An advantage of synthesizing block copolymers is the ability to tune the properties of the material by varying the length of each block. Of the following block copolymers, which composition would have the highest degree of crystallinity?A )75% PLA, 25% poly(δ-decalactoneB) 10% PLA, 90% poly(δ-decalactone)C) 45% PLA, 55% poly(δ-decalactone)D) 50% PLA, 50% poly(δ-decalactone)

Answers

Answer 1

The composition that would have the highest degree of crystallinity would be option A) 75% PLA, 25% poly(δ-decalactone).

The degree of crystallinity in a block copolymer is affected by several factors, including the length of each block and the chemical nature of each block. Generally, polymers with longer blocks tend to have higher degrees of crystallinity. In addition, the chemical nature of the polymer blocks can also affect their crystallinity.In the given options, we can see that the copolymers contain different proportions of two different monomers, PLA and poly(δ-decalactone). PLA is a relatively crystalline polymer, while poly(δ-decalactone) is amorphous. Therefore, the copolymer with a higher proportion of PLA is expected to have a higher degree of crystallinity.

Learn more about degree of crystallinity  here:

https://brainly.com/question/12951028

#SPJ11


Related Questions

Calculate the mass of chromium that can be formed from 1.25 kg of chromium oxide

Answers

To calculate the mass of chromium that can be formed from 1.25 kg of chromium oxide, we need to first write a balanced chemical equation for the reaction that converts chromium oxide to chromium.

The balanced chemical equation for the reaction is:

2 Cr2O3 + 3 Al -> 4 Cr + 3 Al2O3

This equation tells us that two moles of chromium oxide (Cr2O3) react with three moles of aluminum (Al) to produce four moles of chromium (Cr) and three moles of aluminum oxide (Al2O3).

To calculate the mass of chromium that can be formed from 1.25 kg of chromium oxide, we need to use stoichiometry.

First, we need to determine the number of moles of chromium oxide in 1.25 kg of chromium oxide. The molar mass of Cr2O3 is 152 g/mol, so 1.25 kg (or 1250 g) of Cr2O3 is equal to:

1250 g / 152 g/mol = 8.22 mol

According to the balanced chemical equation, 2 moles of Cr2O3 produce 4 moles of Cr. Therefore, 8.22 moles of Cr2O3 will produce:

4/2 x 8.22 mol = 16.44 mol of Cr

Finally, we need to convert the number of moles of chromium produced to mass. The molar mass of Cr is 52 g/mol, so:

16.44 mol x 52 g/mol = 855.36 g

Therefore, the mass of chromium that can be formed from 1.25 kg of chromium oxide is approximately 855.36 grams, or 0.85536 kg.

Consider the reaction:
3Fe2O3(s) + H2(g)2Fe3O4(s) + H2O(g)
Using standard thermodynamic data at 298K, calculate the free energy change when 1.76 moles of Fe2O3(s) react at standard conditions.
G°rxn= kJ?

Answers

Therefore, the free energy change when 1.76 moles of Fe2O3(s) react at standard conditions is -271.5 kJ/mol.

To calculate the free energy change when 1.76 moles of Fe2O3(s) react at standard conditions, we need to use the standard thermodynamic data at 298K. The standard thermodynamic data provides us with the standard free energy change of formation for each compound involved in the reaction.

Using the given reaction equation, we can write the overall reaction as:

3Fe2O3(s) + H2(g) → 2Fe3O4(s) + H2O(g)

Using the standard free energy change of formation values for each compound, we can calculate the standard free energy change of the reaction (ΔG°rxn) using the equation:

ΔG°rxn = ΣnΔG°f(products) - ΣnΔG°f(reactants)

where Σn represents the sum of the stoichiometric coefficients of each compound.

At 298K, the standard free energy change of formation values for the compounds involved in the reaction are:

ΔG°f(Fe2O3) = -824.2 kJ/mol
ΔG°f(H2) = 0 kJ/mol
ΔG°f(Fe3O4) = -1118.5 kJ/mol
ΔG°f(H2O) = -237.2 kJ/mol

Plugging these values into the equation for ΔG°rxn, we get:

ΔG°rxn = (2 mol x (-1118.5 kJ/mol)) + (1 mol x (-237.2 kJ/mol)) - (3 mol x (-824.2 kJ/mol))
ΔG°rxn = -271.5 kJ/mol

Therefore, the free energy change when 1.76 moles of Fe2O3(s) react at standard conditions is -271.5 kJ/mol.

To know more about free energy change click here:

https://brainly.com/question/31170437

#SPJ11

Determine the pH (a) before any base has been added, (b) at the half-equivalence point, and (c) at the equivalence point for the titration of 0.5 L of 0.1 M naproxen (pKa = 4.2) solution. Assume the buret holds 0.01 M NaOH solution.

Answers

Before any base is added, the pH of the naproxen solution is 2.60. At the half-equivalence point, the pH of the naproxen solution is 3.10. At the equivalence point, the pH of the naproxen solution is not provided in the given information.

Naproxen is a weak acid, and its dissociation reaction can be written as follows:

Naproxen (HA) ⇌ Naproxen⁻ (A⁻) + H⁺

The equilibrium constant expression for this reaction can be written as:

Ka = [A⁻][H⁺]/[HA]

where Ka is the acid dissociation constant, [A⁻] is the concentration of the conjugate base, [H⁺] is the concentration of hydrogen ions, and [HA] is the concentration of the weak acid.

The pKa of naproxen is given as 4.2, which means that:

pKa = -log Ka

4.2 = -log Ka

Ka = 10^(-4.2)

Ka = 6.31 x 10⁻⁵

(a) Before any base has been added, the concentration of H⁺ ions can be calculated using the expression:

Ka = [A⁻][H⁺]/[HA]

At the start of the titration, the concentration of the weak acid HA is 0.1 M, and the concentration of its conjugate base A^- is zero. Therefore, we can write:

Ka = [H⁺][A⁻]/[HA]

[H^+] = sqrt(Ka x [HA])

[H^+] = sqrt(6.31 x 10^(-5) x 0.1) = 2.52 x 10⁻³M

pH = -log[H⁺] = -log(2.52 x 10⁻³) = 2.60

Therefore, the pH before any base has been added is 2.60.

(b) At the half-equivalence point, half of the weak acid has been neutralized by the added base. At this point, the moles of weak acid and the moles of added base are equal. Therefore, the concentration of the weak acid and the conjugate base are equal.

At the half-equivalence point, the number of moles of NaOH added is:

0.5 L x 0.01 M = 0.005 moles

Since naproxen is a monoprotic acid, the number of moles of weak acid at the half-equivalence point is also 0.005 moles. Therefore, the concentration of weak acid is:

[HA] = 0.005 moles / 0.5 L = 0.01 M

At the half-equivalence point, the concentration of the conjugate base is also 0.01 M.

The equilibrium constant expression can be written as:

Ka = [A⁻][H⁺]/[HA]

At the half-equivalence point, [A⁻] = [HA] = 0.01 M. Therefore,

Ka = [H⁺]² / 0.01

[H^+] = sqrt(Ka x 0.01) = sqrt(6.31 x 10⁻⁵ x 0.01) = 7.94 x 10⁻⁴ M

pH = -log[H⁺] = -log(7.94 x 10⁻⁴) = 3.10

Therefore, the pH at the half-equivalence point is 3.10.

(c) At the equivalence point, all of the weak acid has been neutralized by the added base. Therefore, the concentration of the weak acid is zero, and the concentration of the conjugate base is equal to the initial concentration of the weak acid.

The number of moles of NaOH added at the equivalence point is:

0.5 L x 0.01 M = 0.005 moles

To know more about the Naproxen refer here :

https://brainly.com/question/5444482#

#SPJ11

What is the approximate volume of an airbag when it is fully inflated?

Answers

Answer:

On average, a driver's side airbag can inflate to a volume of around 60 to 80 liters (16 to 21 gallons), while a passenger's side airbag can inflate to a volume of around 100 to 120 liters (26 to 32 gallons).

Explanation:

The reaction in an airbag involves several elements and compounds, including:

1. Sodium azide (NaN3): This is a primary component of the propellant used in most airbag systems. When heated, sodium azide decomposes into nitrogen gas (N2) and sodium metal.

2. Potassium nitrate (KNO3): This is another component of the propellant that provides additional oxygen to support the combustion of sodium azide.

3. Silica (SiO2): This is a common material used in the manufacture of airbag fabrics. When the airbag inflates, the silica particles in the fabric help to prevent the bag from tearing or puncturing.

4. Nitrogen gas (N2): This is the primary gas produced during the airbag reaction. The nitrogen gas is used to inflate the airbag quickly and provide a cushion between the vehicle occupant and hard surfaces.

5. Carbon dioxide (CO2): This is a secondary gas produced during the airbag reaction. The CO2 is produced as a result of the combustion of sodium azide and the reaction between sodium metal and water vapor present in the air.

The H20 ion concentration of a solution is 1 x 10-4 mole per liter. This solution is

A) acidic and has a pH of 4

C) acidic and has a pH of 10

B) basic and has a pH of 10

D) basic and has a pH of 4

Answers

The H₂0 ion concentration of a solution is (1 x 10⁻⁴) mole per liter. To determine the pH of the solution, we can use the equation pH = -log[H+], where [H+] represents the hydrogen ion concentration. The correct answer is A) acidic and has a pH of 4.

In this case, the hydrogen ion concentration is (1 x 10⁻⁴) mole per liter. Taking the negative logarithm of this concentration, we have:

pH = -log((1 x 10⁻⁴)) = -(-4) = 4

Therefore, the solution is acidic and has a pH of 4.

The correct answer is A) acidic and has a pH of 4.

Learn more about concentration ,

https://brainly.com/question/10725862

#SPJ4

g which of the following occurred during the electrolysis of aqueous potassium iodide?group of answer choicescopper was plated onto one of the electrodestwice as much gas was formed at one electrode that the othergas bubbles at both platinum electrodesthe indicator turned pink at one electrodegas bubbles were visible only at one electrodea brown color formed at one electrodebrown color disappears at the other electrodethe indicator on one side turned yellow and the other side turned blue

Answers

The correcct answer for the statement "During the electrolysis of aqueous potassium iodide" is gas bubbles form at both platinum electrodes.

At the anode (positive electrode), iodine is formed, leading to a brown color at one electrode. Simultaneously, at the cathode (negative electrode), hydrogen gas is produced, causing gas bubbles to appear. The brown color at the anode does not disappear at the other electrode, as it is a product of the electrolysis.
It is important to note that copper is not plated onto one of the electrodes in this process, as no copper ions are present in the solution. Additionally, the indicator turning pink, yellow, or blue is not observed in this case, as these color changes are associated with pH indicators in acidic or basic solutions, which is not relevant to the electrolysis of potassium iodide.
In summary, during the electrolysis of aqueous potassium iodide, gas bubbles form at both platinum electrodes, a brown color forms at one electrode due to the production of iodine, and hydrogen gas is produced at the other electrode. There is no involvement of copper plating or color changes related to pH indicators in this process.

for more such question on electrolysis

https://brainly.com/question/30566972

#SPJ11

HC2H3O2(aq)+H2O(l)⇄H3O+(aq)+C2H3O2−(aq) pKa=4.76 The equilibrium for the acid ionization of HC2H3O2 is represented by the equation above. A student wants to prepare a buffer with a pH of 4.76 by combining 25.00mL of 0.30MHC2H3O2 with 75.00mL of 0.10MNaC2H3O2. While preparing the buffer, the student incorrectly measures the volume of NaC2H3O2 so that the actual volume used is 76.00mL instead of 75.00mL. Based on the error, which of the following is true about the buffer prepared by the student? A. The pH of the buffer will be slightly lower than 4.76because the total volume of the buffer is 101.00mLinstead of 100.00mL, and the HC2H3O2 was diluted. B. The pH of the buffer will be slightly lower than 4.76because the amount of C2H3O2− added was higher than the amount of HC2H3O2 added. C. The buffer solution will have a slightly higher capacity for the addition of bases than for the addition of acids because the total volume of the buffer is 101.00mLinstead of 100.00mL, and the HC2H3O2 was diluted. D. The buffer solution will have a slightly higher capacity for the addition of acids than for the addition of bases because the amount of C2H3O2− added was higher than the amount of HC2H3O2 added.

Answers

The pH of the buffer prepared by the student will be slightly lower than 4.76.

This is because when the student incorrectly measured the volume of NaC2H3O2, the total volume of the buffer increased from 100.00mL to 101.00mL. This further diluted the HC2H3O2, which shifted the equilibrium to the left and lowered the pH of the buffer solution.

Here correct option is B.

Furthermore, the amount of C2H3O2- added was higher than the amount of HC2H3O2 added, which also contributed to the lower pH. As a result, the buffer solution will have a slightly higher capacity for the addition of acids than for the addition of bases.

This is because the pH of the solution is lower than the pKa of the acid, so the solution will be able to resist changes in pH caused by the addition of acids better than it would by the addition of bases.

Know more about buffer solution here

https://brainly.com/question/24262133#

#SPJ11

choose the compound that should have the highest melting point according to the ionic bonding model. group of answer choices cao srcl2 ki cas

Answers

The compound with the highest melting point according to the ionic bonding model would be CaO (calcium oxide).

Ionic bonding occurs between atoms with a large difference in electronegativity, resulting in the transfer of electrons from the metal to the non-metal. In CaO, calcium (a metal) loses two electrons to oxygen (a non-metal), resulting in the formation of Ca2+ and O2- ions. These ions are held together by strong electrostatic forces, forming an ionic lattice structure.The strength of the electrostatic forces between the ions is directly related to the size of the charges on the ions and the distance between them. Ca2+ has a larger charge than the other cations listed (Sr2+, K+) and O2- has a smaller radius than the other anions listed (Cl-, S2-), meaning the electrostatic forces between Ca2+ and O2- are stronger.This results in a higher melting point for CaO as more energy is required to break the strong electrostatic forces holding the ions together. In addition, CaO has a higher lattice energy (the energy required to separate a mole of a solid ionic compound into its gaseous ions) than the other compounds listed, further contributing to its higher melting point.

For more such question on melting point

https://brainly.com/question/25165129

#SPJ11

PART OF WRITTEN EXAMINATION:
Oxidation
A) increases the negative charge of an atom or compound
B) decreases the positive charge of an atom or compound
C) is independent of reduction
D) occurs when the electrons are lost from an atom or compound

Answers

Oxidation D) occurs when the electrons are lost from an atom or compound. Oxidation refers to a chemical reaction where there is a transfer of electrons from one substance to another.

During oxidation, the substance that loses electrons is known as the reducing agent while the substance that gains electrons is known as the oxidizing agent. When an atom or compound loses electrons during oxidation, it becomes more positively charged, and this results in a decrease in its negative charge.

For example, when iron rusts, it undergoes oxidation as it loses electrons to oxygen. The iron atoms lose their electrons, and as a result, they become positively charged. This causes the iron compound to have a more positive charge than it did before the oxidation process.

In summary, oxidation occurs when electrons are lost from an atom or compound, which results in a decrease in the negative charge of the compound or atom.

Learn more about oxidizing agent here:

brainly.com/question/10547418

#SPJ11

a)
11. How many milliliters of 1.50M KOH solution are needed to provide 0.125mol KOH?

Answers

83.3 mL is required to provide 0.125mol KOH

Explanation:

We know that,

V=[tex]\frac{n}{c}[/tex] where n=number of moles, c= concentration and V=volume

According to the question,

c=1.50M and n=0.125 mol

Substituting the values,

V=[tex]\frac{0.125mol}{1.50M}[/tex]

=0.0833L

The volume should be in mL,

0.0833L× [tex]\frac{1000mL}{1L}[/tex]

= 83.3mL

using the symbol readout box, figure out which particles affect each component of the atomic symbol.

Answers

The complete table that figures out which particles affect each component of the atomic symbol is attached below.

How do particles affect atomic symbol?

Particles such as protons, neutrons, and electrons affect the atomic symbol in different ways:

Protons determine the element symbol. Each element has a unique number of protons in its nucleus, which is also known as its atomic number.

Electrons determine the charge of the atom. If the number of electrons is equal to the number of protons, the atom is electrically neutral.

Neutrons, along with protons, determine the atomic mass of the atom. The atomic mass is the sum of the number of protons and neutrons in the nucleus of an atom.

Find out more on particles here: https://brainly.com/question/27911483

#SPJ1

Question 57
Marks: 1
The EPA stream quality indicator for dissolved oxygen in stream water is
Choose one answer.

a. 3 mg per liter

b. 4 mg per liter

c. 5 mg per liter

d. 6 mg per liter

Answers

The EPA stream quality indicator for dissolved oxygen in stream water is:c. 5 mg per liter

Dissolved oxygen (DO) is an important indicator of the health of a water body. The EPA (Environmental Protection Agency) has set guidelines for the minimum dissolved oxygen levels to support a healthy aquatic ecosystem. For streams, the recommended minimum level of dissolved oxygen is 5 mg per liter. This level ensures that the water can support a diverse range of aquatic life, including fish, invertebrates, and other organisms.
To maintain good water quality, it's essential to regularly monitor dissolved oxygen levels using various sampling methods and equipment. If dissolved oxygen levels drop below the recommended threshold, it can indicate problems such as pollution or excessive nutrient loading, which can lead to eutrophication and negatively impact the ecosystem.

Learn more about Dissolved oxygen Refer: https://brainly.com/question/29027453

#SPJ11

A reaction between 1. 7 moles of zinc iodide and excess sodium

Answers

The percent yield of zinc carbonate is 5.91%. This suggests that the reaction did not go to completion, and there was likely some loss of product during the experiment.

To find the percent yield of zinc carbonate, we need to compare the actual yield (what was obtained in the experiment) to the theoretical yield (what would be obtained if the reaction went to completion).

First, let's calculate the theoretical yield of zinc carbonate:

From the balanced equation, we can see that 1 mole of ZnI2 reacts with 1 mole of [tex]Na_{2}CO_{3}[/tex] to produce 1 mole of [tex]ZnCO_{3}[/tex].Since we have 1.7 moles of ZnI2, we would need 1.7 moles of [tex]Na_{2}CO_{3}[/tex] to react completely.The molar mass of [tex]ZnCO_{3}[/tex] is 125.39 g/mol, so the theoretical yield of [tex]ZnCO_{3}[/tex] would be:theoretical yield = 1.7 mol ZnCO3 x 125.39 g/mol = 213.07 g

Now, let's calculate the percent yield:

The actual yield  [tex]ZnCO_{3}[/tex] is given as 12.6 g.

The percent yield is calculated as:

percent yield = (actual yield / theoretical yield) x 100%percent yield = (12.6 g / 213.07 g) x 100% = 5.91%

Learn more about zinc carbonate

https://brainly.com/question/31114294

#SPJ4

Full Question: A reaction between 1.7 moles of zinc iodide and excess sodium carbonate yields 12.6 grams of zinc carbonate. This is the equation for the reaction: Na2CO3 + ZnI2 → 2NaI + ZnCO3. What is the percent yield of zinc carbonate? The percent yield of zinc carbonate is %

An ore is a mineral from which a metal can be extracted:Profitablyby Meltingby ChemicalsScientifically

Answers

An ore is a mineral from which a metal can be extracted profitably. The profitability of an ore depends on various factors such as the concentration of the metal in the ore, the accessibility of the ore, the cost of extraction, and the demand for the metal in the market.

One of the most common methods of extracting metals from ores is by melting. This involves heating the ore to a high temperature, causing the metal to melt and separate from the other components of the ore. The molten metal is then collected and purified through various techniques.Chemicals can also be used to extract metals from ores, and this process is known as hydrometallurgy. This involves dissolving the metal from the ore in a solution and then recovering the metal from the solution through precipitation or other methods.Scientifically, the extraction of metals from ores is a complex process that involves understanding the physical and chemical properties of the ore and the metal. This requires knowledge of various fields such as geology, chemistry, and metallurgy. Scientists use various techniques such as X-ray diffraction, spectroscopy, and electron microscopy to study ores and develop new methods of extraction that are more efficient and environmentally sustainable.

For more such question on ore

https://brainly.com/question/89259

#SPJ11

Cyclopropane undergoes isomerization in a first-order reaction with a rate constant of 0.1 s^â1. If the initial concentration is 1.0M, what is the concentration of the isomer propylene product after 10 seconds?
a. 0.51M
b. 0.63M
c. 1.3M
d. 0.37M

Answers

D.0.37M is the answer

Answer:

d

Explanation:

Assuming that no equilibria other than dissolution are involved, calculate the concentration of all solute species in each of the following solutions of salts in contact with a solution containing a common ion. Show that changes in the initial concentrations of the common ions can be neglected.
(a) TlCl(s) in 1.250 M HCl
(b) PbI2(s) in 0.0355 M CaI2
(c) Ag2CrO4(s) in 0.225 L of a solution containing 0.856 g of K2CrO4
(d) Cd(OH)2(s) in a solution buffered at a pH of 10.995

Answers

The changes in the initial concentrations of the common ions can be neglected,

(a) [[tex]Tl^+[/tex]] = 6.6 x [tex]10^{-9}[/tex] M

(b) [[tex]Pb^{2+}[/tex]] = 1.5 x [tex]10^{-8}[/tex] M

(c) [[tex]Ag^+[/tex]] = 0.505 M, [[tex]CrO_4^{2-}[/tex]] = 0.505 M

(a) Since TlCl is a salt, it will dissociate into its constituent ions in solution. The balanced equation for the dissociation of TlCl is:

TlCl(s) ⇌ [tex]Tl^+[/tex](aq) + [tex]Cl^-[/tex](aq)

Since the solution also contains 1.250 M HCl, we can assume that the concentration of [tex]Cl^-[/tex] is negligible, and the reaction will proceed to the right to establish equilibrium. Therefore, the concentration of Tl+ in the solution will be equal to the solubility product of TlCl:

Ksp = [[tex]Tl^+[/tex]][[tex]Cl^-[/tex]]

Since the concentration of [tex]Cl^-[/tex] is negligible, we can assume that [[tex]Cl^-[/tex]] = 0. Therefore,

Ksp = [[tex]Tl^+[/tex]][[tex]Cl^-[/tex]] = [[tex]Tl^+[/tex]][0] = [Tl+]²

Ksp = 4.3 x [tex]10^{-17}[/tex] (from a table)

[Tl+] = √(Ksp) = 6.6 x [tex]10^{-9}[/tex] M

(b) The balanced equation for the dissociation of [tex]PbI_2[/tex] is:

[tex]PbI_2[/tex](s) ⇌ [tex]Pb^{2+}[/tex](aq) + 2[tex]I^-[/tex](aq)

The solubility product expression for [tex]PbI_2[/tex] is:

Ksp = [[tex]Pb^{2+}[/tex]][[tex]I^-[/tex]]²

Since the solution also contains 0.0355 M [tex]CaI_2[/tex], the concentration of [tex]I^-[/tex] will be:

[[tex]I^-[/tex]] = 2[[tex]Ca^{2+}[/tex]] = 2(0.0355 M) = 0.071 M

Therefore,

Ksp = [[tex]Pb^{2+}[/tex]][[tex]I^-[/tex]]² = [[tex]Pb^{2+}[/tex]](0.071 M)²

Ksp = 7.9 x [tex]10^{-9}[/tex] (from a table)

[[tex]Pb^{2+}[/tex]] = Ksp/(0.071 M)² = 1.5 x [tex]10^{-8}[/tex] M

(c) The balanced equation for the dissociation of [tex]Ag_2CrO_4[/tex] is:

[tex]Ag_2CrO_4[/tex](s) ⇌ 2[tex]Ag^+[/tex](aq) + [tex]CrO_4^{2-}[/tex](aq)

The solubility product expression for [tex]Ag_2CrO_4[/tex] is:

Ksp = [[tex]Ag^+[/tex]]²[[tex]CrO_4^{2-}[/tex]]

Since the solution contains 0.856 g of [tex]K_2CrO_4[/tex] in 0.225 L, the concentration of [tex]K_2CrO_4[/tex] is:

0.856 g / (2 x 39.10 g/mol + 4 x 16.00 g/mol) / 0.225 L = 0.505 M

The reaction for the dissolution of [tex]Ag_2CrO_4[/tex] is:

[tex]Ag_2CrO_4[/tex](s) ⇌ 2[tex]Ag^+[/tex](aq) + [tex]CrO_4^{2-}[/tex](aq)

Since the initial concentration of [tex]CrO_4^{2-}[/tex] is zero and the solubility product of [tex]Ag_2CrO_4[/tex] is Ksp = 1.1 x [tex]10^{-12}[/tex], we can assume that the dissolution of [tex]Ag_2CrO_4[/tex] is complete and that the concentration of [tex]Ag^+[/tex] is equal to the initial concentration of [tex]K_2CrO_4[/tex], which is 0.505 M. Therefore, the concentration of [tex]Ag^+[/tex] is 0.505 M, and the concentration of [tex]CrO_4^{2-}[/tex] is also 0.505 M.

Learn more about the concentrations at

https://brainly.com/question/31259355

#SPJ4

4 NH3(g) + 5 O2(g) 4 NO(g) + 6 H2O(g)

How many moles of ammonia will react with 4.6 moles of oxygen?

At constant temperature and pressure, how many milliliters of NO can be made by the reaction of 509 ml of oxygen?


How many grams of oxygen must react to produce 27 L of NO measured at 7.00 °C and 5.31 atm.

Answers

Answer:

To answer these questions, we need to use stoichiometry and the ideal gas law.

1. To determine how many moles of ammonia will react with 4.6 moles of oxygen, we need to look at the balanced chemical equation and the mole ratio of ammonia to oxygen. From the balanced equation, we can see that 4 moles of NH3 react with 5 moles of O2. Therefore, we can set up a proportion:

4 moles NH3 / 5 moles O2 = x moles NH3 / 4.6 moles O2

Solving for x, we get:

x = 3.68 moles NH3

Therefore, 3.68 moles of ammonia will react with 4.6 moles of oxygen.

2. To determine how many milliliters of NO can be made by the reaction of 509 ml of oxygen, we need to use the ideal gas law. First, we need to find the number of moles of oxygen that react using the ideal gas law:

PV = nRT

n = PV/RT = (1 atm)(509 mL) / (0.0821 L·atm/mol·K)(273 K) = 20.1 x 10^-3 moles O2

From the balanced equation, we can see that 5 moles of O2 react with 4 moles of NO. Therefore, we can set up a proportion:

5 moles O2 / 4 moles NO = 20.1 x 10^-3 moles O2 / x moles NO

Solving for x, we get:

x = 16.1 x 10^-3 moles NO

Now, we can use the ideal gas law again to find the volume of NO produced:

PV = nRT

V = nRT/P = (16.1 x 10^-3 moles)(0.0821 L·atm/mol·K)(273 K) / (1 atm) = 0.35 L = 350 mL

Therefore, 350 mL of NO can be made by the reaction of 509 mL of oxygen.

3. To determine how many grams of oxygen must react to produce 27 L of NO measured at 7.00 °C and 5.31 atm, we need to use the ideal gas law again. First, we need to find the number of moles of NO using the ideal gas law:

PV = n

Explanation:

a. 3.68 moles of ammonia will react with 4.6 moles of oxygen.

b. 19.8 milliliters of NO can be produced from the reaction of 509 ml of oxygen.

c. Approximately 17,061.12 grams of oxygen must react to produce 27 L of NO measured at 7.00 °C and 5.31 atm.

To solve these stoichiometry problems, we'll use the balanced chemical equation and the given quantities to determine the required amounts.

The balanced chemical equation is:

4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g)

a. To find how many moles of ammonia will react with 4.6 moles of oxygen, we'll use the mole ratio from the balanced equation. According to the equation, the ratio of NH₃ to O₂ is 4:5.

Given:

Moles of O₂ = 4.6 moles

Using the ratio, we can calculate the moles of NH₃:

Moles of NH₃ = (4/5) * Moles of O₂

Moles of NH₃ = (4/5) * 4.6 moles

Moles of NH₃ = 3.68 moles

Therefore, 3.68 moles of ammonia will react with 4.6 moles of oxygen.

b. To determine how many milliliters of NO can be made by the reaction of 509 ml of oxygen, we'll again use the mole ratio from the balanced equation. This time, we need to convert the volume from milliliters to liters and then use the ideal gas law to find the number of moles of NO.

Given:

Volume of O₂ = 509 ml

Temperature = Constant

Pressure = Constant

First, we convert the volume to liters:

Volume of O₂ = 509 ml ÷ 1000

Volume of O₂ = 0.509 L

Next, we'll use the ideal gas law to calculate the moles of O₂:

PV = nRT

Where:

P = Pressure

V = Volume

n = Moles

R = Ideal gas constant

T = Temperature

Since pressure and temperature are constant, we can rewrite the equation as:

V / n = constant

Using the mole ratio from the balanced equation (5:4), we can determine the moles of NO:

(Moles of O₂) / (Mole ratio O₂:NO) = Moles of NO

0.509 L / (5/4) = Moles of NO

0.509 L * (4/5) = Moles of NO

0.4072 moles = Moles of NO

Now, we need to convert moles of NO to milliliters using the ideal gas law again:

PV = nRT

Where:

P = Pressure

V = Volume

n = Moles

R = Ideal gas constant

T = Temperature

We'll assume ideal gas behavior, so we'll use the ideal gas constant (R = 0.0821 L·atm/(mol·K)).

Using the given pressure and temperature, we can rearrange the ideal gas law equation to solve for volume:

V = (nRT) / P

Converting the temperature to Kelvin:

Temperature = 7.00 °C + 273.15 = 280.15 K

Converting pressure from atm to millimeters of mercury (mmHg):

Pressure = 5.31 atm * 760 mmHg/atm

Pressure = 4033.76 mmHg

Now we can calculate the volume of NO:

V = (0.4072 moles * 0.0821 L·atm/(mol·K) * 280.15 K) / 4033.76 mmHg

V = 0.0198 L = 19.8 ml

Therefore, 19.8 milliliters of NO can be produced from the reaction of 509 ml of oxygen.

c. To find the grams of oxygen required to produce 27 L of NO, we'll again use the mole ratio from the balanced equation and the ideal gas law.

Given:

Volume of NO = 27 L

Temperature = 7.00 °C = 280.15 K

Pressure = 5.31 atm

First, we need to calculate the moles of NO:

Using the ideal gas law:

PV = nRT

Where:

P = Pressure

V = Volume

n = Moles

R = Ideal gas constant

T = Temperature

Converting pressure from atm to millimeters of mercury (mmHg):

Pressure = 5.31 atm * 760 mmHg/atm

Pressure = 4033.76 mmHg

Now we can calculate the moles of NO:

n = (PV) / (RT)

n = (4033.76 mmHg * 27 L) / (0.0821 L·atm/(mol·K) * 280.15 K)

n ≈ 424.68 moles

Using the mole ratio from the balanced equation (5:4), we can determine the moles of oxygen:

Moles of O₂ = (Moles of NO) / (Mole ratio O₂:NO)

Moles of O₂ = 424.68 moles * (5/4)

Moles of O₂ ≈ 530.85 moles

Finally, we'll calculate the mass of oxygen:

Mass of O₂ = Moles of O₂ * Molar mass of O₂

The molar mass of O₂ is 32 g/mol (16 g/mol for each oxygen atom).

Mass of O₂ = 530.85 moles * 32 g/mol

Mass of O₂ ≈ 17,061.12 grams

Therefore, approximately 17,061.12 grams of oxygen must react to produce 27 L of NO measured at 7.00 °C and 5.31 atm.

To know more about oxygen:

https://brainly.com/question/29149641

#SPJ2

Complete question is:

4 NH3(g) + 5 O2(g) 4 NO(g) + 6 H2O(g)

a. How many moles of ammonia will react with 4.6 moles of oxygen?

b. At constant temperature and pressure, how many milliliters of NO can be made by the reaction of 509 ml of oxygen?

c. How many grams of oxygen must react to produce 27 L of NO measured at 7.00 °C and 5.31 atm.

Arrange the following samples in order of increasing number of oxygen atoms:
1 mol H (lower) 2 then O
1 mol CO (lower)2
3x10^23 molecules O (lower)

Answers

To determine the number of oxygen atoms in each sample, we can use the chemical formulas and Avogadro's number.

- 1 mol H2O: 2 atoms of hydrogen and 1 atom of oxygen per molecule, so 1 mol contains 2 mol of hydrogen atoms and 1 mol of oxygen atoms, or 1 x 6.022 x 10^23 atoms = 6.022 x 10^23 atoms of oxygen
- 1 mol CO2: 1 atom of carbon and 2 atoms of oxygen per molecule, so 1 mol contains 2 mol of oxygen atoms, or 2 x 6.022 x 10^23 atoms = 1.2044 x 10^24 atoms of oxygen
- 3x10^23 molecules O2: 2 atoms of oxygen per molecule, so 3x10^23 molecules contain 2 x 3 x 10^23 atoms = 6 x 10^23 atoms of oxygen

Therefore, the samples in order of increasing number of oxygen atoms are:
1 mol H2O < 3x10^23 molecules O2 < 1 mol CO2

if a chemist has 210 ml of an 85% solution by volume of isopropyl alcohol how much of the volume of that solution is made up by isopropyl alcohol

Answers

Answer:

The volume of isopropyl alcohol in the solution is 178.5 ml, which is approximately 85% of the total volume of the solution.

Explanation:

To calculate the volume of isopropyl alcohol in the solution, we can use the following formula:

The volume of isopropyl alcohol = Percentage of isopropyl alcohol x Volume of solution

Substituting the given values, we have:

The Volume of isopropyl alcohol = 0.85 x 210 ml

The volume of isopropyl alcohol = 178.5 ml

Therefore, 178.5 ml of the solution is made up of isopropyl alcohol.

Which kind of sampling system uses a pump to draw air over a sorbent material?
Active
Passive
Dynamic
Constant-pressure

Answers

The type of sampling system that uses a pump to draw air over a sorbent material is an active sampling system.

Active sampling systems use a pump to draw air over a sorbent material in order to collect a sample. The pump creates a vacuum to draw air from the environment and then passes it over a sorbent material such as activated charcoal or silica gel. The sorbent material collects particles, gases and vapors from the air, which can then be analyzed. This type of system is ideal for measuring short-term, intermittent exposure to pollutants and is often used to monitor workplace air quality.

To learn more about silica gel click here https://brainly.com/question/30009290

#SPJ11

1. What is the activation energy for this reaction?
2. What letter represents activation energy?
3. What is the change in energy?
4. Is it exothermic or endothermic?
5. What is the activation energy after the catalyst was added to the reaction?
5. What letter represents the activation energy after the catalyst was added?

Answer all the questions

Answers

The energy hump corresponds to the energy barrier existing between the reactants and products. The reactants must first acquire a certain amount of energy to reach the level of threshold energy.

The minimum excess energy that the reactants must acquire so as to have energy equals to the threshold energy is the activation energy.

Activation energy =  Peak energy - Energy of reactant

1. 80 - 0 = 80 kJ

2. Here letter 'E' represents activation energy

3. Change in energy = Energy of product - energy of reactant

20 - 0 = 20 kJ

4. The reaction is endothermic

5. A catalyst does not change the activation energy, it is 80 kJ

6. The letter is also E.

To know more about activation energy, visit;

https://brainly.com/question/29250169

#SPJ1

Place the steps necessary to determine reaction order from an integrated rate law in the correct order, starting with the first step at the top of the list.

1 Rearrange each rate law into an equation for a straight line (y=mx+b)
2 Plot y vs. x for each integrated rate law.
3 The linear plot indicates the order of reaction.

Answers

1) Rearrange each rate law into an equation for a straight line (y=mx+b) 2) Plot y vs. x for each integrated rate law. 3) The linear plot indicates the order of reaction.

placing the steps in the correct order. Here's the proper sequence for determining reaction order from an integrated rate law:

1. Determine the integrated rate law for the reaction.
2. Rearrange each rate law into an equation for a straight line (y=mx+b).
3. Plot y vs. x for each integrated rate law.
4. The linear plot indicates the order of reaction.

Your answer: Determine the integrated rate law, rearrange it into a straight line equation, plot y vs. x, and identify the order of reaction from the linear plot.

to learn more about integrated rate law click here:

brainly.com/question/30379408

#SPJ11

What forms the acid mantle?

Answers

The acid mantle is formed by a combination of sweat and sebum secretions from our skin. These secretions create a slightly acidic environment on the skin's surface.

The acid mantle is formed by a combination of sebum (oil) secreted by the skin's sebaceous glands and sweat secreted by sweat glands. The sebum and sweat combine to create a slightly acidic film on the surface of the skin, which helps to protect it from harmful bacteria and environmental pollutants. This film also helps to keep the skin hydrated and maintain its natural pH balance.

To learn more about, acid mantle, click here, https://brainly.com/question/26466242

#SPJ11

Calculate the number of moles of carbon dioxide CO₂ produced by 3.5 Moles of Baking Soda NaHCO3.
1NaHCO3 + 1HC2H302—>1NaC2H3O2 + 1CO2 + 1H2O

Answers

Answer: The number of moles of carbon dioxide produced by 3.5 moles of baking soda is 3.5 moles.

Explanation:

What is the pOH of a substance that has a pH of 10.4?

Answers

Answer:

PH(potential of hydrogen) above 7 is alkaline

so PH 10.4 is alkaline

SRB (sulfate reducing bacteria)
A) descrease the corrosion of metal pipe in clay environments
B) decrease the corrosion in all environments
C) accelerate corrosion of metal pipe in clay environments

Answers

The SRB (sulfate-reducing bacteria) is a type of bacteria that can reduce sulfate to sulfide. These bacteria can have an impact on the corrosion of metal pipes in various environments. Among the given options C) Accelerate corrosion of metal pipe in clay environments.



The SRB can accelerate the corrosion of metal pipes in clay environments. In these environments, the bacteria produce sulfide, which reacts with the metal surface, forming metal sulfides. This process leads to a localized breakdown of the protective film on the metal surface, exposing the underlying metal to further corrosion. Clay environments provide a suitable habitat for SRB, as they offer the necessary nutrients and anaerobic conditions that these bacteria require to thrive. Consequently, the presence of SRB in clay environments can increase the rate of corrosion of metal pipes, leading to potential failure and the need for costly repairs or replacement.

learn more about corrosion here.

https://brainly.com/question/30531478

#SPJ11

the incomplete combustion of substances such as ethane () produces carbon monoxide (co), a toxic pollutant. an incomplete submicroscopic representation of this process is shown below. how many particles of each type should have been present in the reactants?

Answers

The incomplete combustion of ethane, there should have been 2 ethane molecules (C₂H₆) and 5 oxygen molecules (O₂) present in the reactants.

The incomplete combustion of ethane producing carbon monoxide, we first need to determine the balanced chemical equation for this process. An incomplete combustion typically involves a limited supply of oxygen. The general equation for the incomplete combustion of ethane (C₂H₆) can be represented as:

C₂H₆ + O₂ → CO + H₂O

To balance the equation, we would have:

2C₂H₆ + 5O₂ → 4CO + 6H₂O

In this balanced equation, the reactants include 2 particles of ethane (C₂H₆) and 5 particles of oxygen (O₂).

Learn more about incomplete combustion: https://brainly.com/question/14335621

#SPJ11

Draw the major product(s) of the following reactions including stereochemistry when it is appropriate. Ch3ch2 1 br2

Answers

The major product of [tex]CH_{3} CH_{2}[/tex] and [tex]Br_{2}[/tex] reaction is 1,2-dibromoethane, with anti-stereochemistry, and optically inactive stereoisomers.

The response somewhere in the range of [tex]CH_{3} CH_{2}[/tex] and [tex]Br_{2}[/tex] will go through a halogenation response, where the bromine molecules will be added across the twofold bond. The significant result of this response is 1,2-dibromoethane.

The component of this response includes the development of a bromonium particle halfway, where the bromine atom is captivated by the twofold obligation of the alkene. The bromine particle will then, at that point, assault one of the carbons of the twofold bond, framing a bromonium particle halfway.

The bromine particle will then go after the other carbon of the twofold bond, breaking the bromonium particle middle and framing the item.The option of the bromine particles to the twofold bond happens with against stereochemistry, implying that the two bromine molecules will be added to inverse countenances of the twofold bond.

This outcomes in the development of a meso compound with two stereoisomers. Be that as it may, since both stereoisomers have an inward plane of balance, they are optically latent.

In this way, the significant result of the response somewhere in the range of [tex]CH_{3} CH_{2}[/tex] and [tex]Br_{2}[/tex] is 1,2-dibromoethane, with two stereoisomers that are optically dormant because of their inward plane of evenness.

To learn more about stereochemistry reactions, refer:

https://brainly.com/question/29748314

#SPJ4

What is the pH of a solution with an H+ ion concentration of

2. 4E-4?

Answers

The pH of the solution is 3.62.

pH = -log[H+]

where [H+] is the concentration of hydrogen ions in moles per liter (mol/L) and log represents the logarithm to the base 10.

Substituting the given value of [H+] into the formula, we get:

pH = -log(2.4E-4)

pH = -(-3.62)

pH = 3.62

pH is a measure of the acidity or basicity of a solution, and it stands for "power of hydrogen". It is defined as the negative logarithm (base 10) of the concentration of hydrogen ions in the solution. The pH scale ranges from 0 to 14, where pH 7 is considered neutral, pH values below 7 indicate an acidic solution, and pH values above 7 indicate a basic solution.

The pH of a solution can be measured using a pH meter or pH paper, which changes color depending on the pH of the solution. Acids are substances that donate hydrogen ions, while bases are substances that accept hydrogen ions. When an acid and a base are mixed together, they undergo a neutralization reaction, forming water and salt.

To learn more about pH visit here:

brainly.com/question/2288405

#SPJ4

The diagram below shows a reaction profile for a chemical reaction.









(a) Label parts A-E of the reaction profile above.
(b) Explain the type of reaction the reaction profile represents.

Answers

The labelling can be done as C=reactant, E=energy is released and D=Product. The type of reaction the reaction profile represents is exothermic reaction.

Exothermic reactions are chemical naturally occurring and are distinguished by the discharge of energy within the shape of heat or light. One instance of this kind of reaction, when the release comes in the manner of both light and heat, is lighting a match.

The exothermic reaction results in the release of energy as opposed to an endothermic response, which absorbs energy. This energy frequently exceeds the sum of the energies of the reactants. The labelling can be done as C=reactant, E=energy is released and D=Product. The type of reaction the reaction profile represents is exothermic reaction.

To know more about Exothermic reaction, here:

https://brainly.com/question/10373907

#SPJ1

Other Questions
Penny Company manufactures only one product and uses a standard cost system. The following information is from Pennys records for May:Direct labor rate variance$15,000favorableDirect labor time variance$31,200unfavorableStandard hours per unit produced2.00Standard rate per hour$26During May, the company used 12.50% more hours than the standard allowed.A. What were the total standard hours allowed for the units manufactured during the month?standard hoursB. What were the actual hoursworked?actual hoursC. How many actual units were produced during May? The U. S. Department of Transportation maintains statistics for mishandled bags per 1,000 airline passengers. In the first nine months of 2010, Delta had mishandled 3. 52 bags per 1,000 passengers. If you believe that the number of mishandled bags follows a Poisson Distribution, what is the probability that in the next 1,000 passengers, Delta will have:1 No mishandled bags: 2 Four or fewer mishandled bags:3 At least one mishandled bag:4 At least two mishandled bags: Given that a function, h, has a domain of -3 x 11 and a range of 1 h(x) 25 and that h(8) = 19 and h(-2) = 2, select the statement that could be true for h. .Industries where a decline in demand is most likely to cause industry-wide losses tend to have the following characteristics:[See p.73]a. High concentration, lack of product differentiation and scale economiesb. High exit barriers, lack of product differentiation, and a high ratio of fixed to variable costsc. High exit barriers, lack of product differentiation, and powerful buyersd. Powerful buyers and suppliers and high exit barriers a museum closes in 4 1/2 hours. You walk to the museum and spend 3/4 hour at each of the first 3 exhibits. The museum closes after you spend another 1 1/2 hours at the museum. How long did it take you to walk to the museum identify the following expenditure as capital expenditures( c) or expenses (e). use c or e to answer. construction of a new wing on a hospital. Which of the followingwould most likely be categorized as a global financial objective of aninternational firm?A) foreign-exchangemanagementB) long-term profitgrowthC)quality and cost controlD) company market share True or false: Responsible leaders encourage auditors to exercise professional skepticism What's the difference between low carrying capacity and high carrying capacity? Question 9From the standpoint of exposure to radioactive minerals, which one of the following building materials would probably be most "safe"?a. Graniteb. Woodc. Brickd. cement Determine the area under the standard normal curve that lies to the right of (a) Z-1.86, (b) 2 - - 142. (c) Z-- 1.29, and (d) 2+ - 1.15. (a) The area to the right of Z=-1.86 in (Round to four decimal places as needed.) Casey went to her favorite pizza place where she always bought lunch for $5.50. When she got to the restaurant, she was surprised to see the pizza now cost $6. What percentage was the pizza marked up? A. between 8% and 9% B. between 9% and 10% C. between 10% and 11% D. between 11% and 12% A 31-year-old multipara is admitted to the birthing room after initial examination reveals her cervix to be at 8 cm, completely effaced (100 %), and at 0 station. What phase of labor is she in? A. Active phase B. Latent phase C. Expulsive phase D. Transitional phase Describe below how an improved standard of living for many, combined with technologicalinnovations in communication, transportation and industry resulted in social and culturalchanges and tensions. a firm does not pay a dividend. it is expected to pay its first dividend of $0.44 per share in three years. this dividend will grow at 12 percent indefinitely. use a 13 percent discount rate . Compute the value of this stock. (Round your answer to 2 decimal places.) Answer is complete but not entirely correct. Stock value $ 14.10 (True or False) Maintenance Rx for UC the cision emm model calls for: question 13 options: a) a systematic approach to pr and comms job functions b) the strategic combination of technology, data, processes, and analyses c) proving business impact d) all of them sphere $\mathcal{s}$ is tangent to all 12 edges of a cube with edge length 6. find the volume of the sphere. Suppose that X is an exponentially distributed random variable with lambda = 0.47 . Find each of the following probabilities:A. P(X > 1) =B. P(X > 0.36) =C. P(X < 0.47) =D. P(0.32 < X < 2.46) = For intense exercise lasting longer than 90 seconds, __________________________________ is required to continue production of ATP.