Activity 2: The Electron Transport Chain (7 points) Draw a diagram of the electron transport chain. 1. Label each complex and their substrate. (2.5 points) 2. Label the mitochondrial matrix, the inner

Answers

Answer 1

The overall reaction of ATP synthesis and proton flow can be represented as:

ADP + Pi + H+ (proton flow) → ATP

The inner mitochondrial membrane is home to a number of protein complexes that make up the electron transport chain. Among these complexes are:

The substrate for Complex I (NADH dehydrogenase) is NADH.

The substrate for Complex II (Succinate Dehydrogenase) is succinate.

Cytochrome BC1 Complex, or Complex III: Ubiquinol (QH2) is the substrate.

Cytochrome c oxidase, or Complex IV Cytochrome c is the substance.

The intermembrane space and the mitochondrial matrix are separated by the inner mitochondrial membrane, which is the space inside the inner mitochondrial membrane.

Electrons go through the complexes during electron transport in the following order: Complex I, Q pool, Complex III, cytochrome c, and Complex IV. At Complexes I, III, and IV, protons (H+) are pushed out of the mitochondrial matrix and into the intermembrane gap. Complex I, Complex III, and Complex IV are the complexes that support the proton-motive force. Proton migration produces an electrochemical gradient that propels the production of ATP.

F(o) and F1 are the two primary parts of the ATP synthase. The inner mitochondrial membrane contains F(o), which enables the passage of protons back into the matrix. F1 is found in the mitochondrial matrix and uses the energy from the proton flow to create ATP from ADP and inorganic phosphate (P(i)).

To know more about electron transport chain:

https://brainly.com/question/13672481

#SPJ4


Related Questions

What volume (in mL) of a beverage that is 10.5% by mass of
sucrose (C12H22O11) contains 78.5 g of sucrose? (Density of the
solution 1.04 g/mL).

Answers

To determine the volume of a beverage containing 78.5 g of sucrose, we need to calculate the volume based on the given density of 1.04 g/mL and the answer is 717.55 mL.

The mass percentage of a solute in a solution is calculated by dividing the mass of the solute by the total mass of the solution and multiplying by 100%. In this case, we are given that the beverage contains 10.5% by mass of sucrose (C12H22O11), and we need to find the volume of the beverage.

First, we calculate the mass of the solution by dividing the mass of sucrose by its mass percentage:

Mass of solution = Mass of sucrose / Mass percentage of sucrose

Mass of solution = 78.5 g / (10.5/100) = 747.62 g

Next, we can use the density of the solution to calculate the volume:

Volume of solution = Mass of solution / Density of solution

Volume of solution = 747.62 g / 1.04 g/mL = 717.55 mL

Therefore, the volume of the beverage containing 78.5 g of sucrose is approximately 717.55 mL.

Learn more about sucrose here: https://brainly.com/question/25432315

#SPJ11

23 Question (2 points) Compare the fuel values for one mole of benzene (C6H6) and three moles of acetylene (C₂H2). Compound C6H6( C2H2(8) 0₂(8) CO₂(g) H₂O(0) 1st attempt AH (kJ/mol) 49.0 226.7

Answers

The enthalpy change for the combustion of one mole of benzene (C₆H₆) is -3218.4 kJ/mol, while for three moles of acetylene (C₂H₂) it is -2145.6 kJ/mol. Therefore, benzene has a lower fuel value compared to acetylene based on their enthalpy changes during combustion.

To compare the fuel values for one mole of benzene (C₆H₆) and three moles of acetylene (C₂H₂), we need to calculate the enthalpy change (ΔH) for the combustion reactions of both compounds. The balanced chemical equations for the combustion reactions are as follows:

Benzene (C₆H₆):

C₆H₆ + 15O₂ → 6CO₂ + 3H₂O

Acetylene (C₂H₂):

2C₂H₂ + 5O₂ → 4CO₂ + 2H₂O

To calculate the enthalpy change for each reaction, we need to multiply the coefficients of the products and reactants by their respective standard enthalpies of formation (Δ[tex]H_f[/tex]) and sum them up. The standard enthalpies of formation for CO₂ and H₂O are -393.5 kJ/mol and -285.8 kJ/mol, respectively.

For benzene (C₆H₆):

ΔH = (6 × ΔHf(CO₂)) + (3 × ΔHf(H₂O))

   = (6 × -393.5 kJ/mol) + (3 × -285.8 kJ/mol)

   = -2361 kJ/mol + -857.4 kJ/mol

   = -3218.4 kJ/mol

For acetylene (C₂H₂):

ΔH = (4 × ΔHf(CO₂)) + (2 × ΔHf(H₂O))

   = (4 × -393.5 kJ/mol) + (2 × -285.8 kJ/mol)

   = -1574 kJ/mol + -571.6 kJ/mol

   = -2145.6 kJ/mol

Therefore, the enthalpy change (ΔH) for the combustion of one mole of benzene (C₆H₆) is -3218.4 kJ/mol, and for three moles of acetylene (C₂H₂) is -2145.6 kJ/mol.

From the given data, we can conclude that the fuel value (enthalpy change) for one mole of benzene is lower (more negative) than the fuel value for three moles of acetylene.

To know more about the combustion reactions refer here,

https://brainly.com/question/14521417#

#SPJ11

What mass of sucrose (C12H22O11) should be combined with 461 g
of water to make a solution with an osmotic pressure of 9.00 atm at
305 K ? The density of the solution is 1.08 g/mL

Answers

To calculate the mass of sucrose needed to make a solution with a specific osmotic pressure, we can use the formula for osmotic pressure and the given information.

The formula for osmotic pressure (π) is:

π = MRT

Where:

π = osmotic pressure

M = molarity of the solute

R = ideal gas constant (0.0821 L·atm/(mol·K))

T = temperature in Kelvin

In this case, we need to find the mass of sucrose (C12H22O11) that should be combined with 461 g of water to achieve an osmotic pressure of 9.00 atm at 305 K.

First, let's calculate the molarity (M) of the sucrose solution using the given information:

Molarity (M) = moles of solute / volume of solution (in liters)

Since we're working with a solution with a known density, we can calculate the volume of the solution using the mass of water and its density:

Volume of solution = Mass of water / Density of solution

Volume of solution = 461 g / 1.08 g/mL

Volume of solution ≈ 427.04 mL

Converting the volume of solution to liters:

Volume of solution = 427.04 mL × (1 L / 1000 mL)

Volume of solution ≈ 0.42704 L

Now, let's substitute the known values into the osmotic pressure formula and solve for the molarity:

9.00 atm = M × (0.0821 L·atm/(mol·K)) × 305 K

M = 9.00 atm / (0.0821 L·atm/(mol·K) × 305 K)

M ≈ 0.3804 mol/L

Since the molarity (M) is equal to moles of solute per liter of solution, we can calculate the moles of sucrose needed:

Moles of sucrose = M × Volume of solution

Moles of sucrose = 0.3804 mol/L × 0.42704 L

Moles of sucrose ≈ 0.1625 mol

Finally, we can calculate the mass of sucrose using its molar mass:

Molar mass of sucrose (C12H22O11) = 342.3 g/mol

Mass of sucrose = Moles of sucrose × Molar mass of sucrose

Mass of sucrose = 0.1625 mol × 342.3 g/mol

Mass of sucrose ≈ 55.66 g

Therefore, approximately 55.66 grams of sucrose should be combined with 461 grams of water to make a solution with an osmotic pressure of 9.00 atm at 305 K.

To know more about sucrose visit:

https://brainly.com/question/24655338

#SPJ11

1. Determine the poles, calculate the e.m.f. and write the overall global reaction of the following galvanic cell at 25°C: Pt | NaNO3 (0.1 M), NO (1 atm), pH = 3.2 || CdCl2 (5 x 10-3 M) | Cd Estimate

Answers

The galvanic cell consists of the following electrodes and solutions: Pt | NaNO3 (0.1 M), NO (1 atm), pH = 3.2 || CdCl2 (5 x 10-3 M) | Cd. The overall global reaction, e.m.f., and poles of this cell can be determined.

The poles of the galvanic cell are platinum (Pt) as the cathode and cadmium (Cd) as the anode. The e.m.f. and overall global reaction can be calculated using the Nernst equation and the half-cell reactions at each electrode. In the given cell, the Pt electrode serves as the cathode where reduction takes place. The half-cell reaction is NO + 2H+ + 2e- → NO(g) + H2O. The Cd electrode acts as the anode where oxidation occurs. The half-cell reaction is Cd → Cd2+ + 2e-. By combining these half-cell reactions, we can write the overall global reaction for the galvanic cell: 2NO + 4H+ + Cd → 2NO(g) + Cd2+ + 2H2O.

To calculate the e.m.f., we can use the Nernst equation: Ecell = E°cell - (RT / nF) ln(Q), where Ecell is the cell potential, E°cell is the standard cell potential, R is the gas constant, T is the temperature in Kelvin, n is the number of moles of electrons transferred, F is Faraday's constant, and Q is the reaction quotient. By plugging in the appropriate values and calculating, we can determine the e.m.f. of the cell.

Learn more about galvanic cell here: brainly.com/question/30268944

#SPJ11

4. Consider the nitrogen configuration 1s²2s²2p³. Find the total orbital and spin quantum numbers. Apply Hund's rules to determine what values of L are not possible.

Answers

The total orbital quantum number (L) for the nitrogen configuration 1s²2s²2p³ can take the values of 0, 1, or 2. Applying Hund's rules, the values of L that are not possible can be determined.

The electron configuration 1s²2s²2p³ for nitrogen implies that there are 3 unpaired electrons in the 2p sublevel. According to Hund's rules, these electrons will occupy separate orbitals within the 2p sublevel, each with the same spin. This means that the spin quantum number (S) will be 1/2 for each electron.

To find the total orbital quantum number (L), we need to consider the values of the individual orbital quantum numbers (l) for each electron in the 2p sublevel. The possible values for l in the 2p sublevel are -1, 0, and 1, corresponding to the px, py, and pz orbitals, respectively. The total orbital quantum number (L) is the sum of the individual orbital quantum numbers, which in this case is -1 + 0 + 1 = 0.

According to Hund's rules, the values of L that are not possible are the ones that violate the rule of maximum multiplicity. Since there are three unpaired electrons, the maximum multiplicity is achieved when the electrons occupy orbitals with the same l value, resulting in L = 0. Therefore, values of L other than 0 are not possible in this configuration.

To learn more about quantum number: -brainly.com/question/32773003

#SPJ11

A.)How much heat is required to raise the
temperature of 88.0 gg of water from its melting point to its
boiling point?
Express your answer numerically in kilojoules
B.) Calculate the mass percent (m/m

Answers

To calculate the amount of heat required to raise the temperature of 88.0 g of water from its melting point to its boiling point, we need to determine the heat energy needed for each phase transition and the heat energy needed to raise the temperature within each phase. The answer should be expressed numerically in kilojoules.

1. Melting: The heat required to raise the temperature of ice (water at its melting point) to 0°C is given by the equation Q = mcΔT, where Q is the heat energy, m is the mass, c is the specific heat capacity of ice (2.09 J/g°C), and ΔT is the change in temperature. In this case, the change in temperature is 0 - (-100) = 100°C. Calculate the heat required for this phase transition.

2. Heating within the liquid phase: The heat required to raise the temperature of liquid water from 0°C to 100°C is given by the equation Q = mcΔT, where c is the specific heat capacity of liquid water (4.18 J/g°C), and ΔT is the change in temperature (100°C - 0°C). Calculate the heat required for this temperature range.

3. Boiling: The heat required to convert liquid water at 100°C to steam at 100°C is given by the equation Q = mL, where m is the mass and L is the heat of vaporization (2260 J/g). Calculate the heat required for this phase transition.

4. Sum up the heat values calculated in steps 1, 2, and 3 to find the total heat energy required to raise the temperature of 88.0 g of water from its melting point to its boiling point.

To express the answer numerically in kilojoules, convert the total heat energy from joules to kilojoules by dividing by 1000.

To know more about melting point click here:

https://brainly.com/question/20551307

#SPJ11

i
need help for question b and c. tq
Question 2 (10 Marks) Figure 4 shows a steel plate specimen. Actual model FEA model Figure 2 (a) Comment on the mesh in FEA model shown in Figure 2. Then, highlight how you can improve the mesh. (Your

Answers

The mesh appears to be coarse with large element sizes, resulting in a lower level of detail and accuracy in the analysis.

To improve the mesh, several steps can be taken. Firstly, refining the mesh by reducing the size of the elements will provide a higher level of detail and accuracy. This can be done by increasing the number of elements in the areas of interest, such as around holes, corners, or regions with high stress gradients.

Secondly, using different element types, such as quadratic or higher-order elements, can enhance the mesh quality and capture more accurately the behavior of the steel plate. Lastly, performing a mesh sensitivity analysis, where the mesh is gradually refined and the results are compared, can help identify the appropriate mesh density required for the desired level of accuracy in the analysis. This coarse mesh may lead to inaccurate stress and strain predictions, especially in areas with complex geometry or high stress concentrations.


To learn more about elements click here: brainly.com/question/8460633

#SPJ11

I need help finding what A B C and D are and how to explain
it..
Experiment 21 C. Four acid and base unknowns. 1. Give your scheme (see Prelaboratory Exercise 5) for identifying the four solutions and observations. Include prediction and observation matrices. Be su

Answers

In Experiment 21C, the four acid and base unknowns must be identified, and their observations noted. Here is a possible scheme for identifying the four solutions and observations:

To begin with, carefully note the color and texture of each solution, as well as any smell. Then, using the pH meter, record the pH of each solution and determine whether it is acidic or alkaline. Write the recorded values on the prediction matrix.

Perform an acid-base titration experiment for each solution by mixing it with a standard NaOH solution. Record the volume of NaOH solution required to neutralize each acid and base solution. Write the recorded values on the observation matrix.

Use the data from the pH test and the acid-base titration to identify the four unknowns. Determine whether each solution is a strong or weak acid or base by comparing its pH and titration data with standard values. Write the identified solutions on the observation matrix.

Check the observations for consistency and accuracy. Check to see if all of the predicted values are consistent with the measured values. If the values are not consistent, perform additional experiments to clarify the properties of the unknowns.

To learn more about observations, refer below:

https://brainly.com/question/9679245

#SPJ11

when 85.0ml of nitric acid reacts with 150.0ml of 3.00m barium
hydroxide (excess)in a constant pressure calorimeter ,the
temperature of the mixture increases by 5.5 degrees celsius
.calculate the mola

Answers

Given,Volume of nitric acid = 85.0 mLVolume of barium hydroxide = 150.0 mL Concentration of barium hydroxide = 3.00 MΔT = 5.5°CThe molar heat of reaction (ΔH) is calculated using the following formula:

Heat (q) = number of moles (n) × molar heat of reaction (ΔH) × temperature change (ΔT)Number of moles (n) of the limiting reactant (nitric acid) is calculated using the following formula:

n = CVn

[tex]= (85.0 mL / 1000 mL/L) × (1 L / 1000 cm3) × (16.00 g/mL / 63.01 g/mol)n = 0.001346 molΔH[/tex]

= q / (n × ΔT)We know,

[tex]q = C p × m × ΔT[/tex]

where C p = specific heat of the  = 1.84 J/(g°C)m = mass of the solution = density × volumeDensity of nitric acid = 1.42 g/cm3.

Mass of nitric acid

= Density × Volume

[tex]= 1.42 g/cm3 × 85.0 mL × (1 L / 1000 mL)[/tex]

= 3.00 M × 150.0 mL × (1 L / 1000 mL) × 171.34 g/mol

To know more about Concentration visit:

https://brainly.com/question/13872928

#SPJ11

need answer ASAP
Can be refereed to as salt bridges The result of electrons being temporarily unevenly 1. London Forces distributed 2. Dipole-Dipole Attractions Between an ionic charge 3. Hydrogen Bonding and a polar

Answers

Salt bridges can be referred to as the result of electrons being temporarily unevenly distributed between an ionic charge and a polar molecule due to London forces, dipole-dipole attractions, and hydrogen bonding.

In a salt bridge, ions from an ionic compound, such as salt, interact with polar molecules in a solution. These interactions can occur through different types of intermolecular forces. One such force is London dispersion forces, which are caused by temporary fluctuations in electron distribution that create temporary dipoles. These forces can occur between any molecules, including ions and polar molecules.

Dipole-dipole attractions also play a role in salt bridge formation. These attractions occur between the positive end of a polar molecule and the negative end of another polar molecule. In the case of a salt bridge, the ionic charge of the ion attracts the partial charges on the polar molecules, leading to the formation of the bridge.

Additionally, hydrogen bonding can contribute to the formation of salt bridges. Hydrogen bonding occurs when a hydrogen atom is bonded to an electronegative atom, such as oxygen or nitrogen, and interacts with another electronegative atom. This type of bonding can occur between the hydrogen of a polar molecule and an ion, reinforcing the salt bridge.

Overall, salt bridges are formed through a combination of London forces, dipole-dipole attractions, and hydrogen bonding, allowing for the temporary uneven distribution of electrons between ionic charges and polar molecules.

Learn more about salt bridges here:

https://brainly.com/question/28083011

#SPJ11

Why does tempering cause a decrease in tensile
strength?

Answers

Tempering causes a decrease in tensile strength due to the relaxation of internal stresses and the formation of larger grains, which can lead to reduced dislocation density and increased ductility of the material.

When a metal undergoes tempering, it is heated to a specific temperature and then cooled at a controlled rate. This heat treatment process aims to improve the toughness and ductility of the material. However, one of the effects of tempering is a decrease in tensile strength.

During the tempering process, the internal stresses in the metal are relieved. These stresses may have been introduced during previous manufacturing processes, such as quenching or cold working. As the metal is heated, the atoms have more mobility, allowing them to move and rearrange themselves, thus reducing the internal stresses. As a result, the material becomes less prone to fracture under tension.

Additionally, tempering leads to the formation of larger grains in the metal. This occurs as a result of grain growth, where smaller grains merge together to form larger ones. Larger grain size reduces the dislocation density within the material, which can contribute to decreased strength but increased ductility. Dislocations are line defects in the crystal lattice that can impede the movement of atoms and contribute to the material's strength. With fewer dislocations, the material becomes more ductile but less resistant to deformation under tension.

Overall, tempering causes a decrease in tensile strength due to the relaxation of internal stresses and the formation of larger grains, leading to reduced dislocation density and increased ductility of the material.

Learn more about Tempering

https://brainly.com/question/1625846

#SPJ11

Draw the condensed structure of \( 1,2,3 \)-butanetriamine. Click anywhere to draw the first atom of your structure.

Answers

The condensed structure of 1,2,3-butanetriamine is written as follows: NH2-CH2-CH2-CH2-NH-CH2-CH2-CH2-NH2

Now let's break down the structure and explain how it is derived:

Start with the basic skeleton of butane, which consists of four carbon atoms in a chain:

CH2-CH2-CH2-CH2

Replace one hydrogen atom on each end of the chain with an amino group (-NH2). This substitution results in the addition of two nitrogen atoms:

NH2-CH2-CH2-CH2-NH2

Next, we need to add an additional amino group to the central carbon atom. This means that one of the hydrogen atoms on the second carbon needs to be replaced by an amino group:

NH2-CH2-CH2-CH2-NH-CH2-CH2-CH2-NH2

In conclusion, the condensed structure of 1,2,3-butanetriamine is NH2-CH2-CH2-CH2-NH-CH2-CH2-CH2-NH2. Each NH2 group represents an amino group (-NH2), and the chain consists of four carbon atoms.

To know more about NH2 , visit;

https://brainly.com/question/32064441

#SPJ11

Provide the key fragment structures of the mass spectrometry
data. The possible molecular formula is:
C5H9O2Br
Relative Intensity 100 80 40 20- o fim 20 40 60 80 Titr 100 120 m/z 140 160 180 200 15.0 28.0 37.0 38.0 39.0 42.0 43.0 49.0 50.0 51.0 52.0 61.0 62.0 63.0 73.0 74.0 75.0 76.0 77.0 89.0 90.0 91.0 91.5 1

Answers

Mass spectrometry is a scientific technique used for the identification of unknown compounds, determination of isotopic composition, and determination of the structure of compounds, among others. The fragments generated in mass spectrometry can help in determining the molecular formula of the compound. In this case, the key fragment structures of the mass spectrometry data with a possible molecular formula of C5H9O2Br are as follows:

15.0, 28.0, 37.0, 38.0, 39.0, 42.0, 43.0, 49.0, 50.0, 51.0, 52.0, 61.0, 62.0, 63.0, 73.0, 74.0, 75.0, 76.0, 77.0, 89.0, 90.0, 91.0, 91.5

The relative intensity of each of the fragments is also given as 100, 80, 40, 20, and so on. The relative intensity of each fragment provides information about the abundance of that fragment in the sample.

The molecular formula C5H9O2Br indicates that the compound has 5 carbon atoms, 9 hydrogen atoms, 2 oxygen atoms, and 1 bromine atom. By analyzing the fragment structures and their relative intensity, we can propose the following possible fragment structures:

- 15.0: CH3O2Br
- 28.0: C2H5Br
- 37.0: C2H5O2
- 38.0: C2H6Br
- 39.0: C2H6O
- 42.0: C3H5OBr
- 43.0: C3H5O
- 49.0: C4H9Br
- 50.0: C4H10O2
- 51.0: C4H9O2Br
- 52.0: C4H10O
- 61.0: C5H9O
- 62.0: C5H10Br
- 63.0: C5H10O
- 73.0: C5H9BrO2
- 74.0: C5H10O2Br
- 75.0: C5H9O2
- 76.0: C5H10BrO
- 77.0: C5H9BrO
- 89.0: C5H9BrO2
- 90.0: C5H10O2Br
- 91.0: C5H9O2Br
- 91.5: C5H10BrO

To know more about Mass spectrometry visit:

https://brainly.com/question/5020187

#SPJ11

15.20 a) Propose a mechanism for the following transformation, and explain why the product shown is the major product. CI 1) MeMgBr(2 equiv.) 2) NH4CI, H₂O

Answers

The proposed mechanism for the given transformation involves the addition of MeMgBr (methyl magnesium bromide) followed by treatment with NH4Cl and water. The major product obtained is determined by the electrophilic and nucleophilic character of the reactants involved.

Addition of MeMgBr (methyl magnesium bromide):

MeMgBr, also known as methyl magnesium bromide, is a strong nucleophile and reacts with the electrophilic carbon in the starting compound. In this case, it will attack the carbonyl carbon of the ketone, resulting in the formation of a magnesium alkoxide intermediate.

Treatment with NH4Cl and water:

The next step involves the addition of NH4Cl and water. Ammonium chloride (NH4Cl) and water provide the conditions for hydrolysis of the intermediate. This hydrolysis leads to the formation of an alcohol.

The major product obtained from the given transformation is an alcohol. The addition of MeMgBr as a strong nucleophile attacks the carbonyl carbon, forming a magnesium alkoxide intermediate. Subsequent hydrolysis of this intermediate in the presence of NH4Cl and water results in the formation of the alcohol product. The specific product structure will depend on the starting compound and the specific conditions of the reaction.

To know more about NH4Cl , visit;

https://brainly.com/question/32440518

#SPJ11

QUESTION 15 Which of the following is the strongest acid? Fluorine is bolded for contrast. 0 Н 0000 A В H2 D A он CHF₂ B OH Н С C OH H3C H2 D 0 OH

Answers

The correct option is D (H3C-H2-D).

The strongest acid among the following options is H3C-H2-D. The strength of the acid depends on the stability of its conjugate base. A stronger acid has a more stable conjugate base. In other words, a stronger acid loses its proton more easily and forms a more stable conjugate base.

Thus, the order of acidity among the given options can be arranged as follows:H3C-H2-D > OH-H2O > OH-CHF2 > OH-CH3 > H2O > H-Thus, H3C-H2-D is the strongest acid among the given options. It has the highest tendency to donate its proton (H+) because it has the weakest C-H bond and a very weak bond between H and D.

This makes it easier to break the H-D bond and release the proton, resulting in a stronger acid than the other options. the correct option is D (H3C-H2-D).

To know about acid visit:

https://brainly.com/question/29796621

#SPJ11

QUESTION 14 How many grams of platinum are in a 180.1-gram sample of PtCl 2? The molar mass of PtCl 2 is 265.98 g/mol. 0.007571 g OO 132.1 g 396.3 g 245.6 g 127.9 g

Answers

In a 180.1-gram sample of PtCl2, there are approximately 127.9 grams of platinum.

To calculate the grams of platinum in a sample of PtCl2, we need to consider the molar mass ratio between platinum (Pt) and PtCl2. The molar mass of PtCl2 is given as 265.98 g/mol.

Using the molar mass ratio, we can calculate the grams of platinum as follows:

Grams of platinum = (Molar mass of Pt / Molar mass of PtCl2) * Sample mass

Grams of platinum = (195.08 g/mol / 265.98 g/mol) * 180.1 g

Calculating this expression:

Grams of platinum ≈ 0.75 * 180.1 g

Grams of platinum ≈ 135.075 g

Therefore, in a 180.1-gram sample of PtCl2, there are approximately 127.9 grams of platinum.

Learn more about ratio here :

https://brainly.com/question/13419413

#SPJ11

SECTION B (2 Long answer multipart questions. Each question is worth 10 marks) (Answer all questions) 3. Analysis by HPLC-ESI-HRTOFMS a) HPLC is well suited to analysing mixtures of non volatile chemi

Answers

HPLC (High-Performance Liquid Chromatography) is well suited for analyzing mixtures of non-volatile chemicals due to its ability to separate and quantify various components based on their chemical properties and retention times.

HPLC is a widely used analytical technique for separating, identifying, and quantifying components in complex mixtures. It is particularly suitable for analyzing non-volatile chemicals that cannot be easily vaporized or volatilized for analysis using gas chromatography (GC). In HPLC, the sample is dissolved in a liquid solvent (mobile phase) and passed through a column packed with a stationary phase. The components in the sample interact differently with the stationary phase, resulting in their separation.

The advantages of HPLC for analyzing non-volatile mixtures are:

Versatility: HPLC can handle a wide range of compounds, including non-volatile polar, non-polar, acidic, basic, and chiral compounds. It provides flexibility in choosing the appropriate separation mechanism and column chemistry based on the target analytes.Sensitivity: HPLC detectors, such as UV-Vis, fluorescence, and electrochemical detectors, offer high sensitivity, allowing for the detection and quantification of low levels of non-volatile compounds.Selectivity: HPLC can achieve high selectivity by using different stationary phases or adjusting the composition of the mobile phase. This selectivity allows for the separation of closely related compounds in complex mixtures.Quantification: HPLC provides accurate quantification of individual components in a mixture by comparing their peak areas or heights with appropriate calibration standards. This quantitative analysis is essential for determining the concentration of non-volatile compounds.

Learn more about HPLC (High-Performance Liquid Chromatography): https://brainly.com/question/30915499

#SPJ11

CH 3 1 What is the name of CH3 - CH - CH2 - CH2 - CH3?
CH3 .. What is the name of CH3 - C- CH2 - CH3? I CH3
What is the IUPAC name of 5 CH3 1,2-dichloro-3-methylpentane 1,2-dichloro-3-methylcyclopen

Answers

The name of CH3 - CH - CH2 - CH2 - CH3 is Pentane Pentane is an organic compound that belongs to the alkanes family with the molecular formula C5H12.

The structural formula is CH3CH2CH2CH2CH3. The five-carbon chain of the pentane hydrocarbon compound is unbranched.2. The name of CH3 - C- CH2 - CH3 is ButaneButane is a colorless, odorless, and flammable gas that belongs to the alkane family with the chemical formula C4H10. Its structural formula is CH3CH2CH2CH3. The four-carbon chain of the butane hydrocarbon is unbranched.3. The IUPAC name of 5 CH3 1,2-dichloro-3-methylpentane is 5-chloro-2,2-dichloro-3-methylpentaneWhen the numbering is done from the end closest to the first substituent in 5-CH3-1,2-dichloro-3-methylpentane, the locants become 5,2-di-chloro-3-methylpentane, with the prefix di-chloro being single bonded. The name then becomes 5-chloro-2,2-di-chloro-3-methylpentane. Therefore, the IUPAC name of 5 CH3 1,2-dichloro-3-methylpentane is 5-chloro-2,2-di-chloro-3-methylpentane.

for more such questions on  PentanePentane

https://brainly.com/question/29274559

#SPJ8

a solution of rubbing alcohol is 76.3%(v/v)
isopropanol in water how many isopropanol are in a 76.7mL sample of
the rubbing alcohol solution EXPRESS YOUR ANSWER TO THREE
SIGNIFICANT FIGURES
A solution of rubbing alcohol is 76.3 % (v/v) isopropanol in water. How many milliliters of isopropanol are in a 76.7 mL sample of the rubbing alcohol Express your answer to three significant figures.

Answers

There is 58.4 of isopropanol are in a 76.7 mL sample of the rubbing alcohol.

A solution of rubbing alcohol is 76.3% (v/v) isopropanol in water

Volume of solution = 76.7 mL

We have to find: How many milliliters of isopropanol are in a 76.7 mL sample of the rubbing alcohol?

To solve this problem, we need to find the volume of isopropanol in the given rubbing alcohol solution.

We can do this by using the formula:

%(v/v) = volume of solute ÷ volume of solution× 100

Now, rearrange the formula to get the volume of solute:

%(v/v) × volume of solution = volume of solute

Now, substitute the given values:

%(v/v) = 76.3%,

volume of solution = 76.7 mL

Volume of isopropanol in the given solution = %(v/v) × volume of solution

= 76.3/100 × 76.7= 58.44 mL

Thus, the volume of isopropanol in a 76.7 mL sample of the rubbing alcohol solution is 58.44 mL (to three significant figures).

Answer: 58.4 mL.

To know more about solute, visit:

https://brainly.com/question/8851236

#SPJ11

pls show work
Calculate the pH of a buffer solution that is 0.253 M in HCN and 0.171 M in KCN. For HCN, Ka=4.9x10-10 (pka = 9.31). pH = Submit 195) ΑΣΦ Request Answer GWIC ?

Answers

The pH of the buffer solution can be calculated using the Henderson-Hasselbalch equation. For the given buffer solution with concentrations of 0.253 M HCN and 0.171 M KCN, and the pKa value of HCN (9.31), the pH is approximately 9.03.

The Henderson-Hasselbalch equation relates the pH of a buffer solution to the concentrations of the acid and its conjugate base. It is given by:

pH = pKa + log([A-]/[HA])

In this case, HCN is the acid (HA) and CN- is its conjugate base (A-). The pKa of HCN is 9.31.

Using the given concentrations, we have:

[HA] = 0.253 M (concentration of HCN)

[A-] = 0.171 M (concentration of CN-)

Plugging the values into the Henderson-Hasselbalch equation, we get:

pH = 9.31 + log(0.171/0.253)

≈ 9.03

Therefore, the pH of the buffer solution is approximately 9.03.

Learn more about buffer solutions here: brainly.com/question/31367305

#SPJ11

Why do the indicated protons have differing acidities on the two
molecules - despite the two structures having the same molecular
weight?
The ketone is less acidic than the alkane because it has a resonance structure destablized by electronic effects. The ketone is more acidic than the alkane because it has fewer protons. The ketone Is

Answers

The indicated protons have differing acidities on the two molecules, despite having the same molecular weight, because of the presence of different structural features and electronic effects.

1. Ketone vs. Alkane: The ketone is less acidic than the alkane because it has a resonance structure destabilized by electronic effects. The presence of the carbonyl group in the ketone allows for resonance stabilization, which disperses the electron density and reduces the availability of the proton for acid dissociation. Therefore, the acidity of the proton in the ketone is decreased compared to the proton in the alkane.

2. Ketone vs. Alkane: The ketone is more acidic than the alkane because it has a carbonyl group, which is an electron-withdrawing group. The electronegative oxygen atom in the carbonyl group withdraws electron density from the adjacent carbon atom, making the proton bonded to that carbon more acidic. In contrast, the alkane does not have any electron-withdrawing groups and is therefore less acidic.

In summary, the differing acidities of the indicated protons on the ketone and alkane can be attributed to the presence of resonance stabilization and electron-withdrawing effects in the ketone, which reduce the availability of the proton for acid dissociation.

To know more about indicated protons click here:

https://brainly.com/question/32631852

#SPJ11

(iii) What would be the effect on the retention time and order of eluting if the \( C_{18} \) column is substituted with a -CN column? [3 marks]

Answers

When a C18 column is substituted with a -CN column, the retention time and order of eluting change. The -CN column will improve polar separation compared to the C18 column. Let's learn more about it. Polar and non-polar analytes can be separated using a -CN column due to their non-polar surface. The retention time on a -CN column will be shorter than on a C18 column because the -CN column is less polar and therefore less retentive.

A mobile phase that is less polar will be used in -CN columns than in C18 columns. Elution order, on the other hand, may change as a result of the substitution. Some of the polar molecules that eluted first in the C18 column may elute last in the -CN column. It is possible that the elution order will remain the same for some molecules.

to know more about retention time here:

brainly.com/question/30802980

#SPJ11

The decomposition of dinitrogen pentaoxide has an activation
energy of 102 kJ/mol and ΔH°rxn = + 55 kJ/mol.
What is the activation energy for the reverse reaction?
Select one:
a. 27 kJ/mol
b. 47 kJ/

Answers

The activation energy for the reverse reaction is 47 kJ/mol.(Option B )

The activation energy for the reverse reaction is 47 kJ/mol.

The decomposition reaction of dinitrogen pentoxide is:

N2O5 (g) → 2 NO2 (g) + 1/2 O2 (g)

The activation energy of the forward reaction = 102 kJ/mol

The enthalpy change (ΔH) of the forward reaction = +55 kJ/mol

The activation energy of the reverse reaction = ?

The activation energy of the reverse reaction is determined by the enthalpy change (ΔH) of the reverse reaction and the activation energy of the forward reaction using the relationship:

ΔHrxn = activation energy forward - activation energy reverse

Rearranging this equation:

Activation energy reverse = activation energy forward - ΔHrxn= 102 kJ/mol - (+55 kJ/mol)= 47 kJ/mol

To know more about activation energy visit:

https://brainly.com/question/28384644

#SPJ11

Iron can be extracted from the iron(III) oxide found in iron
ores (such as haematite) via an oxidation-reduction reaction with
carbon. The thermochemical equation for this process is:
2Fe2O3(s)+3C(s)�

Answers

Approximately 799.6 kJ of heat is needed to convert 268 g of Fe2O3 into pure iron, and when 8.08x10^3 kJ of heat is added, around 0.9654 kg of Fe can be produced.

The heat required to convert 268 g of Fe2O3 into pure iron in the presence of excess carbon is approximately 799.6 kJ. When 8.08x10^3 kJ of heat is added to Fe2O3 in the presence of excess carbon, approximately 24.06 kg of Fe can be produced.

To calculate the heat required to convert 268 g of Fe2O3 into pure iron, we first need to determine the moles of Fe2O3. The molar mass of Fe2O3 is 159.69 g/mol, so the number of moles of Fe2O3 is:

n(Fe2O3) = mass / molar mass

        = 268 g / 159.69 g/mol

        ≈ 1.677 mol

From the balanced equation, we can see that the ratio of moles of Fe2O3 to moles of Fe is 2:4, which means that for every 2 moles of Fe2O3, 4 moles of Fe are produced. Therefore, the number of moles of Fe produced is:

n(Fe) = (1.677 mol Fe2O3) × (4 mol Fe / 2 mol Fe2O3)

     = 3.354 mol

Next, we calculate the heat required using the molar enthalpy change (ΔH) provided in the thermochemical equation:

Heat = n(Fe) × ΔH

    = 3.354 mol × 467.9 kJ/mol

    ≈ 1579.3 kJ

Therefore, the heat required to convert 268 g of Fe2O3 into pure iron in the presence of excess carbon is approximately 1579.3 kJ.

To determine how many kilograms of Fe can be produced when 8.08x10^3 kJ of heat is added, we use the inverse calculation. First, we calculate the moles of Fe using the molar enthalpy change:

n(Fe) = Heat / ΔH

     = (8.08x10^3 kJ) / (467.9 kJ/mol)

     ≈ 17.29 mol

Next, we convert the moles of Fe to grams using the molar mass of Fe, which is 55.845 g/mol:

mass(Fe) = n(Fe) × molar mass(Fe)

        = 17.29 mol × 55.845 g/mol

        ≈ 965.4 g

Finally, we convert grams to kilograms:

mass(Fe in kg) = 965.4 g / 1000

              ≈ 0.9654 kg

Therefore, when 8.08x10^3 kJ of heat is added to Fe2O3 in the presence of excess carbon, approximately 0.9654 kg of Fe can be produced.

To learn more about molar mass click here: brainly.com/question/31545539

#SPJ11

Iron can be extracted from the iron(III) oxide found in iron ores (such as haematite) via an oxidation-reduction reaction with carbon. The thermochemical equation for this process is: 2 Fe2O3(8) + 3 C(s) → 4 Fe(1) + 3 CO2(g) ΔΗ +467,9 kJ How much heat (in kJ) is needed to convert 268 g Fe,0, into pure 2. iron in the presence of excess carbon? kJ When 8.08x1o kJ of heat is added to Fe,O, in the presence of excess carbon, how many kilograms of Fe can be produced ? kg

One glucose molecule results in how many acetyl CoA molecules? Provide your answer below:

Answers

One glucose molecule results in two acetyl CoA molecules.

Glucose undergoes a series of metabolic pathways, primarily glycolysis and the citric acid cycle (also known as the Krebs cycle or TCA cycle), to produce energy in the form of ATP. During glycolysis, one glucose molecule is broken down into two molecules of pyruvate. Each pyruvate molecule then enters the mitochondria, where it undergoes further oxidation in the citric acid cycle.

In the citric acid cycle, each pyruvate molecule is converted into one molecule of acetyl CoA. Since one glucose molecule produces two molecules of pyruvate during glycolysis, it follows that one glucose molecule generates two molecules of acetyl CoA in the citric acid cycle.

Acetyl CoA serves as a crucial intermediate in cellular metabolism. It is involved in various metabolic processes, including the generation of ATP through oxidative phosphorylation, the synthesis of fatty acids, and the production of ketone bodies. The breakdown of glucose into acetyl CoA is a vital step in extracting energy from glucose molecules and provides the building blocks for several other metabolic pathways.

Learn more about fatty acids here:

https://brainly.com/question/31037029

#SPJ11

3&4 please
2 K/U Explain the difference between a stable isotope and a radioisotope. Provide an example other than oxygen to support your answer. 3 K/U Examine the information represented by the following pairs:

Answers

A stable isotope is a non-radioactive isotope that doesn't undergo any decay in its nucleus over time, whereas a radioisotope is a radioactive isotope that undergoes radioactive decay over time by emitting radiation. A simple difference is that the former is safe to handle while the latter is radioactive and harmful to human health.

An example of a stable isotope is carbon-12 (12C), which is commonly found in nature, while carbon-14 (14C) is an example of a radioisotope that is used in radiocarbon dating.

Other than oxygen, an example of a stable isotope is Neon-20 (20Ne), which is used as an inert gas in lighting and welding applications. An example of a radioisotope is cobalt-60 (60Co), which is used in radiotherapy to treat cancer.

to know more about isotopes here:

brainly.com/question/28039996

#SPJ11

For each of the following, generate a TABLE. A. The types of chemical bonds that may contribute to each of the four levels of protein structure, and whether each level or protein structure can be predicted from the protein’s amino acid sequence.

Answers

The table below outlines the types of chemical bonds that contribute to each level of protein structure, along with the predictability of each level from the protein's amino acid sequence.

Proteins have four levels of structure: primary, secondary, tertiary, and quaternary. The primary structure is determined by the sequence of amino acids linked together by peptide bonds. It can be predicted from the protein's amino acid sequence.

Secondary structure refers to local folding patterns, such as alpha helices and beta sheets, stabilized mainly by hydrogen bonds between the backbone atoms. While some aspects of secondary structure can be predicted from the amino acid sequence, it is not always possible to determine the exact conformation.

Tertiary structure involves the overall three-dimensional folding of a single polypeptide chain. It is influenced by various types of bonds, including disulfide bonds between cysteine residues, hydrogen bonds, ionic interactions, and hydrophobic interactions. Predicting the tertiary structure solely from the amino acid sequence is challenging and often requires additional experimental techniques.

Quaternary structure refers to the arrangement of multiple polypeptide chains in a protein complex. It is stabilized by similar types of bonds as tertiary structure and can also be partially predicted from the amino acid sequence.

Overall, while the primary structure is predictable, the higher levels of protein structure (secondary, tertiary, and quaternary) are more complex and their prediction from the amino acid sequence alone is challenging. Experimental techniques such as X-ray crystallography or nuclear magnetic resonance spectroscopy are often required to determine the precise structure of proteins.

Learn more about chemical bonds here:

https://brainly.com/question/6071754

#SPJ11

The radioactive isotope 206/81TI decays by beta
emission.
If the mass of a sample of thallium-206 decays
from 93.3 micrograms to
46.7 micrograms in
4.19 minutes, what is the
half-life of thallium-206?

Answers

The half-life of thallium-206 is approximately 6.60 minutes.

To calculate the half-life of thallium-206, we can use the formula for radioactive decay:

N(t) = N₀ × (1/2)^(t / T₁/₂)

Where N(t) is the final amount, N₀ is the initial amount, t is the time elapsed, and T₁/₂ is the half-life.

In this case, the initial mass of the thallium-206 sample is 93.3 micrograms (N₀), the final mass is 46.7 micrograms (N(t)), and the time elapsed is 4.19 minutes (t).

Plugging in these values into the formula, we can solve for the half-life (T₁/₂):

46.7 = 93.3 × (1/2)^(4.19 / T₁/₂)

Dividing both sides by 93.3, we get:

(46.7 / 93.3) = (1/2)^(4.19 / T₁/₂)

Taking the logarithm (base 1/2) of both sides, we have:

log₂(46.7 / 93.3) = 4.19 / T₁/₂

Rearranging the equation to solve for the half-life, we get:

T₁/₂ = 4.19 / log₂(46.7 / 93.3)

Calculating the value using a calculator or computer, the half-life of thallium-206 is approximately 6.60 minutes.

Learn more about thallium-206 here:

https://brainly.com/question/32894339

#SPJ11

A coffee cup calorimeter with a heat capacity of 4.70 J/°C was used to measure the change in enthalpy of a precipitation reaction. A 50.0 mL solution of 0.360 M AgNO3 was mixed with 50.0 mL of 0.200 M KCl. After mixing, the temperature was observed to increase by 1.58 °C. Calculate the enthalpy of reaction, ΔHrxn, per mole of precipitate formed (AgCl). Assume the specific heat of the product solution is 4.11 J/(g·°C) and that the density of both the reactant solutions is 1.00 g/mL. Calculate the theoretical moles of precipitate formed from AgNO3 (left) and KCl (right). Calculate the heat change experienced by the calorimeter contents, qcontents. Calculate the heat change experienced by the calorimeter, qcal. Calculate the heat change produced by the solution process, qsolution. Using the mole values calcuated above, calulate ΔHsolution for one mole of precipitate formed.

Answers

The enthalpy of reaction (ΔHrxn) per mole of precipitate formed (AgCl) in the given precipitation reaction is approximately -89.3 kJ/mol.

To calculate the enthalpy of reaction per mole of precipitate formed (ΔHrxn), we need to consider several steps and calculate the relevant heat changes.

1. Calculate the moles of precipitate formed:

The moles of AgNO3 can be calculated using the formula n = C × V, where C is the molar concentration and V is the volume. Substituting the values, we find n(AgNO3) = 0.360 mol and n(KCl) = 0.200 mol.

2. Calculate the heat change experienced by the calorimeter contents (qcontents):

Using the formula q = m × C × ΔT, where m is the mass, C is the specific heat, and ΔT is the temperature change, we find qcontents = 4.70 J/°C × 1.58 °C = 7.426 J.

3. Calculate the heat change experienced by the calorimeter (qcal):

Since the calorimeter and its contents have the same heat capacity, qcal = qcontents = 7.426 J.

4. Calculate the heat change produced by the solution process (qsolution):

qsolution = qcal + qcontents = 7.426 J + 7.426 J = 14.852 J.

5. Calculate ΔHsolution for one mole of precipitate formed:

ΔHsolution = qsolution / (n(AgCl) + n(H2O)), where n(AgCl) is the moles of AgCl formed and n(H2O) is the moles of water formed. Since AgCl is the precipitate, all the moles of AgNO3 will react to form AgCl. Therefore, n(AgCl) = n(AgNO3) = 0.360 mol. The moles of water formed can be calculated from the balanced equation. For every mole of AgCl formed, one mole of water is also formed. Therefore, n(H2O) = n(AgCl) = 0.360 mol.

Substituting the values, we find ΔHsolution = 14.852 J / (0.360 mol + 0.360 mol) = -41.25 J/mol.

To convert the value to kJ/mol, we divide by 1000:

ΔHsolution = -41.25 J/mol / 1000 = -0.04125 kJ/mol.

Therefore, the enthalpy of reaction per mole of precipitate formed (AgCl) is approximately -0.04125 kJ/mol or -89.3 kJ/mol (rounded to three significant figures).

To learn more about precipitation reaction click here: brainly.com/question/24846690

#SPJ11

In the latter part of the animation, the charges do recombine
when electrons move from the n-type semiconductor to the p-type
semiconductor. What do the electrons travel through to make that
change?

Answers

In the latter part of the animation, the charges do recombine when electrons move from the n-type semiconductor to the p-type semiconductor. Electrons travel through the p-n junction to make this change.

When the n-type semiconductor and p-type semiconductor are connected together, a p-n junction is formed. In the p-n junction, electrons diffuse from the n-type semiconductor to the p-type semiconductor. These electrons fill the holes in the p-type semiconductor that are created by the absence of electrons.

This diffusion of electrons results in the formation of a depletion region, which is an area of the p-n junction where there are no free charge carriers.

In the latter part of the animation, the electrons move from the n-type semiconductor to the p-type semiconductor through the depletion region. As the electrons move through the depletion region, they recombine with the holes in the p-type semiconductor.

This recombination process results in the transfer of energy from the electrons to the holes, which causes the emission of light. The light that is emitted during this process is the basis for the operation of light-emitting diodes (LEDs). Hence, electrons travel through the p-n junction to make this change.

Learn more about semiconductor here:

https://brainly.com/question/29850998

#SPJ11

Other Questions
Problem #7 (5 points-chapter 7) Hamiltonian of the one-dimensional quantum harmonic oscillator is given 2 Px ++/+mwx = 2m Calculate the average potential and the kinetic energy of the oscillato Dynamic tax scoringWhat is it, and who wantsit? Go to and search forinformation on "dynamic tax scoring." What is it? How does itrelate to supply-side economics? Which political g A contractor manufacturing company purchased a production equipment for $450,000 to meet the specific needs of a customer that had awarded a 4-year contract with the possibility of extending the contract for another 4 years. The company plans to use the MACRS depreciation method for this equipment as a 7-year property for tax purposes. The combined income tax rate for the company is 24%, and it expects to have an after-tax rate of return of 8% for all its investments. The equipment generated a yearly revenue of $90,000 for the first 4 years. The customer decided not to renew the contract after 4 years. Consequently, the company decided to sell the equipment for $220,000 at the end of 4 years. Answer the following questions, (a) Show before tax cash flows (BTCF) from n= 0 to n=4 (b) Calculate depreciation charges (c) Compute depreciation recapture or loss (d) Find taxable incomes and income taxes (e) Show after-tax cash flows (ATCF). (f) Determine either after tax NPW or after-tax rate of return for this investment and indicate if the company obtained the expected after-tax rate of retum 12. 2 points Capacitive susceptance decreases as frequency increases O a. True O b. False 13. 2 points The amplitude of the voltage applied to a capacitor affects its capacitive reactance. O a. True O b. False 14. 2 points For any given ac frequency a 10 F capacitor will have more capacitive reactance than a 20 F capacitor. O a. TrueO b. False 15. 2 points In a series capacitive circuit, the smallest capacitor has the largest voltage drop. O a. True O b. False 16. 2 points In a parallel capacitive circuit all capacitors store the same amount of charge O a. True O b. False Secondary auditory cortices are thought to give rise to which streams of processing?a.Dorsal where stream and ventral what streamb.Ventral where stream and dorsal what streamc.Dorsal sound localization stream and ventral complex sound analysis streamd.A & C Solve the system of equation by the method of your choice if the the system has a unique solution, type in that answer as an ordered triple. If the system is inconsistebt or dependent type in "no solutio"-4x-6z=-12-6x-4y-2z = 6x + 2y + z = 9 Question 34 ATP Hydrolysis describes the O H20 in mucle The reduction of H20 to balance high energy phosphate reactions O The oxidation of H2O to balance high energy phosphate reactions lactate format The function f(x) = (x - tan x)/ {x^{3}} has a hole at the point (0, b). Find b. Population 1. Randomly mating population with immigration and emigration Population 2. Large breeding population without mutation and natural selection Population 3. Small breeding population without immigration and emigration Population 4. Randomly mating population with mutation and emigration Which of the populations given above may be at genetic equilibrium? a. 1 b. 2 C. d. 4 28 The coronary arteries supply blood to the cardiac muscle. Which of the following may occur in otherwise nealthy cardiac muscle after alcoronary artery is blocked? a decrease in pH a reduction in Kr Design a column with an effective length of 22 ft tosupport a dead load of 65 klb, a live load of 110 klb, and a windload of 144 klb. Select the lightest W14 made of steel.Jack C. McCormac book pro The probability density function for the diameter of a drilled hole in millimeters is 10e^(-10(x-5)) for x > 5 mm. Although the target diameter is 5 millimeters, vibrations, tool wear, and other nuisances produce diameters greater than 5 millimeters. a. Draw the probability distribution curve. b. Determine the probability that the hole diameter is 5 to 5.1mm c. Determine the expected diameter of the drilled hole. d. Determine the variance of the diameter of the holes. Determine the cumulative distribution function. e. Draw the curve of the cumulative distribution function. f. Using the cumulative distribution function, determine the probability that a diameter exceeds 5.1 millimeters. You then make a screen to identify potential mutants (shown as * in the diagram) that are able to constitutively activate Up Late operon in the absence of Red Bull and those that are not able to facilitate E. Coli growth even when fed Red Bull. You find that each class of mutations localize separately to two separate regions. For those mutations that prevent growth even when fed Red Bull are all clustered upstream of the core promoter around -50 bp. For those mutations that are able to constitutively activate the operon in the absence of Red Bull are all located between the coding region of sleep and wings. Further analysis of each DNA sequence shows that the sequence upstream of the promoter binds the protein wings and the region between the coding sequence of sleep and wings binds the protein sleep. When the DNA sequence of each is mutated, the ability to bind DNA is lost. Propose a final method of gene regulation of the Up Late operon using an updated drawn figure of the Up Late operon.How do you expect the ability of sleep to bind glucuronolactone to affect its function? What evidence do you have that would lead to that hypothesis? How would a mutation in its glucuronolactone binding domain likely affect regulation at this operon? Associate andsummarize the ethical values related to engineering practices inthe PK-661 crash. The agency relationship occurs when one or more individuals(principal) hire another individual (agent) to perform services on behalf of the principal.1. The causes of agency problems;and( 3 answers needed)2) How to reduce agency problems in a company.( 3 answers needed) You have a sample of a polymer based material that you are asked to characterize. Explain, briefly, how you would determine 1) if the polymer is in fact a thermoset, 2) how much filler is in it and 3) what the filler is, 4) what antioxidants and UV absorbents are present and in what quantity, 5) if there is dye or pigment coloring the material and whether or not it is the filler, and 6) how you would identify what thermoset it is. If you propose using an instrument or technique you need to specify what you will be measuring and how it will provide the required information. Projections from the opposite side of the brain(contralateral) innervate these LGN layers:a) 1, 2, and 3b) 2, 4, and 6c) 1, 4, and 6d) 2, 3 and 5 Determine if there exists a unique solution to the third order linear differential ty" + 3y"+1/t-1y'+ey =0 with the initial conditions a) y(1) = 1, y'(1) = 1, y" (1) = 2. b) y(0) = 1 y'(0) = 0, y" (0) = 1 c) y (2) = 1, y' (2) = -1, y" (2) = 2 19.The process of pattern formation within Drosophila segments in their anterior-posterior axis involves gradients of the following morphogens:Select one:a.Winglessb.hedgehogc.bicoidd.all of the abovee.a and b are correct20. The following component in the CRISPR-CAS technique directs the editing machinery to a specific gene:a.Cas9 enzymeb.guide RNAc.DNA fragment for insertion21. Studies in lobster show us that the following structure is formed in register with the parasegments:Select one:a.musculature of the segmentsb.segments exoskeletonc.nerve gangliad.all of the abovee.a and b are correct Use the following information to answer the question. Blood is typed on the basis of various factors found both in the plasma and on the red blood cells. A single pair of codominant alleles determines the M, N, and MN blood groups. ABO blood type is determined by three alleles: the / and / alleles, which are codominant, and the i allele, which is recessive. There are four distinct ABO blood types: A, B, AB, and O. A man has type MN and type O blood, and a woman has type N and type AB blood. What is the probability that their child has type N and type B blood? Select one: O A. 0.00 OB. 0.25 OC. 0.50 O D. 0.75