Answer: The momentum principle depends on MASS and VELOCITY.
Explanation:
The momentum principle states that net force changes the the momentum of an object where momentum is the product of the MASS of the body and it's VELOCITY.
Thus, momentum = mass(kg) ×velocity( m/s)= kgm/s ( derived unit)
Also to determine the rate of change of momentum;
Mass=m, initial velocity =u, final velocity = V and time =t
Initial momentum = mu
Final momentum = mv
Change in momentum = mv - mu
= m( v- u)
Rate of change of momentum=
m( v -u)/t --> equation 1
But V = u + at
Hence, a = v -u/t
Substitute for v -u/ t in equation 1
F = Kma, where k is constant and has the value of 1.
Therefore F = ma
Newton is the SI unit if force. It is defined as the force which gives a mass of 1kg an acceleration of 1 m/s².
IMPULSE is defined as the change of momentum of a body (mv-mu) or the product of force and time.
Thus impulse = force × time = m (v-u)
The unit is Ns ( Newton seconds) which is the same as change in momentum.
helpppppppppppppppppppppppppppp............
an object is moving with initial velocity of 5 m/s. After 10 seconds final velocity is 10 m/s. Calculate its acceleration.
Answer:
0.5 m/s 2 is the acceleration
Explanation:
hope it helped!!!
One way to probe the nucleus is to bombard a sample with high-energy electrons. To learn about the nuclear structures in a sample, the de Broglie wavelengths of these electrons would need to be a little smaller than a nuclear radius. Estimate the energy of such electrons. Give your answer in electron-volts. (Assume that the wavelength used is about 9.0 fm.) eV
Answer:
E = 1.38 x 10⁸ eV = 138 MeV
Explanation:
The energy associated with the given wavelength can be found from the following formula:
[tex]E = \frac{hc}{\lambda}[/tex]
where,
E = Energy of electron = ?
h = Plank's Constant = 6.625 x 10⁻³⁴ J.s
c = Speed of Light = 3 x 10⁸ m/s
λ = wavelength = 9 fm = 9 x 10⁻¹⁵ m
Therefore,
[tex]E = \frac{(6.625\ x\ 10^{-34}\ J.s)(3\ x\ 10^8\ m/s)}{9\ x\ 10^{-15}\ m}\\\\E = (2.21\ x\ 10^{-11}\ J)(\frac{1\ eV}{1.6\ x\ 10^{-19}\ J})[/tex]
E = 1.38 x 10⁸ eV = 138 MeV
Anatomy and Phys PLEASE HELP
Identify at least two STDs that are caused by different microorganisms (such as bacteria, viruses, and so on). Propose at least two ethical strategies for helping to prevent these STDs OTHER THAN abstinence and male and female condoms.
least two STDs that are caused by different microorganisms (such as bacteria, viruses, and so on). Propose at least two ethical strategies for helping to prevent these STDs OTHER THAN abstinence and male and female condoms.
Answer:
Explanation:
Chlamydia is a bacterial infection that affects the reproductive system in a myriad of nasty and invasive ways, including pain during micturition, genital discharge, and spreading to the rectum and eyes. Other than safe sex practices and abstinence, ways to prevent and treat Chlamydia are antibiotics for both partners (if they're both infected) and surgical intervention in severe cases.
Trichomoniasis is a parasitic sexually transmitted disease that infects women but can affect men during intercourse, women who are infected are more likely to suffer from pain in the vaginal area during moments including micturition and intercourse as foul-smelling discharge. The more concerning aspect of this disease is how women afflicted are more likely to give premature birth and spread the infection to the baby upon birth. Much like Chlamydia, Trichomoniasis can be prevented via safe-sex practices and abstinence, but it can also be treated by antibiotics for both sexual partners to prevent spreading it between them.
A uniform ladder of length 10.8 m is leaning against a vertical frictionless wall. The weight of the ladder is 323 N, and it makes an angle of 1.16 radians with the floor. A man weighing 734 N climbs slowly up the ladder. When he has climbed to a point that is 7.46 m from the base of the ladder (measured along the ladder), the ladder starts to slip. Find the coefficient of static friction between the floor and the ladder.
Answer:
0.3625
Explanation:
From the given information:
Consider the equilibrium conditions;
On the ladder, net torque= 0
Thus,
[tex]\tau_{net} = 0[/tex]; and
[tex]-fL \s in \theta +m_L g \dfrac{L}{2} cos \theta + mg (7.46\ m) cos \theta = 0[/tex]
However, by rearrangement;
[tex]fL \s in \theta =m_L g \dfrac{L}{2} cos \theta + mg (7.46\ m) cos \theta \\ \\ \mu(m_L + m) gL \ sin \theta = (323 \ N) ( 10.8 \ meters) \ cos 56^0 + (734 \ N) (7.46 \ m) \ cos \ 66.46^0[/tex]
[tex]\mu= \dfrac{ (323 \ N) ( 10.8 \ m) \ cos 56^0 + (734 \ N) (7.46 \ m) \ cos \ 66.46^0}{\Big [(323 \ N)+(734 \ N) \Big] (10.8 \ m)}[/tex]
[tex]\mathbf{\mu= 0.3625 }[/tex]
A student is giving a presentation to a class describing magnetic and electric fields in a region of space. First, the student describes what happens when there is a constant magnetic field in the region of space. Then, the student describes what happens when there is a time-dependent magnetic field in the region of space. Which of the following a correct description by the student abo what occurs when the magnetic field changes from being constant to being time dependent?
a. When the magnetic field is constant, there is only a magnetic field in the region of space. When the magnetic field is time dependent, there will be both a magnetic field and an electric field in the region of space.
b. When the magnetic field is constant, there will be both a magnetic field and an electric field in the region of space. When the magnetic field is time dependent, there is only a magnetic field in the region of space.
с. In both situations, there will be both a magnetic field and an electric field in the region of space. In both situations, there will only be a magnetic field in the region of space. If the magnetic field is not constant over the region, then there will be both a magnetic field and an electric field in the region of space
d. In both situations there will only be a magnetic field in the region of space. If the magnetic field is not constant over the region, there will still be only a magnetic field in the region of space.
Answer:
a. When the magnetic field is constant, there is only a magnetic field in the region of space. When the magnetic field is time dependent, there will be both a magnetic field and an electric field in the region of space.
Explanation:
This is true because according to Maxwell's equation, a time dependent magnetic field produces an electric field.
When the magnetic field is constant, there is no electric field in that region of space. But, when it begins to vary, an electric field is then generated by Maxwell's equation which is given by
CurlE = -dB/dt
So, there is initially no electric field when the magnetic field is constant, but it exists when the magnetic field becomes time dependent.
So when dB/dt = 0
CurlE = 0 ⇒ E = 0
So when dB/dt ≠ 0
CurlE ≠ 0 ⇒ E ≠ 0
In an NMR experiment, the RF source oscillates at 34 MHz and magnetic resonance of the hydrogen atoms in the sample being in- vestigated occurs when the external field Bext has magnitude 0.78 T. Assume that Bint and Bext are in the same direction and take the pro- ton magnetic moment component u, to be 1.41 X 10-26 J/T. What is the magnitude of Bint?
Answer:
[tex]B_{int}=-0.015T[/tex]
Explanation:
From the question we are told that:
RF source oscillation speed [tex]\sigma= 34 MHz[/tex]
The external field [tex]Bext =0.78 T[/tex].
Pro- ton magnetic moment component [tex]\mu=1.41 X 10-26 J/T[/tex]
Generally the equation for magnitude of [tex]B_{int}[/tex] is mathematically given by
[tex]B_{int}=B_{ext}-\frac{h\triangle \sigma}{2 \mu}[/tex]
[tex]B_{int}=0.78-\frac{6.6*10^{-34}*34*10^6}{2*1.41*10^{26}}[/tex]
[tex]B_{int}=0.78-0.7957[/tex]
[tex]B_{int}=-0.015T[/tex]
What makes astronomers think that impact rates for the Moon must have been higher earlier than 3.8 billion years ago?
Answer: See explanation
Explanation:
The reason why astronomers think that the rates of impact for the Moon must have been higher earlier than 3.8 billion years ago is because on the older highlands, there are ten times more craters than on the younger maria.
It is believed that the impact rate was higher earlier and thus can be seen when the numbers of the craters that can be seen on the lunar highlands is being compared to that on the maria. It should be noted that there are about 10 times more craters that can be found on the highlands than those on the maria.
If there was a constant rate of impact throughout the history of the Moon, then the highlands be about 10 times older and therefore will have been formed about 38 billion years ago.
No file link please
In this equation, what shows that transmutation has taken place?
242 Cm – 328 Pu + He
A. There is conservation of both nucleons and atoms.
B. The nucleus of an atom changes
C. It involves more than one element
D. The number of atoms is conserved,but the number of nucleons is not
Object X of mass 4 kg travels with a speed of 3 ms toward object Y of mass 2 kg that is initially at rest. Object X then collides with and sticks to object Y . After the collision, object X and object Y remain stuck together. How much mechanical energy is converted into nonmechanical energy during the collision?
The nonmechanical energy or the loss of energy after the collision will be equal to [tex]E=6\ J[/tex]
What is the conservation of momentum?The conservation of the momentum is defined as when two bodies collide with each other then the total energy of the masses will remain constant.
It is given in the question that
Mass of the body X is [tex]M_X=4\ kg[/tex]
The velocity of the body X is =[tex]V_x=3 \ \frac{m}{s}[/tex]
Mass of the body Y is [tex]M_Y= 2\ kg[/tex]
The velocity of body Y is [tex]V_y= 0[/tex]
Now to find out the energy converted after the collision we will first find the final velocity of both the bodies.
Now from the conservation of the momentum
[tex]M_X V_X +M_YV_Y=(M_X+M_Y)V_F[/tex]
[tex](4\times 3)+(2\times0)=(4+2)\times V_F[/tex]
[tex]V_F= \dfrac{12}{6}[/tex]
[tex]V_F = 2 \frac{m}{s}[/tex]
Now to find the Change in the energy of the body
[tex]\Delta E=E_i-E_f[/tex]
[tex]\Delta E=\dfrac{1}{2} M_XV_X^2+\dfrac{1}{2} M_YV_Y^2-\dfrac{1}{2} (M_X+M_Y)V_F^2[/tex]
[tex]\Delta E=\dfrac{1}{2} (4)(3^2)+\dfrac{1}{2} (2)(0^2)-\dfrac{1}{2} ( 4+2) 2^2[/tex]
[tex]\Delta E= 6\ J[/tex]
Thus the nonmechanical energy or the loss of energy after the collision will be equal to [tex]E=6\ J[/tex]
To know more about the collision follow
https://brainly.com/question/7694106
One method for determining the amount of corn in early Native American diets is the stable isotope ratio analysis (SIRA) technique. As corn photosynthesizes, it concentrates the isotope carbon-13, whereas most other plants concentrate carbon-12. Overreliance on corn consumption can then be correlated with certain diseases, because corn lacks the essential amino acid lysine. Archaeologists use a mass spectrometer to separate the 12 C and 13 C isotopes in samples of human remains. Suppose you use a velocity selector to obtain singly ionized (missing one electron) atoms of speed 8.50 km/s, and you want to bend them within a uniform magnetic field in a semicircle of diameter 25.0 cm for the 12 C. The measured masses of these isotopes are 1.99×10−26kg(12C) and 2.16×10−26kg(13C).
(a) What strength of magnetic field is required?
(b) What is the diameter of the 13 C semicircle?
(c) What is the separation of the 12 C and 13 C ions at the detector at the end of the semicircle? Is this distance large enough to be easily observed?
Answer:
[tex]0.0084575\ \text{T}[/tex]
[tex]0.272\ \text{m}[/tex]
2.2 cm easily observable
Explanation:
[tex]m_1[/tex] = Mass of 12 C = [tex]1.99\times 10^{-26}\ \text{kg}[/tex]
[tex]m_2[/tex] = Mass of 13 C = [tex]2.16\times 10^{-26}\ \text{kg}[/tex]
[tex]r_1[/tex] = Radius of 12 C = [tex]\dfrac{25}{2}=12.5\ \text{cm}[/tex]
B = Magnetic field
v = Velocity of atom = 8.5 km/s
[tex]r_2[/tex] = Radius of 13 C
The force balance of the system is
[tex]qvB=\dfrac{m_1v^2}{r}\\\Rightarrow B=\dfrac{m_1v}{rq}\\\Rightarrow B=\dfrac{1.99\times 10^{-26}\times 8500}{12.5\times 10^{-2}\times 1.6\times 10^{-19}}\\\Rightarrow B=0.0084575\ \text{T}[/tex]
The required magnetic field is [tex]0.0084575\ \text{T}[/tex]
Radius is given by
[tex]r=\dfrac{mv}{qB}[/tex]
[tex]r\propto m[/tex]
So
[tex]\dfrac{r_2}{r_1}=\dfrac{m_2}{m_1}\\\Rightarrow r_2=\dfrac{m_2}{m_1}r_1\\\Rightarrow r_2=\dfrac{2.16\times 10^{-26}}{1.99\times 10^{-26}}\times 12.5\times 10^{-2}\\\Rightarrow r_2=0.136\ \text{m}[/tex]
The required diameter is [tex]2\times 0.136=0.272\ \text{m}[/tex]
Separation is given by
[tex]2(r_2-r_1)=2(0.136-0.125)=0.022\ \text{m}[/tex]
The distance of separation is 2.2 cm which is easily observable.
An experiment is performed on an unknown material and produces the given heat curve. The temperature of the material is shown as a function of heat added. Other experiments determine that the material has a temperature of fusion of fusion=235 °C and a temperature of vaporization of vapor=471 °C.
If the sample of material has a mass of =9.80 g, calculate the specific heat when this material is a solid, s, and when it is liquid, l.
The specific heat of the solid phase is 0.333 joules per gram-degree Celsius.
The specific heat of the liquid phase is 0.593 joules per gram-degree Celsius.
In this case, we need to determine that specific heat for solid and liquid states of matter. By Heat Physics, we understand that specific heat is contained in the slopes of the two sensible phases in the following form:
[tex]\frac{\Delta T}{\Delta Q} = \frac{1}{m\cdot c}[/tex] (1)
Where:
[tex]\Delta T[/tex] - Temperature change, in degrees Celsius.[tex]\Delta Q[/tex] - Heat received, in joules.[tex]m[/tex] - Mass of the sample, in grams.[tex]c[/tex] - Specific heat of the sample, in joules per kilogram-degrees Celsius.Solid phase
If we know that [tex]m = 9.80\,g[/tex], [tex]T_{1} = 40\,^{\circ}C[/tex], [tex]T_{2} = 235\,^{\circ}C[/tex], [tex]Q_{1} = 183\,J[/tex] and [tex]Q_{2} = 819\,J[/tex], then the specific heat of the solid phase is:
[tex]c = \frac{\Delta Q}{m\cdot \Delta T}[/tex]
[tex]c = \frac{819\,J-183\,J}{(9.80\,g)\cdot (235\,^{\circ}C - 40\,^{\circ}C)}[/tex]
[tex]c = 0.333\,\frac{J}{g\cdot ^{\circ}C}[/tex]
The specific heat of the solid phase is 0.333 joules per gram-degree Celsius.
Liquid phase
If we know that [tex]m = 9.80\,g[/tex], [tex]T_{3} = 230\,^{\circ}C[/tex], [tex]T_{4} = 471\,^{\circ}C[/tex], [tex]Q_{3} = 1470\,J[/tex] and [tex]Q_{4} = 2870\,J[/tex], then the specific heat of the liquid phase is:
[tex]c = \frac{\Delta Q}{m\cdot \Delta T}[/tex]
[tex]c = \frac{2870\,J - 1470\,J}{(9.80\,g)\cdot (471\,^{\circ}C - 230\,^{\circ}C)}[/tex]
[tex]c = 0.593\,\frac{J}{g\cdot ^{\circ}C}[/tex]
The specific heat of the liquid phase is 0.593 joules per gram-degree Celsius.
We kindly invite you to see this question related to specific heat: https://brainly.com/question/11194034
Drag each tile to the correct box.
Adam takes a bus on a school field trip. The bus route is split into the five legs listed in the table. Find the average velocity for each leg of the trip. Then arrange the legs of the trip from highest velocity to lowest.
Leg Distance (km) Time (min)
A 18 9
B 25 15
C 24 8
D 48 12
E 15 7
Answer:
E
A
C
B
D
Explanation:
The activity of a radioisotope is found to decrease 40% of its original value in 2.59 x 10 s.
Calculate the decay constant of the radioisotope.
Answer: [tex]0.0353\ s^{-1}[/tex]
Explanation:
Given
Radioactive material is found to decrease 40% of its original value in [tex]2.59\times 10\ s[/tex]
Sample at any time is given by
[tex]N=N_oe^{-\lambda t}[/tex]
where, [tex]\lambda=\text{decay constant}[/tex]
Put values
[tex]\Rightarrow 0.4N_o=N_oe^{-\lambda\cdot 2.59\times 10}\\\Rightarrow 0.4=e^{-\lambda\cdot 2.59\times 10[/tex]
Taking natural logarithm both side
[tex]\Rightarrow \lambda=\dfrac{\ln 2.5}{25.9}\\\\\Rightarrow \lambda =0.0353\ s^{-1}[/tex]
A 10 kg migratory swan cruises at 20m/s. A calculation that takes into ac-count the necessary forces shows that this motion requires 200W of mechanical power. If we assume an efficiency similar to humans (say, 25%), a reasonableassumption, then the metabolic power of the swan is significantly higher thanthis. The swan does not stop to eat during a long day of flying; it get theenergy it needs from fat stores. Assuming an efficiency similar to humans, after12 hours of flight.
Required:
a. How far has the swan traveled?
b. How much metabolic energy has it used?
c. What fraction of its body mass does it lose?
Answer:
Part A:
Distance=864000 m=864 km
Part B:
Energy Used=ΔE=8638000 Joules
Part C:
[tex]\frac{\triangle m}{m}=0.004998=0.49985\%[/tex]
Explanation:
Given Data:
v=20m/s
Time =t=12 hours
In Secs:
Time=12*60*60=43200 secs
Solution:
Part A:
Distance = Speed**Time
Distance=v*t
Distance= 20*43200
Distance=864000 m=864 km
Part B:
Energy Used=ΔE= Energy Required-Kinetic Energy of swans
Energy Required to move= Power Required*time
Energy Required to move=200*43200=8640000 Joules
Kinetic Energy=[tex]\frac{1}{2}mv^2[/tex]
[tex]K.E\ of\ Swans=\frac{1}{2} *10*(20)^2=2000\ Joules[/tex]
Energy Used=ΔE=8640000 -2000
Energy Used=ΔE=8638000 Joules
Part C:
Fraction of Mass used=Δm/m
For This first calculate fraction of energy used:
Fraction of energy=ΔE/Energy required to move
ΔE is calculated in part B
Fraction of energy=8638000/8640000
Fraction of energy=0.99977
Kinetic Energy=[tex]\frac{1}{2}mv^2[/tex]
Now, the relation between energies ratio and masses is:
[tex]\frac{\triangle E}{E}=\frac{\triangle m}{2m}v^2[/tex]
[tex]\frac{\triangle m}{m}=\frac{2}{v^2} *\frac{\triangle E}{E}\\\frac{\triangle m}{m}=\frac{2}{20^2} *0.99977[/tex]
[tex]\frac{\triangle m}{m}=0.004998=0.49985\%[/tex]
Another word for kinetic energy
could be
energy.
A. Safe
B. Moving
C. Stored
D. Potential
Answer:
moving
Explanation:
hope it helped!!!
Answer:
B
Explanation:
Types of telescope
for Space
observation
Answer:The three main types are reflecting telescopes, refracting telescopes, and catadioptric telescopes. Radio telescopes collect and focus radio waves from distant objects. Space telescopes orbit Earth, collecting wavelengths of light that are normally blocked by the atmosphere.
Answer:
oii me manda mensagem fofo vc tem namorada fofo
Which of the following should a warm up NOT include?
Select one:
A. A few minutes of cardiovascular exercise
B. A light version of the exercise you will be performing
C. Intense stretching
D. All of the above should be included in a warm up
Two vectors have magnitudes 3 and 4 . how are the directions of the two vectors related if: a/the sum has magnitude 7.0
Which of the following types of electromagnetic radiation has waves with the highest frequency ? A. Infrared radiation B. Visible light c. Microwaves D. X-rays
PLS HELP.
A rope breaks when the speed of a 0.309 kg mass moving in a circle of radius of 0.429 m reaches 12.9 m/s
how much tension is in the strings when it breaks?
unti=n
120 works for acellus
Answer: 119.9
Explanation:
F = (mv^2)/r
Here we know m (0.309kg), v (12.9m/s) and r (0.429m)
So F = (0.309*12.9^2)/0.429 = 119.861748
A compact fluorescent bulb is 17.0% efficient. How much energy input would be required for the bulb to produce 252 J of light energy?
What time of energy is the waste output and how much would be created?
Help
Answer:
1482.35J
Explanation:
Efficency=(output energy/input energy) x100
17.0 =(252/input energy) x100
input energy =100x252/17=1482.35J
wasted energy=1482.35-252=1230.35J
Which of the following best describes Earth's crust, according to the theory of plate tectonics?
Answer:
the Earth's crust is broken into about 12 plates that float on hotter, softer rocks in the underlying mantle
Explanation:
What is the answer to this?
Answer:
B
Explanation:
Answer:
B
Explanation:
please help with both questions I’m giving all my points :) it’s 23 and 24
X-rays have wavelengths between 0.1 to 10 nanometers (x10-9). What is the range of its frequency?
3x1017-3x1015 Hz
3x10, 18, -3x10, 16, Hz
3x1018-3x1017 Hz
3x1017-3x1016 Hz
how does gravity affect objects of different mass close to earth, and how does that effect change as an object moves farther from earth?
Answer:
It makes it lighter when its closer and heavier when its farther way.
Explanation:
Choose the correct statement regarding the sign conventions for lenses.
a. The focal length f is positive for diverging lenses.
b. Virtual images appear on same side of the lens as the object and have a negative value for the image distance.
c. Real images appear on the opposite side of the lens from the object and have a negative value for the image distance.
d. The focal length f is negative for converging lenses.
e. Virtual images appear on same side of the lens as the object and have a positive value for the image distance.
Answer:
a) false
b) True
c) True
d) False
e) False
Explanation:
a) False
For a diverging lens, the focal length is negative while it is positive for a converging lens
b) True
Image distances for virtual images are always negative and it also forms on the the same side of the lens as the object and is enlarged
c) True
d) False
For a diverging lens, the focal length is negative while it is positive for a converging lens
e) False
Image distances for virtual images are always negative and it also forms on the the same side of the lens as the object and is enlarged
Jack has a weight of 300 N and sits 2.0 m from the pivot of see - saw. Jill has a weight of 450 N and sits 1.5 m from pivot. Who will move down?
Answer:
Jill will move down first
Explanation:
A football is thrown down off of a building with a force of 70
Newtons. Gravity is pulling down the football with a force of
19 Newtons. What is the net force on the football?
Answer:
89 N downward.
Explanation:
Both forces are working in the same direction -- down.
Therefore you can add them together.
F = F1 + F2
F is the total force
F1 is the gravitational force
F2 is the force the person provides
F1 = 19
F2 = 70
F = ?
F = 19 + 70
F = 89 Newtons downward.
Answer:
wE dONt taLk aBt brunooooOoooOoOo ;')
Explanation: