives of both terms to obtain the derivative of f(x):

[tex]f'(x) = -5(1 - 10x)^{-1/2} + -10(1 - 5x)(1 - 5x)[/tex]

Simplifying further:

[tex]f'(x) = -5(1 - 10x)^{-1/2}- 10(1 - 5x)^2[/tex]

To express the answer in a different form, we can factor out a common term from the second part:

[tex]f'(x) = -5(1 - 10x)^{-1/2}- 10(1 - 5x)(1 - 5x)/(5x + 5(x - 3))[/tex]

Thus, the derivative of f(x) is [tex]f'(x) = 2(1 - 5x)\sqrt(1 - 10x) - 10(1 - 5x)(1 - 5x)^2/(5x + 5(x - 3))[/tex].

Learn more about derivatives here:

https://brainly.com/question/29020856

#SPJ11

Prove the remaining part of theorem 4.2.4: if f:A->B with Rng(f)=C, and if f^-1is a function, then f○f^-1=I[C].

Answers

The remaining part of Theorem 4.2.4 states that if f: A -> B is a function with range C and its inverse function f^(-1) exists, then the composition of f with f^(-1) is equal to the identity function on the range C, denoted as I[C].

To prove this, let's consider the composition f○f^(-1). By the definition of function composition, for any c in C, we need to show that (f○f^(-1))(c) = IC, where I[C] is the identity function on C.

Since f is a function with range C, every element in C has a preimage in A. Let's take an arbitrary element c in C. Since f^(-1) is a function, we can apply it to c to obtain f^(-1)(c), which lies in A. Now, applying f to f^(-1)(c), we get f(f^(-1)(c)). Since f^(-1)(c) is in the domain of f, the composition is well-defined.

By the definition of the inverse function, f(f^(-1)(c)) = c for all c in C. This means that (f○f^(-1))(c) = c, which is precisely the definition of the identity function on C, denoted as I[C].

Hence, we have shown that for any c in C, (f○f^(-1))(c) = IC, which implies that f○f^(-1) = I[C]. Thus, we have proven the remaining part of Theorem 4.2.4.

Learn more about range here:

https://brainly.com/question/29204101

#SPJ11

Solve the following integrals
i. S√xdx ·3x²¹+1 4 ii. dx x2 1 2 iii. Sim² (et – e-t)dt In- 2

Answers

(i)The solution of the integral ∫√x dx * 3x^21+1 is 6x^(43/2) + C.

(ii)The result of the integral ∫(x^2)/(√(1 + 2x)) dx is (-1/3)(1 + 2x)^(3/2) + √(1 + 2x) + C.

(iii) The result of the integral ∫m^2(et – e^(-t)) dt is m^2 * et - m^2 * e^(-t) + C.

i. ∫√x dx

To solve this integral, we can use the power rule for integration:

∫x^n dx = (x^(n+1))/(n+1) + C

Applying the power rule with n = 1/2, we have:

∫√x dx = (2/3)x^(3/2) + C

Multiplying this result by the expression 3x^21+1, we get:

∫√x dx * 3x^21+1 = (2/3)x^(3/2) * 3x^21+1 + C

Simplifying the expression, we have:

2x^(3/2) * x^21 * 3 + C = 6x^(3/2 + 21) + C = 6x^(43/2) + C

Therefore, the result of the integral ∫√x dx * 3x^21+1 is 6x^(43/2) + C.

ii. ∫(x^2)/(√(1 + 2x)) dx

To solve this integral, we can substitute a variable to simplify the expression. Let's substitute u = 1 + 2x. Then, du/dx = 2, which implies dx = (1/2)du.

Using the substitution, we can rewrite the integral as:

∫((u - 1)^2)/(√u) * (1/2) du

Expanding the numerator and simplifying, we get:

(1/2) ∫((u^2 - 2u + 1)/(√u)) du

Splitting the integral into two separate integrals, we have:

(1/2) ∫(u^2/√u) du - (1/2) ∫(2u/√u) du + (1/2) ∫(1/√u) du

Now, we can integrate each term individually:

(1/2) * (2/3)u^(3/2) - (1/2) * (4/3)u^(3/2) + (1/2) * (2√u) + C

Simplifying further, we obtain:

(1/3)u^(3/2) - (2/3)u^(3/2) + √u + C

Combining like terms, we have:

(-1/3)u^(3/2) + √u + C

Replacing u with 1 + 2x, we get the final result:

(-1/3)(1 + 2x)^(3/2) + √(1 + 2x) + C

Therefore, the result of the integral ∫(x^2)/(√(1 + 2x)) dx is (-1/3)(1 + 2x)^(3/2) + √(1 + 2x) + C.

iii. ∫m^2(et – e^(-t)) dt

To solve this integral, we can distribute the m^2 term:

∫m^2 * et dt - ∫m^2 * e^(-t) dt

For the first integral, we can directly integrate m^2 * et with respect to t:

m^2 * ∫et dt = m^2 * et + C1

For the second integral, we can integrate m^2 * e^(-t) with respect to t:

m^2 * ∫e^(-t) dt = m^2

* (-e^(-t)) + C2

Combining the results of the two integrals, we obtain:

m^2 * et - m^2 * e^(-t) + C1 - C2

Since C1 and C2 are arbitrary constants, we can combine them into a single constant C:

m^2 * et - m^2 * e^(-t) + C

Therefore, the result of the integral ∫m^2(et – e^(-t)) dt is m^2 * et - m^2 * e^(-t) + C.

Learn more about "integral ":

https://brainly.com/question/22008756

#SPJ11

Find Inverse Laplace Transform of the function F(s) = 6+3+8+4) + (6-3) 12 EXERCISE 9: Solve y' + y = est +2 with y(0) = 0 using Laplace Transform technique =

Answers

The solution to the differential equation y' + y = est + 2 with y(0) = 0 using laplace transform technique is y(t) = eᵗ + te⁽⁻ᵗ⁾.

to find the inverse laplace transform of the given function f(s), we need to simplify the expression and apply the properties of laplace transforms.

f(s) = (6 + 3 + 8 + 4) + (6 - 3) * 12     = 21 + 3 * 12

    = 21 + 36     = 57

now, let's solve the differential equation y' + y = est + 2 using the laplace transform technique.

applying the laplace transform to both sides of the equation, we get:

sy(s) - y(0) + y(s) = 1/(s - a) + 2/s

since y(0) = 0, the equation becomes:

sy(s) + y(s) = 1/(s - a) + 2/s

combining like terms:

(s + 1)y(s) = (s + 2)/(s - a)

now, solving for y(s):

y(s) = (s + 2)/(s - a) / (s + 1)

to simplify the right side, we can perform partial fraction decomposition:

y(s) = [a/(s - a)] + [b/(s + 1)]

(s + 2) = a(s + 1) + b(s - a)

expanding and equating coefficients:

1s + 2 = (a + b)s + (a - ab)

equating coefficients of like powers of s:

1 = a + b

2 = a - ab

solving these equations, we find:

a = 1/(1 - a)b = -a/(1 - a)

substituting these values back into the partial fraction decomposition, we get:

y(s) = [1/(1 - a)/(s - a)] + [-a/(1 - a)/(s + 1)]

taking the inverse laplace transform of y(s), we find the solution y(t):

y(t) = eᵃᵗ + ae⁽⁻ᵗ⁾

Learn more about Laplace here:

https://brainly.com/question/31040475

#SPJ11

Which expression is equivalent to -0.25(16m + 12)?
-8m + 6
-8m 6 -4m 3
-4m +3

Answers

Answer: -4m -3

Step-by-step explanation:

→ -0.25(16m+12)

→ (-0.25×16m)+(-0.25×12)

→ (-4m)+(-3)

→ -4m-3. Answer

Find the solution to the initial value problem 1 0 2 4 y' = 0 0 0 0 -3 0 3 5 y, 2 - -3 1 0 y (0) = 48, 42(0) = 10 y3 (0) = -8, 7(0) = -11 using the given general solution 0 0 0 0 0 -7 -2 y = Ciebt 0 + + C3 e 3t + cael 48 -32 -52 27 celt 0 -8 1 6 3

Answers

The solution to the initial value problem is: y = 48e⁰t - 32e⁴t - 5e⁷t + 48 - 32 - 5e³t + 48 - 8e¹t + 1 - 6e³t + 3

Let's have stepwise understanding:

1. Compute the constants c₁, c₂, and c₃ by substituting the given initial conditions into the general solution.

c₁ = 48,

c₂ = -32,

c₃ = -5.

2. Substitute the computed constants into the general solution to obtain the solution to the initial value problem.

y = 48e⁰t - 32e⁴t - 5e⁷t + 48 - 32 - 5e³t + 48 - 8e¹t + 1 - 6e³t + 3

To know more about initial value problem refer here :

https://brainly.com/question/30466257#

#SPJ11

◆ Preview assignment 09 → f(x) = (x² - 6x-7) / (x-7) For the function above, find f(x) when: (a) f(7) (b) the limit of f(x) as x→ 7 from below (c) the limit of f(x) as x →7 from above → Not

Answers

For the given function f(x) = (x² - 6x - 7) / (x - 7) we obtain:

(a) f(7) is undefined,

(b) Limit of f(x); lim(x → 7⁻) f(x) = 20.9,

(c) Limit of f(x); llim(x → 7⁺) f(x) = -20.9

To obtain the value of the function f(x) = (x² - 6x - 7) / (x - 7) for the given scenarios, let's evaluate each case separately:

(a) f(7):

To find f(7), we substitute x = 7 into the function:

f(7) = (7² - 6(7) - 7) / (7 - 7)

     = (49 - 42 - 7) / 0

     = 0 / 0

The expression is undefined at x = 7 because it results in a division by zero. Therefore, f(7) is undefined.

(b) Limit of f(x) as x approaches 7 from below (x → 7⁻):

To find this limit, we approach x = 7 from values less than 7. Let's substitute x = 6.9 into the function:

lim(x → 7⁻) f(x) = lim(x → 7⁻) [(x² - 6x - 7) / (x - 7)]

                 = [(6.9² - 6(6.9) - 7) / (6.9 - 7)]

                 = [(-2.09) / (-0.1)]

                 = 20.9

The limit of f(x) as x approaches 7 from below is equal to 20.9.

(c) Limit of f(x) as x approaches 7 from above (x → 7⁺):

To find this limit, we approach x = 7 from values greater than 7. Let's substitute x = 7.1 into the function:

lim(x → 7⁺) f(x) = lim(x → 7⁺) [(x² - 6x - 7) / (x - 7)]

                 = [(7.1² - 6(7.1) - 7) / (7.1 - 7)]

                 = [(-2.09) / (0.1)]

                 = -20.9

The limit of f(x) as x approaches 7 from above is equal to -20.9.

To know more about function refer here:

https://brainly.com/question/12207558#

#SPJ11

3) (45 pts) In this problem, you'll explore the same question from several different approaches to confirm that they all are consistent with each other. Consider the infinite series: 1 1 1 1 1.2 3.23 5.25 7.27 a) (3 points) Write the given numerical series using summation/sigma notation, starting with k=0. +... b) (5 points) Identify the power series and the value x=a at which it was evaluated to obtain the given (numerical) series. Write the power series in summation/sigma notation, in terms of x. Recall: a power series has x in the numerator! c) (5 points) Find the radius and interval of convergence for the power series in part b).

Answers

The radius of convergence is [tex]$\sqrt{2}$[/tex] and the interval of convergence is [tex]$(-\sqrt{2}, \sqrt{2})$.[/tex]

a) The given numerical series can be represented using summation/sigma notation as follows: [tex]$$\sum_{k=0}^{\infty} \begin{cases} 1 & k=0\\1 & k=1\\1 & k=2\\1 & k=3\\\frac{2k-1}{2^k} & k > 3 \end{cases}$$b)[/tex]

The power series is obtained by adding the general term of the series as the coefficient of x in the power series expansion. From the given numerical series, it is observed that this is an alternating series whose terms are decreasing in absolute value. Thus, we know that it is possible to obtain a power series representation for the series.

Evaluating the first few terms of the series, we get: [tex]$$1+1x+1x^2+1x^3+2\sum_{k=4}^{\infty}\left(\frac{(-1)^kx^{2k-4}}{2^k}\right)$$$$1+1x+1x^2+1x^3+\sum_{k=2}^{\infty}\left(\frac{(-1)^kx^{2k+1}}{2^k}\right)$$[/tex]

Therefore, the power series in terms of x is given as: [tex]$$\sum_{k=0}^{\infty}\begin{cases}1 & k\le 3\\\frac{(-1)^kx^{2k+1}}{2^k} & k > 3\end{cases}$$c)[/tex]

The ratio test is used to determine the radius and interval of convergence of the series.

Applying the ratio test, we have: $[tex]$\lim_{k \to \infty} \left|\frac{(-1)^{k+1}x^{2k+3}}{2^{k+1}}\cdot\frac{2^k}{(-1)^kx^{2k+1}}\right|$$$$=\lim_{k \to \infty} \left|\frac{x^2}{2}\right|$$$$=\frac{|x|^2}{2}$$The series converges if $\frac{|x|^2}{2} < 1$, i.e., $|x| < \sqrt{2}$.[/tex]

Therefore, the radius of convergence is [tex]$\sqrt{2}$[/tex] and the interval of convergence is [tex]$(-\sqrt{2}, \sqrt{2})$.[/tex]

To know more about radius of convergence, visit:

https://brainly.com/question/31440916#

#SPJ11

arrange the increasing functions in order from least to greatest rate of change.


Y= 5/2X +10

Y= -1/2X + 1/2

Y= 3/2X -11/2

Y= 1/2X -2

Y= 4/3X - 7/3

Y= 3/4X -10

Answers

From least to greatest rate of change, the linear functions are ordered as follows:

y = -x/2 + 1/2.y = x/2 - 2.y = 3x/4 - 10.y = 4x/3 - 7/3.y = 3x/2 - 11/2.y = 5x/2 + 10.

How to define a linear function?

The slope-intercept equation for a linear function is presented as follows:

y = mx + b

The parameters of the definition of the linear function are given as follows:

m is the slope, representing the rate of change of the linear function.b is the intercept.

Hence we order the functions according to the multiplier of x, which is the rate of change of the linear functions.

More can be learned about linear functions at https://brainly.com/question/15602982

#SPJ1

psych1001 if variables variable c and variable d are significantly correlated, which of the following is also true? group of answer choices a. variable a causes variable b variable d causes variable c variable c and variable d are related,
b. but we do not know whether changes in one variable caused changes in the other variable. c. none of the options

Answers

The correct answer is option B. When variable C and variable D are significantly correlated, it implies that these two variables are related. However, correlation does not necessarily imply causation.


We need to focus on the relationship between variables c and d. If they are significantly correlated, it means that changes in one variable are associated with changes in the other variable. Therefore, option b is incorrect, as it states that we do not know whether changes in one variable caused changes in the other variable. Instead, we can conclude that option c is incorrect because there is at least one true statement among the options. Finally, option a is also incorrect because there is no evidence to support the claim that variable a causes variable b or that variable d causes variable c. Therefore, the answer is that if variables variable c and variable d are significantly correlated, the statement that is also true is that variable c and variable d are related.  That explain the relationship between the variables, refute the incorrect options, and conclude with the correct answer.


In other words, we cannot conclude that changes in one variable caused changes in the other variable based on correlation alone. Additional research and analysis would be required to establish causation between the two variables. Therefore, we can only assert their relationship, but not the cause-and-effect relationship.

To know more about variable visit:-

https://brainly.com/question/29521826

#SPJ11

28 29 30 31 32 33 34 35 36 Find all solutions of the equation in the interval [0, 2n). sinx(2 cosx+2)=0 Write your answer in radians in terms of . If there is more than one solution, separate them wit

Answers

The solutions of the equation in the interval [0, 2π) are x=0, π, (2n+1)π/2 (for all integers n and n≠0).

To solve this equation, we need to find all values of x in the interval [0, 2π) that satisfy the equation sinx(2cosx+2)=0.

First, we need to find all values of x where sinx=0. These occur when x=0, π, and any integer multiple of π. We will call these values of x "sinx solutions".

Next, we need to find all values of x where 2cosx+2=0. Solving for cosx, we get cosx=-1. This occurs when x=π and any odd multiple of π/2. We will call these values of x "cosx solutions".

Now, we need to check which of these solutions also satisfy the original equation sinx(2cosx+2)=0.

For the sinx solutions, we have:

x=0: sinx(2cosx+2)=0(2cos0+2)=0(2+2)=0. This solution works.

x=π: sinx(2cosx+2)=sinπ(2cosπ+2)=0(2(-1)+2)=0. This solution works.

For the sinx solutions where x is an integer multiple of π, we have:

x=nπ: sinx(2cosx+2)=0(2cos(nπ)+2)=0(2(-1)ⁿ+2)=0. This solution works when n is odd (since (-1)ⁿ =-1), and does not work when n is even (since (-1)ⁿ=1).

For the cosx solutions, we have:

x=π: sinx(2cosx+2)=sinπ(2cosπ+2)=0(2(-1)+2)=0. This solution works.

x=(2n+1)π/2: sinx(2cosx+2)=sin((2n+1)π/2)(2cos((2n+1)π/2)+2)=0(2(0)+2)=0. This solution works for all integers n.

You can learn more about intervals at: brainly.com/question/11051767

#SPJ11

help with this module
1. Approximate the area between y = h(x) and the x-axis from x = -2 to x = 4 using a right Riemann sum with three equal intervals. v=h(z) 2. Approximate the area between the x-axis and y=g(x) from x=1

Answers

To approximate the area between the function y = h(x) and the x-axis from x = -2 to x = 4 using a right Riemann sum with three equal intervals, we first divide the interval [x = -2, x = 4] into three equal subintervals.

The width of each subinterval is Δx = (4 - (-2))/3 = 2.

Next, we evaluate the function h(x) at the right endpoint of each subinterval. Let's denote the right endpoints as x₁, x₂, and x₃. We calculate h(x₁), h(x₂), and h(x₃).

Then, we compute the right Riemann sum using the formula:

Approximate area ≈ Δx * [h(x₁) + h(x₂) + h(x₃)]

By plugging in the calculated values, we can find the numerical approximation for the area between the curve and the x-axis.

To approximate the area between the x-axis and the function y = g(x) from x = 1 to x = b, where b is a given value, we can use a left Riemann sum. Similar to the previous example, we divide the interval [x = 1, x = b] into n equal subintervals, where n is a positive integer.

The width of each subinterval is Δx = (b - 1)/n, and we evaluate the function g(x) at the left endpoint of each subinterval. Let's denote the left endpoints as x₀, x₁, ..., xₙ₋₁. We calculate g(x₀), g(x₁), ..., g(xₙ₋₁).

Then, we compute the left Riemann sum using the formula:

Approximate area ≈ Δx * [g(x₀) + g(x₁) + ... + g(xₙ₋₁)]

By plugging in the calculated values and taking the limit as n approaches infinity, we can obtain a more accurate approximation for the area between the curve and the x-axis.

Learn more about function here: brainly.com/question/32515680

#SPJ11

I do not understand this at all. I have till 12:00 am to get an A in math.
Help

Answers

Here! Hope this helps with your grade!

11. Use Taylor's formula to find the first four nonzero terms of the Taylor series expansion for f (x)=e2* centered at x = 0. Show all work.

Answers

The first four nonzero terms of the Taylor series expansion for [tex]f(x) = e^2[/tex] centered at x = 0 are [tex]e^2[/tex].

To find the Taylor series expansion for the function [tex]f(x) = e^2[/tex] centered at x = 0, we can use Taylor's formula.

Taylor's formula states that for a function f(x) that is n+1 times differentiable on an interval containing the point c, the Taylor series expansion of f(x) centered at c is given by:

[tex]f(x) = f(c) + f'(c)(x - c)/1! + f''(c)(x - c)^2/2! + f'''(c)(x - c)^3/3! + ... + f^n(c)(x - c)^n/n! + Rn(x)[/tex]

where [tex]f'(c), f''(c), ..., f^n(c)[/tex] are the derivatives of f(x) evaluated at c, and [tex]R_n(x)[/tex] is the remainder term.

In this case, we want to find the first four nonzero terms of the Taylor series expansion for [tex]f(x) = e^2[/tex] centered at x = 0. Let's calculate the derivatives of f(x) and evaluate them at x = 0:

[tex]f(x) = e^2\\f'(x) = 0\\f''(x) = 0\\f'''(x) = 0\\f''''(x) = 0[/tex]

Since all derivatives of f(x) are zero, the Taylor series expansion for [tex]f(x) = e^2[/tex] centered at x = 0 becomes:

[tex]f(x) = e^2 + 0(x - 0)/1! + 0(x - 0)^2/2! + 0(x - 0)^3/3![/tex]

Simplifying the terms, we get:

[tex]f(x) = e^2[/tex]

Therefore, the first four nonzero terms of the Taylor series expansion for [tex]f(x) = e^2[/tex] centered at x = 0 are [tex]e^2[/tex].

Learn more about the Power series expansion at

brainly.com/question/30262936

#SPJ4

20 POINTS PLSSSSS
PLS IM BEGGING ILL GIVE CROWN!
ANSWER PLSSS FOR MY FINALS!

A soccer team sells T-shirts for a fundraiser. The company that makes the T-shirts charges 10 per shirt plus a 20 shipping fee per order.


a. Write and graph an equation that represents the total cost (in dollars) of ordering the shirts. Let t represent the number of T-shirts and let c represent the total cost (in dollars).


Equation: c (x) = 10x + 20


PLS MAKE THE GRAPH TOO


HAPPY SUMMMER

Answers

Answer:

see below

Step-by-step explanation:

See attachment for the graph.

We have the equation:

c(x)=10x+20

The slope is 10

The y-intercept is 20

Hope this helps! :)

Let G be a group, and let X be a G-set. Show that if the G-action is transitive (i.e., for any x, y € X, there is g € G such that gx = y), and if it is free (i.e., gx = × for some g E G, x E X implies g = e), then there is a (set-theoretic)
bijection between G and X.

Answers

Let G be a group, and let X be a G-set.

Show that if the G-action is transitive (i.e., for any x, y € X, there is g € G such that gx = y), and if it is free (i.e., gx = × for some g E G, x E X implies g = e), then there is a (set-theoretic) bijection between G and X.What is the proof of the above statement?

Suppose we have G-action, the action is free, and transitive; thus, we can create a function that is bijective. We will show that there is a bijective function by first constructing the following: Define a function f: G -> X that maps an element g € G to the element x € X with the property that gx = y for any y € X for the group.

That is, f(g) = x if gx = y for all y € X. Since the action is free, this function is one-to-one.Suppose x is any element of X. Since the action is transitive, there exists a g € G such that gx = x. Therefore, f(g) = x, which implies that f is onto. Therefore, f is a bijection, and G and X have the same cardinality.


Learn more about group here:

https://brainly.com/question/30507242


#SPJ11

Urgent please help Domain
5 5 A.B.C.P is not given and are unknown
2. Find a formula for the distance from P to B. Your formula will be in terms of both z and y. 3. Find a formula for L(x, y), the total length of the connector joining P to A, B, and C. 4. We want to

Answers

The formula for the distance from P to B is √(25-10y+y²+z²)  and the formula for L(x, y) the total length of the connector joining P to A, B, and C is √(5²+y²+z²)+√((5-x)²+y²+z²)+√(x²+y²+(5-z)²).

Given, Domain: 5, 5, and A, B, C are not given and unknown.

2. To find the formula for the distance from P to B, first we need to consider the triangle PBA and the Pythagoras theorem. The distance from P to B is the hypotenuse of the right triangle PBA and can be obtained by the formula using the Pythagorean theorem as follows; h² = p² + b²

Where, h = hypotenuse, p = perpendicular, b = base

Let's use the information given in the problem, where B is on the x-axis, which means the distance from P to B is the length of the segment BP. Then, the value of p is (5 - y) and the value of b is z.

So, the formula for the distance from P to B will be; BP = √(5-y)²+z²= √(25-10y+y²+z²)

3. Now, to find a formula for L(x,y), we need to consider the distance between A, B, and C. We have already found the length of the connector joining B to P, which is BP.

To find the length of connector AP and CP, we have to use the distance formula for 3D space that is the formula for the Euclidean distance between two points (x1, y1, z1) and (x2, y2, z2).

The formula is given by;d = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)

Therefore, the formula for the total length of the connector joining P to A, B, and C can be given as follows;

L(x, y) = AB + AP + CP = √(5²+y²+z²)+√((5-x)²+y²+z²)+√(x²+y²+(5-z)²)

4. Now, we need to find the minimum value of L(x,y) over all (x,y,z) that satisfy the equation x+y+z=5.

To do this, we have to differentiate L(x,y) with respect to x and y. We assume that partial derivatives are equal to zero since we are looking for the minimum value.

L(x,y) = AB + AP + CP = √(5²+y²+z²)+√((5-x)²+y²+z²)+√(x²+y²+(5-z)²)∂L/∂x = -√((5-x)²+y²+z²)/(√((5-x)²+y²+z²)+√(x²+y²+(5-z)²)) = √(x²+y²+(5-z)²)/(√((5-x)²+y²+z²)+√(x²+y²+(5-z)²))∂L/∂y + -√(y²+z²+25)/(√(5²+y²+z²)+√((5x)²+y²+z²)) = √(y²+z²+25)/(√(5²+y²+z²)+√((5-x)²+y²+z²))

The minimum value occurs when the partial derivatives are equal to zero.

Therefore, we have the following two equations; x²+y²+(5-z)² = (5-x)²+y²+z² ……………(1)

y²+z²+25 = 5²+y²+z²+2√((5-x)²+y²+z²) ……(2)

Simplify equation (2) : 5√((5-x)²+y²+z²) = 5² - 25 + 2x√((5-x)²+y²+z²)

Squaring both sides25(5-x)² + 25y² + 25z² = 25x² + 625 - 50x

Substituting z = 5-x-y in the above equation

25(2x² - 10x + 25) + 25y² - 50xy = 625 …………….(3)

Now, we have to minimize equation (3) subject to the condition x + y + z = 5.

We will use the Lagrange multiplier method for this.

Let's assume that F(x,y,z,λ) = 25(2x² - 10x + 25) + 25y² - 50xy + λ(5-x-y-z)∂F/∂x = 100x - 250 + λ = 0∂F/∂y = 50y - 50x + λ = 0∂F/∂z = λ - 25 = 0∂F/∂λ = 5 - x - y - z = 0

Solving these equations, we get x = 5/3, y = 5/3, z = 5/3

Now we can substitute these values in equation (1) or (2) to find the minimum value of L(x,y).

Using equation (2), we get25 = 5² + 2√((5/3)²+y²+(5/3)²)√((5/3)²+y²+(5/3)²) = 10/3

Substituting back into the equation for L(x,y) we get L(x,y) = √50+√50+√50=3√50

the minimum value of L(x,y) over all (x,y,z) that satisfy the equation x+y+z=5 is 3√50

Therefore, the formula for L(x, y) is √(5²+y²+z²)+√((5-x)²+y²+z²)+√(x²+y²+(5-z)²).

To learn more about distance click here https://brainly.com/question/15172156

#SPJ11

3) Write the inequality shown by the graph.

Show word or explain how u got the answer. Five star rating and brainliest if helpful.

Answers

The inequality on the graph can be written as:

y ≥ (-1/3)*x + 2

How to find the inequality on the graph?

On the graph we can see a linear inequality, such that the line is solid and the shaded area is above the line, then the inequiality is of the form:

y ≥ line.

Here we can see that the line passes through the point (0, 2), then the line can be.

y = a*x + 2

To find the value of a, we use the fact that the line also passes through (-6, 4), then we will get:

4 = a*-6 + 2

4 - 2= -6a

2/-6 = a

-1/3 = a

The inequality is:

y ≥ (-1/3)*x + 2

Learn more about inequalities at:

https://brainly.com/question/24372553

#SPJ1

00 4k - 1 - 2k - 1 7k 1 11 Σ k = 1 GlN 14 15 26 15 σB G8 12 Determine whether the series converges or diverges. 00 on Σ n = 1 2 + 135 O converges O diverges Use the Alternating Series Test to d

Answers

The series Σn=1 2 + 135 diverges according to the Alternating Series Test.

To determine whether the series converges or diverges, we can apply the Alternating Series Test. This test is applicable to series that alternate in sign, where each subsequent term is smaller in magnitude than the previous term.

In the given series, we have alternating terms: 2, -1, 7, -11, and so on. However, the magnitude of the terms does not decrease as we progress. The terms 2, 7, and 15 are increasing in magnitude, violating the condition of the Alternating Series Test. Therefore, we can conclude that the series Σn=1 2 + 135 diverges.

In conclusion, the given series diverges as per the Alternating Series Test, since the magnitudes of the terms do not decrease consistently.

To learn more about Alternating Series Test click here: brainly.com/question/30400869

#SPJ11








Calculate the volume of a cylinder inclined radius r = 5 inches. 40° with a height of h = 13 inches and circular base of ө 27 h Volume = cubic inches

Answers

To calculate the volume of the inclined cylinder, we can use the formula for the volume of a cylinder, which is:

V = πr^2h

However, since the cylinder is inclined at an angle of 40°, the height of the cylinder will be different from its vertical height of 13 inches. We need to find the height of the cylinder along its slanted side.

Let's draw a cross-sectional diagram of the cylinder:

```
/|
/ | h
/ |
r / |
/ |
/ |
/θ |
/_______|
```

We can see that the height of the cylinder along its slanted side is given by:

h' = h/cos(θ)

where θ is the angle of inclination (40°). Substituting the given values, we get:

h' = 13/cos(40°) ≈ 16.4 inches

Now we can use the formula for the volume of a cylinder to find the volume of the inclined cylinder:

V = πr^2h'
= π(5 in)^2(16.4 in)
≈ 1289.4 cubic inches

Therefore, the volume of the inclined cylinder is approximately 1289.4 cubic inches.

The volume of the inclined cylinder with a radius of 5 inches, an inclination angle of 40 degrees, a height of 13 inches, and a circular base of Ө 27, is approximately 785.39 cubic inches.

To calculate the volume of the inclined cylinder, we can use the formula for the volume of a cylinder: V = πr²h.

However, since the cylinder is inclined at an angle of 40 degrees, the height h needs to be adjusted. The adjusted height can be calculated as h' = h * cos(40°), where h is the original height and cos(40°) is the cosine of the inclination angle.

Given that the radius r is 5 inches and the original height h is 13 inches, we have r = 5 inches and h = 13 inches.

Using the adjusted height h' = h * cos(40°), we can calculate h' = 13 * cos(40°) ≈ 9.94 inches.

Now we can substitute the values of r and h' into the volume formula: V = π * (5²) * 9.94 ≈ 785.39 cubic inches.

To learn more about cylinder click here

brainly.com/question/10048360

#SPJ11

if one of the points of inflection is undefined on the second derivitive is it still a point of inflectoin

Answers

if one of the points of inflection is undefined on the second derivative, it is not considered a point of inflection.

that a point of inflection is where the concavity of a curve changes. This occurs where the second derivative changes sign from positive to negative or vice versa. If the second derivative is undefined at a certain point, it means that the curve has a vertical tangent line there. This indicates a sharp turn in the curve, but it does not necessarily mean that the concavity changes. Therefore, it cannot be considered a point of inflection.

for a point to be considered a point of inflection, the second derivative must exist and change sign at that point. If the second derivative is undefined at a certain point, it cannot be considered a point of inflection.
No, if the second derivative is undefined at a point, that point cannot be considered a point of inflection.

A point of inflection is a point on the graph of a function where the concavity changes. In order to determine whether a point is a point of inflection, you need to analyze the second derivative of the function. A point of inflection occurs when the second derivative changes its sign (from positive to negative, or negative to positive) at that point.

However, if the second derivative is undefined at a particular point, it is impossible to determine whether the concavity changes at that point. Consequently, the point cannot be considered a point of inflection.

If the second derivative is undefined at a point, it cannot be classified as a point of inflection, as there is insufficient information to determine the change in concavity.

To know more about function, visit:

https://brainly.com/question/30721594

#SPJ11

A rectangular mural is 3 feet by 5 feet. Sharon creates a new mural that is 1. 25 feet longer. What is the perimeter of the new mural?

Answers

If Sharon creates a new mural that is 1. 25 feet longer, the perimeter of the new mural is 18.5 feet.

The original mural has dimensions of 3 feet by 5 feet, so its perimeter is given by:

Perimeter = 2 * (Length + Width)

Perimeter = 2 * (3 + 5)

Perimeter = 2 * 8

Perimeter = 16 feet

Sharon creates a new mural that is 1.25 feet longer than the original mural. Therefore, the new dimensions of the mural are 3 + 1.25 = 4.25 feet for the length and 5 feet for the width.

To find the perimeter of the new mural, we use the same formula:

Perimeter = 2 * (Length + Width)

Perimeter = 2 * (4.25 + 5)

Perimeter = 2 * 9.25

Perimeter = 18.5 feet

Therefore, the perimeter of the new mural = 18.5 feet.

Learn more about  perimeter here:

https://brainly.com/question/30740549

#SPJ11

Let {an, be a sequence whose first five terms are lo 3 aj 02 4 03 = 4 04 5 16 6 as= 25 (3a) Identify the pattern in the sequence and find an explicit formula for an an= n+1 2 3+1 - ។ 27 * 3 9 ="

Answers

The explicit formula for [tex]a_n[/tex] is correct. The explicit formula for the given sequence is: [tex]a_n[/tex] = {–7n + 17, for n ≤ 5, 3(n²) – (5/2)n + (5/2), for n > 5}.

The given sequence is as follows:

{[tex]a_n[/tex]} = {10, 3, 2, 4, 3, 4, 5, 16, 6, 25, … }

It is difficult to observe a pattern of the above sequence in one view. Therefore, we will find the differences between adjacent terms in the sequence, which is called a first difference.

{d1,} = {–7, –1, 2, –1, 1, 1, 11, –10, 19, … }

Again, finding the differences of the first difference, which is called a second difference. If the second difference is constant, then we can assume a quadratic sequence, and we can find its explicit formula.  {d2,} = {6, 3, –3, 2, 0, 12, –21, 29, …}

Since the second difference is not constant, the sequence cannot be assumed to be quadratic.  However, we can say that the given sequence is in a combination of two sequences, one is a linear sequence, and the other is a quadratic sequence.Linear sequence: {10, 3, 2, 4, 3, … }

Quadratic sequence: {4, 5, 16, 6, 25, … }

Let’s find the explicit formula for both sequences separately:

Linear sequence: [tex]a_n[/tex] = a1 + (n – 1)d, where a1 is the first term and d is the common difference.     {[tex]a_n[/tex]} = {10, 3, 2, 4, 3, … }The first term is a1 = 10

The common difference is d = –7[tex]a_n[/tex] = 10 + (n – 1)(–7) = –7n + 17

Quadratic sequence: [tex]a_n[/tex] = a1 + (n – 1)d + (n – 1)(n – 2)S, where a1 is the first term, d is the common difference between consecutive terms, and S is the second difference divided by 2.     {[tex]a_n[/tex]} = {4, 5, 16, 6, 25, … }a1 = 4The common difference is d = 1

Second difference, S = 3

Second difference divided by 2, S/2 = 3/[tex]a_n[/tex] = 4 + (n – 1)(1) + (n – 1)(n – 2)(3/2)[tex]a_n[/tex] = 3(n²) – (5/2)n + (5/2)

By comparing the general expression for the given sequence {an,} with the above two equations for the linear sequence and the quadratic sequence, we can say that the given sequence is a combination of the linear and quadratic sequence, i.e.,[tex]a_n[/tex] = –7n + 17, for n = 1, 2, 3, 4, 5,… and  [tex]a_n[/tex] = 3(n²) – (5/2)n + (5/2), for n = 6, 7, 8, 9, 10,…Therefore, the explicit formula for the given sequence is: [tex]a_n[/tex] = {–7n + 17, for n ≤ 5, 3(n²) – (5/2)n + (5/2), for n > 5}

Let's check for the value of a11st part, if n=11[tex]a_n[/tex] = -7(11) + 17= -60

Now let's check for the value of a16 (after fifth term, [tex]a_n[/tex] = 3(n²) – (5/2)n + (5/2))if n=16an = 3(16²) – (5/2)16 + (5/2)= 697

This matches the given value of [tex]a_n[/tex]= 697. Thus, the explicit formula for [tex]a_n[/tex] is correct.

Learn more about sequence :

https://brainly.com/question/30262438

#SPJ11

Other Questions
SOLVE THE FOLLOWING PROBLEMS SHOWING EVERY DETAIL OF YOURSOLUTION. ENCLOSE FINAL ANSWERS.7. Particular solution of (D + 12 D + 36 D)y = 0, when x = 0, y = 0, y' = 1, y" = -7 8. The general solution of y" + 4y = 3 sin 2x 9. The general solution of y" + y = cosx 10. Particular solutio what is the connection between sickle cell anemia and malaria?A) heterozygotes for malaria have some resistance to sickle cell anemiaB) both are dominantC) both sre X-linkedD) Both are autosomal recessiveE) heterozygotes for sickle cell anemia have some resistance to malaria PLES HELP 25POINTS last guy was wrong I cant get it ples give full explanation too please help me!!!!! Calculate the first four terms of the sequence an = n + (n + 1) + (n + 2) + ... + (5n), starting with n = 1.a1 = ?a2 = ?a3 = ?a4 = ? Use the Squeeze Theorem to compute the following limits: 2 (a) (5 points) lim (1-x) cos ( $ (-) (b) (5 points) lim x xe= x-0 (Hint: You may want to start with the fact that since x 0, disney announced plans to integrate 20th century fox into its stable of brands. this was a good example of: 1. Bertrand Competition with Capacity Choices (20 marks)In Bertrand competition with identical firms we have assumed thatfirms do not havecapacity constraints. That is, each firm can serve the whol a team of support users at cloud kicks is helping inside sales reps make follow-up calls to prospects that filled out an interest online. the team currently does not have access to the lead object. how should an administrator provide proper access? Using the spot and outright forward quotes in the table below, determine the corresponding bid ask spreads in points spot One-Month Three-Month Six-Month 1.3501 - 1.3516 1.3512 1.3532 1.3528 - 1.3553 Which of the following would best benefit the development of niche marketing? (Thank you) question down there Fundamental types of data, such as integers and real numbers are known as ________ data types.Group of answer choicesnaturalbasicfundamentalprimitive jamal baked muffins forthe school bake sale. He made 12 corn muffins and 15 blueberry muffins. What is the ratio of the blueberry muffins to all muffins There is a dispute on which union would represent whichemployees. What is the issue? How would you handle it? Ineed help with this Please??Use sigma notation to write the sum. [(+)]()+...+[p(+)]() 2 2+ n i = 1 The following series is not convergent: (8")(10") (7")(9") + 1 n=1 Select one: True False The following series is convergent: n? (:- (-1)-1 n+ n2 +n3 n=1 Select one: True O False If the serie What are non-examples of mimicking Common lateral force resisting systems in heavy timber structures are:a.) Knee braces b.) elevator shaft enclosures c.) diagonal brace d.) a and c only e.) all of these true or false: in java, the condition within parenthesis of an if statement must be a boolean expression or an integer. Summary of Line Integrals: 1) SCALAR Line Integrals: 2) Line Integrals of VECTOR fields: Practice 1. Evaluate (F.Tds, given F =(-x, y) on the parabola x = y* from (0,0) to (4,2).