An ideal spring of negligible mass is 11.00cm long when nothing is attached to it. When you hang a 3.05-kg weight from it, you measure its length to be 12.40cm .
If you wanted to store 10.0J of potential energy in this spring, what would be its total length? Assume that it continues to obey Hooke's law.
Express your answer numerically. If there is more than one answer, enter each answer, separated by a comma.
=

Answers

Answer 1

Answer

0.2067m or 0.2067m

Explanation;

Let lenght of spring= Lo= 11cm=0.110m

It is hang from a mass of

3.05-kg having a length of L1= 12.40cm= 0.124m

Force required to stretch the spring= Fkx

But weight of mass mg= kx then K= Mg/x

K= 3.05-kg× 9.8)/(0.124m-.110m)

K=2135N

But potential Energy U= 0.5Kx

X=√ 2U/k

√(2*10)/2135

X=0.0967m

The required new length= L2= L0 ±x

=

.110m ± 0.0967m

X= 0.2067m or 0.2067m hence the total lenghth


Related Questions

Two long parallel wires separated by 4.0 mm each carry a current of 24 A. These two currents are in the same direction. What is the magnitude of the magnetic field at a point that is between the two wires and 1.0 mm from one of the two wires

Answers

Answer:

Explanation:

Magnetic field at a a point R distance away

B = μ₀ / 4π X 2I / R where I is current

Magnetic field due to one current

=  10⁻⁷ x 2 x 24 / 1 x 10⁻³

48 x 10⁻⁴ T

Magnetic field due to other current

=  10⁻⁷ x 2 x 24 / 3x 10⁻³

16 x 10⁻⁴ T

Total magnetic field , as they act in opposite direction, is

= (48 - 16 ) x 10⁻⁴

32 x 10⁻⁴ T .

Consider the following spectrum where two colorful lines (A and B) are positioned on a dark background. The violet end of the spectrum is on the left and the red end of the spectrum is on the right. A B 5. (1 point) What is the name for this type of spectrum? 6. (1 point) Transition A is associated with an electron moving between the n= 1 and n= 3 levels. Transition B is associated with an electron moving between the n= 2 and n= 5 levels. Which transition is associated with a photon of longer wavelength?

Answers

Answer:

Explanation:

a )

This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .

b ) The wavelength of a photon  is inversely proportional to its energy .  Photon  due to transition between n = 1 and n = 3 will have higher energy than

that due to transition between n = 2 and n = 5 . So the later photon ( B)  will have greater wavelength or photon  due to transition between n = 2 and n = 5 will have greater wavelength .

g a conductor consists of an infinite number of adjacent wires, each infinitely long. If there are n wires per unit length, what is the magnitude of B~

Answers

Answer:

B=uonI/2

Explanation:

See attached file

Two protons are released from rest, with only the electrostatic force acting. Which of the following statements must be true about them as they move apart? (There could be more than one correct choice.)a. Their electrical potential energy keeps decreasing.b. Their acceleration keeps decreasing.c. Their kinetic energy keeps increasing.d. Their kinetic energy keeps decreasing.e. Their electric potential energy keeps increasing.

Answers

Answer:

Explanation:

correct options

a ) Their electrical potential energy keeps decreasing

Actually as they move apart , their electrical potential energy decreases due to increase of distance between them and kinetic energy increases

so a ) option is correct

b ) Their acceleration keeps decreasing

As they move apart , their mutual force of repulsion decreases due to increase of distance between them so the acceleration decreases .

c ) c. Their kinetic energy keeps increasing

Their kinetic energy increases because their electrical potential energy decreases . Conservation of energy law will apply .

The moving apart should be true statements:

a. The electrical potential energy should be reduced.

b. The acceleration should be reduced.

c. The kinetic energy should be increased.

True statements related to moving apart:

At the time when the moving part, there is the reduction of the electric potential energy because there is a rise in the distance due to which the increment of the kinetic energy.  The reduction of the mutual force of repulsion because of increment in the distance due to this the acceleration should be reduced. There is the increase in the kinetic energy due to the reduction of the electrical potential energy. here the law of conversation of energy should be applied.

Learn more about energy here: https://brainly.com/question/10658188

An object on a rope is lowered steadily decreasing speed. Which is true?
A) The tope tensions is greater than the objects weight
B) the rope tension equals the objects weight
C)the rope tension is less than the objects weight
D) the rope tension can’t be compared to the objects weight

Answers

Answer:

C) the rope tension is less than the objects weight

Explanation:

According to Newton's Second Law, when an unbalanced or net force is applied to a body, it produces an acceleration in the body in the direction of the net force itself.

In this scenario, we have two forces acting on the object. First is the weight of object acting downward. Second is the tension in the rope acting upwards.

Since, the object is being lowered in the direction of weight. Therefore, weight of the object must be greater than the tension in the rope. So, the net force has the downward direction and the object is lowered. Hence, the correct option is:

C) the rope tension is less than the objects weight

Two objects are in all respects identical except for the fact that one was coated with a substance that is an excellent reflector of light while the other was coated with a substance that is a perfect absorber of light. You place both objects at the same distance from a powerful light source so they both receive the same amount of energy U from the light. The linear momentum these objects will receive is such that:

Answers

Answer:

absorbent    p = S / c

reflective         p = 2S/c

Explanation:

The moment of radiation on a surface is

          p = U / c

where U is the energy and c is the speed of light.

In the case of a fully absorbent object, the energy is completely absorbed. The energy carried by the light is given by the Poynting vector.

           p = S / c

in the case of a completely reflective surface the energy must be absorbed and remitted, therefore there is a 2-fold change in the process

           p = 2S/c

A person standing 180m from the foot of a high building claps hi
hand and hears the echo 0.03minutes later. What is the speed
sound in air at that temperature?
A) 331m/s
B) 240m/s C) 200m/s D) 300m/s

Answers

Answer:

C) 200 m/s

Explanation:

The sound travels a total distance of 360 m in 0.03 minutes.

v = (360 m) / (0.03 min × 60 s/min)

v = 200 m/s

A circular loop of wire has radius of 9.50 cm. A sinusoidal electromagnetic plane wave traveling in air passes through the loop, with the direction of the magnetic field of the wave perpendicular to the plane of the loop. The intensity of the wave at the location of the loop is 0.0295 W/m^2, and the wavelength of the wave is 6.40 m.

Required:
What is the maximum emf induced in the loop?

Answers

Answer:

The maximum emf induced in the loop is 0.132 Volts

Explanation:

Given;

radius of the circular loop, r = 9.5 cm

intensity of the wave, I = 0.0295 W/m²

wavelength, λ = 6.40 m

The intensity of the wave is given as;

[tex]I = \frac{B_o^2*c }{2\mu_o}[/tex]

where;

B₀ is the amplitude of the field

c is the speed of light = 3 x 10⁸ m/s

μ₀ is permeability of free space = 4π x 10⁻⁵ m/A

[tex]I = \frac{B_o^2*c }{2\mu_o}\\\\B_o^2 = \frac{I*2\mu_o}{c} \\\\B_o^2 = \frac{0.0295*2*4\pi*10^{-7}}{3*10^8} \\\\B_o^2 = 2.472 *10^{-16}\\\\B_o = \sqrt{2.472 *10^{-16}}\\\\ B_o = 1.572*10^{-8} \ T[/tex]

Area of the circular loop;

A = πr²

A = π(0.095)²

A = 0.0284 m²

Frequency of the wave;

f = c / λ

f = (3 x 10⁸) / (6.4)

f = 46875000 Hz

Angular velocity of the wave;

ω = 2πf

ω = 2π(46875000)

ω = 294562500 rad/s

The maximum induced emf is calculated as;

emf = B₀Aω

       = (1.572 x 10⁻⁸)(0.0284)(294562500)

       = 0.132 Volts

Therefore, the maximum emf induced in the loop is 0.132 Volts

A piece of electronic equipment that is surrounded by packing material is dropped so that it hits the ground with a speed of 4 m/s. After impact, the equipment experiences an acceleration of a = 2kx, where k is a constant and x is the compression of the packing material. If the packing material experiences a maximum compression of 20 mm, determine the maximum acceleration of the equipment.

Answers

Answer:

Maximum acceleration is 800m/s^2

Explanation:

See attached file

If the magnetic field steadily decreases from BBB to zero during a time interval ttt, what is the magnitude III of the induced current

Answers

Answer:

Using ohms law

The current is found from Ohm's Law.

I = V /R = E /R = Bxy /Rt.

A proton moving at 4.80 106 m/s through a magnetic field of magnitude 1.74 T experiences a magnetic force of magnitude 7.00 10-13 N. What is the angle between the proton's velocity and the field? (Enter both possible answers from smallest to largest. Enter only positive values between 0 and 360.)

Answers

Answer:

31.55° and 148.45°

Explanation:

Formula for calculating the force experiences by the proton placed in a magnetic field is as expressed below;

F = qvBsinθ where;

F is the magnetic force experienced by the proton

q is the charge on the proton

v is the velocity of the proton

B is the magnetic field

θ is the angle between the proton's velocity and the field (Required)

Given parameters

F =  7.00 * 10⁻¹³N

q = 1.602*10⁻¹⁹C

v = 4.80 * 10⁶ m/s

B = 1.74 T

θ  =?

From the formula F = qvBsinθ;

sinθ = F/qvB

sinθ = 7.00 * 10⁻¹³/1.602*10⁻¹⁹* 4.80 * 10⁶*1.74

sinθ =  7.00 * 10⁻¹³/13.38*10⁻¹³

sinθ = 0.5231689 * 10⁰

sinθ = 0.5231689

θ = sin⁻¹0.5231689

θ = 31.55°

The following are the positive values of the angle between 0° and 360°

Sin is positive in the first and second quadrant. In the second quadrant the angle is equal to 180°-31.55° = 148.45°.

Hence the possible values of the angle from smallest to largest are 31.55° and 148.45°

A solenoid of length 2.40 m and radius 1.70 cm carries a current of 0.190 A. Determine the magnitude of the magnetic field inside if the solenoid cons

Answers

Complete question:

A solenoid of length 2.40 m and radius 1.70 cm carries a current of 0.190 A. Determine the magnitude of the magnetic field inside if the solenoid consists of 2100 turns of wire.

Answer:

The magnitude of the magnetic field inside the solenoid is 2.089 x 10⁻ T.

Explanation:

Given;

length of solenoid, L = 2.4 m

radius of solenoid, R = 1.7 cm = 0.017 m

current in the solenoid, I = 0.19 A

number of turns of the solenoid, N = 2100 turns

The magnitude of the magnetic field inside the solenoid is given by;

B = μnI

Where;

μ is permeability of free space = 4π x 10⁻⁷ m/A

n is number of turns per length = N/L

I is current in the solenoid

B = μnI = μ(N/L)I

B = 4π x 10⁻⁷(2100 / 2.4)0.19

B = 4π x 10⁻⁷ (875) 0.19

B = 2.089 x 10⁻⁴ T

Therefore, the magnitude of the magnetic field inside the solenoid is 2.089 x 10⁻⁴ T.

A stone with a mass m is dropped from an airplane that has a horizontal velocity v at a height h above a lake. If air resistance is neglected, the horizontal distance R from the point on the lake directly below the point of release to the point where the stone strikes the water is given by which formula? R=v(2h/g)2 None of these are correct. R = 2mv sqrt(2h/g) R = v sqrt(2h/g) R=(1/2)gt2

Answers

Answer:

  R = v √(2h / g)

Explanation:

This exercise can be solved using the concepts of science, projectile launching

let's calculate the time it takes to get to the water

           y = y₀ +[tex]v_{oy}[/tex] t - ½ g t²

as the stone is skipped the vertical speed is zero

           y = y₀ - ½ g t²

for y=0

           t = √ (2y₀ / g)

           

the horizontal distance it covers in this time is

           R = v₀ₓ t

            R = v₀ₓ √(2 y₀ / g)

           

let's call the horizontal velocity as v and the height is h

            R = v √(2h / g)

A stunt driver rounds a banked, circular curve. The driver rounds the curve at a high, constant speed, such that the car is just on the verge of skidding to the outside of the curve. A front view of a car driving on a banked curve. The cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car. Which forces are directly responsible for producing the car’s centripetal acceleration? Coriolis force centripetal force frictional force normal force gravitational force

Answers

Answer: C

Frictional force

Explanation:

The description of the question above is an example of a circular motion.

For a car travelling in a curved path, the frictional force between the tyres and the road surface will provide the centripetal force.

Since the road is banked, and the cross section of the banked road is constructed like a ramp. The car drives transversely to the slope of the ramp, so that the wheels of one side of the car are lower than the wheels on the other side of the car, for cornering the banked road, the car will not rely only on the frictional force.

Therefore, the correct answer is option C - the frictional force.

A skater spins at 3rev/s when she stretches her arms outward. If she keeps her fists on her chest she can spin at 4.5rev/s and her body inertia is 3kg.m2. What is her body inertia when she stretches her arms outward?

Answers

Answer:

Body inertia I = 4.5 kg/m^2

Explanation:

Here, we want to calculate the body inertia when the arms are stretched outwards.

We know from the question that angular momentum is conserved

Thus;

I * 3 = 4.5 * 3

I = 4.5 kg/m^2

Determine the position in the oscillation where an object in simple harmonic motion: (Be very specific, and give some reasoning to your answer.) has the greatest speed has the greatest acceleration experiences the greatest restoring force experiences zero restoring force g

Answers

Answer:

Explanation:

The greatest speed is attained at middle point or equilibrium point or where displacement from equilibrium point is zero .

When the object remains at one of the extreme point it experiences greatest acceleration but at that point velocity is zero . Due to acceleration , its velocity goes on increasing till it come to equilibrium point . At this point acceleration becomes zero . After that its velocity starts decreasing because of negative acceleration . Hence at middle point velocity is maximum .

The greatest acceleration is attained at maximum displacement or at one of the two extreme end .

Greatest restoring force too will be at position where acceleration is maximum because acceleration is produced by restoring force .

Restoring force is proportional to displacement or extension against restoring force . So it will be maximum when displacement is maximum .

Zero restoring force exists at equilibrium position or middle point or at point where displacement is zero . It is so because acceleration at that point is zero .

A valuable statuette from a Greek shipwreck lies at the bottom of the Mediterranean Sea. The statuette has a mass of 10,566 g and a volume of 4,064 cm3. The density of seawater is 1.03 g/mL.

a. What is the weight of the statuette?
b. What is the mass of displaced water?
c. What is the weight of displaced water?
d. What is the buoyant force on the statuette?
e. What is the net force on the statuette?
f. How much force would be required to lift the statuette?

Answers

Answer:

A) W = 103.55 N

B) mass of displaced water = 4186 g

C) W_displaced water = 41.06 N

D) Buoyant force = 41.06 N.

E) ZERO

F) 62.54 N

Explanation:

We are given;

mass of statuette;m = 10,566 g = 10.566 kg

volume = 4,064 cm³

Density of seawater;ρ = 1.03 g/mL = 1.03 g/cm³

A) The dry weight of the statuette can be calculated as;

W = mg

So;

W = 10.556 × 9.81

W = 103.55 N

B) Mass of displaced water is calculated from;

Density = mass/volume

So, mass = Density × Volume

m = 1.03 × 4,064 = 4186 g

C) Weight of displaced water is given by;

W_displaced water = (m_displaced water) × g

W_displaced water = 4.186 kg × 9.81 m/s^2 = 41.06 N

D) The buoyant force is the same as the weight of the displaced water.

Thus, Buoyant force = 41.06 N.

E) The apparent weight of the statuette is calculated from;

Apparent weight = Dry weight - Weight of displaced water

Apparent weight = 103.6 N - 41.06 N = 62.54 N. It is sitting on the bottom of the sea, so the sea floor is providing an opposite force that is equal but opposite the weight so that the net force on the statuette is zero. Since It has zero acceleration, in any direction, hence the net force on it is zero.

F. From E above, The Force required to lift the statuette = 62.54 N

a 5 charge is locataed 1.25 m to the left of a -3 charge. What is the magnitude and direction of the electrostatic force on the postive charge

Answers

Answer:

The force is 86.5×10^9 N towards the negative charge (to the right)

Explanation:

The electrostatic force on the charges is given by Coulomb's law;

F= Kq1q2/r^2

This an inverse square law.

F= electrostatic force on the charges

K= constant of Coulomb's law

q1 and q2= magnitude of the charges

Since K= 9.0×10^9Nm^2C^2

F= 9.0×10^9 × 5 × 3/(1.25)^2 = 135×10^9/1.56

F= 86.5×10^9 N

The force is 86.5×10^9 N towards the negative charge.

Which of the following explains why metallic bonding only occurs between
metallic atoms?
A. Metallic atoms are less likely to give their electrons to nonmetallic
atoms
B. Electrical conductivity is higher in metallic atoms, which means
they are more likely to attract free electrons.
C. Metallic atoms are highly reactive and do not tend to form bonds
with other atoms.
D. Metallic atoms have valence shells that are mostly empty, which
means these atoms are more likely to give up electrons and allow
them to move freely.

Answers

Answer:

D. Metallic atoms have valence shells that are mostly empty, which

means these atoms are more likely to give up electrons and allow

them to move freely.

Explanation:

Metals usually contain very few electrons in their valence shells hence they easily give up these few valence electrons to yield metal cations.

In the metallic bond, metal cations are held together by electrostatic attraction between the metal ions and a sea of mobile electrons.

Since metals give up their electrons easily, it is very easy for them to participate in metallic bonding. They give up their electrons easily because their valence shells are mostly empty, metal valence shells usually contain only a few electrons.

A resistor and a capacitor are connected in series across an ideal battery having a constant voltage across its terminals. (a) At the moment contact is made with the battery the voltage across the capacitor is

Answers

Answer:

(a) D.  Zero.

(b) C.  Equal to the battery's terminal voltage.

Explanation:

The question is incomplete, see the complete question for your reference and information.

A resistor and a capacitor are connected in series across an ideal battery having a constant voltage

across its terminals. At the moment contact is made with the battery

(a) the voltage across the capacitor is

A) equal to the battery's terminal voltage.

B) less than the battery's terminal voltage, but greater than zero.

C) equal to the battery's terminal voltage.

D) zero.

(b) the voltage across the resistor is

A) equal to the battery's terminal voltage.

B) less than the battery's terminal voltage, but greater than zero.

C) equal to the battery's terminal voltage.

D) zero

A RC circuit is a circuit that is composed of both resistors and capacitors connect to a source of current or voltage.

basically when a voltage source is applied to an RC circuit, the capacitor, C charges up through the resistance, R

Rank the six combinations of electric charges on the basis of the electric force acting on q1. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank positive forces as larger than negative forces.
1. q1=+1nC
q2=-1nC
q3 =-1nC
2. q1= -1nC
+ q2 = + 1nC
q3= +1nC
3. q1= +1nC
q2= +1nC
q3= +1nC
4. q1= +1nC
q2= + 1nC
q3= -1nC
5. q1= -1nC
q2= - 1nC
q3= -1nC
6. q1=+1nC
q2=-1nC
q3 =+1nC

Answers

Answer:

Plss see attached file

Explanation:

A system is a group of objects that’s analyzed as one unit. Consider a car moving along a road that has a flat section and a hill. The energy of the car at any given time is equal to the energy that its engine provides minus the energy that the car. When the car moves along the flat section, all of its energy is , which is calculated from its velocity and . When the car moves uphill, some of its energy is transformed to , which is calculated from its gravity, height, and .

Answers

Answer:

a) Em= K +U,  b) Em= K

Explanation:

The system in this case is formed by the mobilizes and the hill.

Let's write the expressions correctly and completely.

a) When the car moves in the path, the mechanical energy is the siua of the kinetic energy of the car and the potential energy of the car when going up the hill.

              Em = K + U

be) when the car moves in the flat part all the mechanical energy is formed by its kinetic energy that is calculated with the mass and speed of the car

             Em = K

c) When the car goes up the hill the energy the mechanical energy is conserved, but part of the kinetic energy is transformed into potential energy.

Answer:

leaves

kinetic energy

mass

potential energy

mass

Explanation:

An 1300-turn coil of wire that is 2.2 cmcm in diameter is in a magnetic field that drops from 0.14 TT to 0 TT in 9.0 msms . The axis of the coil is parallel to the field.
What is the emf of the coil? (in V)

Answers

Answer:

The induced  emf is  [tex]\epsilon =7.68 \ V[/tex]

Explanation:

From the question we are told that

     The number of turns is  [tex]N = 1300 \ turns[/tex]

    The diameter is  [tex]d = 2.2 \ cm = 2.2*10^{-2}[/tex]

     The initial magnetic field is  [tex]B_i = 0.14 \ T[/tex]

      The final magnetic field is  [tex]B_f = 0 \ T[/tex]

      The  time taken is  [tex]dt = 9.0ms = 9.0*10^{-3} \ s[/tex]

 

The radius is mathematically evaluated as

      [tex]r = \frac{d}{2 }[/tex]

substituting values

     [tex]r = \frac{2.2 *10^{-2}}{2 }[/tex]

     [tex]r = 1.1*10^{-2} \ m[/tex]

The induced emf is mathematically represented as

    [tex]\epsilon =- N * \frac{d\phi }{dt }[/tex]

Where  [tex]d\phi[/tex] is the change in magnetic field which is mathematically represented as

        [tex]d\phi = dB * A * cos\theta[/tex]

=>   [tex]d\phi = [B_f - B_i ] * A * cos\theta[/tex]

Here  [tex]\theta = 0[/tex] given that the axis of the coil is parallel to the field

Also A is the cross-sectional area which is mathematically represented as

       [tex]A = \pi r^2[/tex]

substituting values

      [tex]A = 3.142 * [1.1*10^{-2}]^2[/tex]

       [tex]A = 3.8 *10^{-4] \ m^2[/tex]

So

    [tex]d\phi = [0 - 0.14 ] * 3.8*10^{-4}[/tex]

    [tex]d\phi = -5.32*10^{-5} \ weber[/tex]

So  

     [tex]\epsilon =- 1300 * \frac{-5.32*10^{-5} }{ 9.0*10^{-3} }[/tex]

    [tex]\epsilon =7.68 \ V[/tex]

We repeat the experiment from the video, but this time we connect the wires in parallel rather than in series. Which wire will now dissipate the most heat?
Both wires will dissipate the same amount of heat.
A. The Nichrome wire (resistance 2.7)
B. The copper wire (resistance 0.1)

Answers

Answer: B. The copper wire (resistance 0.1)

Explanation: When resistance is in parallel, voltage (V) is the same but current is different for every resistance. Current (i) is related to voltage and resistance (R) by Ohm's Law

i = [tex]\frac{V}{R}[/tex]

So, since both wires are in parallel, they have the same voltage but because the copper wire resistance is smaller than Nichrome wire, the first's current will be bigger.

Every resistor in a circuit dissipates electrical power (P) that is converted into heat energy. The dissipation can be found by:

P = [tex]i^{2}*R[/tex]

As current for copper wire is bigger than nichrome, power will be bigger and it will dissipate more heat.

In conclusion, the copper wire will dissipate more heat when connected in parallel.

Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength is 4.0 mV/m at a point 1.5 m away from the center of the circle. At what rate is the magnetic field changing?

Answers

Answer:

The rate at which the magnetic field changes is  [tex]\frac{\Delta B }{\Delta t } = - 5.33*10^{-3} \ T/ s[/tex]

Explanation:

From the question we are told that

   The  electric field strength is [tex]E = 4.0 mV/m = 4.0 *10^{-3} V/m[/tex]

   The  radius of the  circular region where the electric field is induced is

   [tex]d = 1.5 \ m[/tex]

Generally the induced electric field is mathematically represented as

     [tex]E = - \frac{r}{2} * \frac{\Delta B }{\Delta t }[/tex]

The  negative sign show that the induced electric field is acting in opposite direction to the change in magnetic field

Where  [tex]\frac{\Delta B }{\Delta t }[/tex] is the change in magnetic field

So  

       [tex]\frac{\Delta B }{\Delta t } = - \frac{2 * E }{r}[/tex]

substituting values

       [tex]\frac{\Delta B }{\Delta t } = - \frac{2 * 4.0 *10^{-3}}{ 1.5 }[/tex]

       [tex]\frac{\Delta B }{\Delta t } = - 5.33*10^{-3} \ T/ s[/tex]

greater than: The electric potential energy of a proton at point A is _____ the electric potential energy of an proton at point B.

Answers

Answer:

[similar to]

Explanation:

it is the missing word

The _____________ is the thermonuclear fusion of hydrogen to form helium operating in the cores of massive stars on the main sequence

Answers

I believe it’s the CNO Cycle

Two factors that regulate (control) glandular secretion.

Answers

Answer:

The factors include age and puberty

Explanation:

Glandular secretion release chemicals such as hormones in response to the body’s metabolic needs.

As an individual ages , the metabolic rate of the body also reduces . This is due to the stress and ageing of the cells of the body. This explains why glandular secretion is optimal with young people and Lower in older people. It also explains why the immune system of a young person is mostly stronger than older people.

Puberty is another factor which affects glandular secretion as during puberty there is usually a high amount of hormonal changes due to high levels of secretions of some hormones. These hormones could however inhibit the other glandular secretions.

Calculate the power of the eye in D when viewing an object 5.70 m away. (Assume the lens-to-retina distance is 2.00 cm. Enter your answer to at least one decimal place.)

Answers

Answer:

Power=50.17dioptre

Power=50.17D

Explanation:

P=1/f = 1/d₀ + 1/d₁

Where d₀ = the eye's lens and the object distance= 5.70m=

d₁= the eye's lens and the image distance= 0.02m

f= focal length of the lense of the eye

We know that the object can be viewed clearly by the person ,then image and lens of the eye's distance needs to be equal with the retinal and the eye lens distance and this distance is given as 0.02m

Therefore, we can calculate the power using above formula

P= 1/5.70 + 1/0.02

Power=50.17dioptre

Therefore, the power the eye's is using to see the object from distance is 5.70D

Flywheels are large, massive wheels used to store energy. They can be spun up slowly, then the wheel's energy can be released quickly to accomplish a task that demands high power. An industrial flywheel has a 1.5 m diameter and a mass of 250 kg. Its maximum angular velocity is 1200 rpm.
How long does it take the flywheel to reach top angular speed of 1200 rpm?

Answers

Answer:

t = 2.95 min

Explanation:

Given that,

The diameter of flywheeel, d = 1.5 m

Mass of flywheel, m = 250 kg

Initial angular velocity is 0

Final angular velocity, [tex]\omega_f=1200\ rpm = 126\ rad/s[/tex]

We need to find the time taken by the flywheel to each a speed of 1200 rpm if it starts from rest.

Firstly, we will find the angular acceleration of the flywheel.

The moment of inertia of the flywheel,

[tex]I=\dfrac{1}{2}mr^2\\\\I=\dfrac{1}{2}\times 250\times (0.75)^2\\\\I=70.31\ kg-m^2[/tex]

Now,

Let the torque is 50 N-m. So,

[tex]\alpha =\dfrac{\tau}{I}\\\\\alpha =\dfrac{50}{70.31}\\\\\alpha =0.711\ rad/s^2[/tex]

So,

[tex]t=\dfrac{\omega_f-\omega_i}{\alpha }\\\\t=\dfrac{126-0}{0.711}\\\\t=177.21\ s[/tex]

or

t = 2.95 min

Other Questions
DNA and RNA are structurally similar in some ways, but different in others. Identify whether each of the following statements applies to DNA, RNA, both or neither. 1. It can contain the pyrimidine cytosine. 2. It can contain the pyrimidine uracil. 3. This contains the sugar 2'-deoxyribose. 4. In terms of base composition, the %A = %C. 5. This contains the sugar ribose. 6. The bases are attached to sugars in a beta-N-glycosidic linkage. 7. It contains equal amounts of guanine and cytosine. 8. Sugars are connected with a 3'-5' phosphodiether link. "On a movie set, an alien spacecraft is to be lifted to a height of 32.0 m for use in a scene. The 260.0-kg spacecraft is attached by ropes to a massless pulley on a crane, and four members of the film's construction crew lift the prop at constant speed by delivering 135 W of power each. If 18.0% of the mechanical energy delivered to the pulley is lost to friction, what is the time interval required to lift the spacecraft to the specified height?" If it takes 56.7 min for the concentration of a reactant to drop to 18.0% of its initial value in a first-order reaction, what is the rate constant for the reaction in the units min-1? You do not need to show your work. You can just write the answer in the space provided below We want to send all of our high-value customers a special VIP gift. We are defining high-value customers as those who have made at least 1 order with a total value (not including the discount) equal to $10,000 or more. We only want to consider orders made in the year 2016. Who would we send the gift to? (Show customer ID, name, the order, and the total order amount.) the diagram above shows a rectangle inscribed in a circle AB=10 and AC =12 caculate the total surface area of the shaded part Santana Mortgage Company uses a process cost system to accumulate costs in its Application Department. When an application is completed, it is forwarded to the Loan Department for final processing. The following processing and cost data pertain to September.1. Applications in process on September 1, 1702. Applications started in September, 9303. Completed applications during September, 6604. Applications still in process at September 30 were 100% complete as to materials (forms) and 60% complete as to conversion costs.Beginning WIP: Direct materials $1,310Conversion costs 4,140September costs: Direct materials $5,114Direct labor 12,820Overhead 7,581Materials are the forms used in the application process, and these costs are incurred at the beginning of the process. Conversion costs are incurred uniformly during the process.Required:a. Determine the equivalent units of service (production) for materials and conversion costs.b. Compute the unit costs and prepare a cost reconciliation schedule. Roger purchased a stock for $16 a share. The stock paid a $1 annual dividend and increased in price by $2 a year for the following three years. What is the arithmetic average annual capital gain From studying Geert Hofstedes cultural dimensions, what differences exist between the United States and Brazil that may be relevant to your communication? 2. How can you use words to relate to each audience? 3. What images will you use for each audience? Identify the goods or animals that europeans introduced to the americas Someone please help! Thank you The shape of a garden is rectangular at the center and semicircular at the ends. Find the area and perimeter of this garden { length of the rectangle is 20 - (3.5+3.5) meters} The First, correct answer gets BRAINLIEST Which of the following is the slope-intercept form of 6x + 2y = 28 a) y= 3x-4b) y= 3x +4c) y= -3x+4d) y= -3x-4 when was the strike in metal industry Find mABC. (2x+14) (x+7) Marquez is 10 years old and lives with his single mother, who struggles to make ends meet. Despite living in a neighborhood filled with crime and attending a school with poor educational outcomes, Marquez is well-behaved and is a great student. Marquez is an example of a __________ child. How is the human body organized to maintain homeostasis? Where are the Sierra Madre Occidental and Sierra Madre Oriental located? A. Mexico B. Honduras C. Cuba D. Paraguay Two points on line p havecoordinates (2, 1) and (5, 3).The slope of the line is?A. 2B. 3/2C. 1D. 2/3E. 4 The following box plot shows the number of years during which 40 schools have participated in an interschool swimming meet: A box and whisker plot is drawn using a number line from 0 to 10 with primary markings and labels at 0, 5, 10. In between two primary markings are 4 secondary markings. The box extends from 1 to 6 on the number line. There is a vertical line at 3.5. The whiskers end at 0 and 8. Above the plot is written Duration of Participation. Below the plot is written Years. At least how many schools have participated for more than 1 year and less than 6 years? Jane, Paul and Peter can finish painting the fence in 2 hours. If Jane does the job alone she can finish it in 5 hours. If Paul does the job alone he can finish it in 6 hours. How long will it take for Peter to finish the job alone?