An inverse variation includes the point (-8,-19). Which point would also belong in this inverse variation? A. (-19,-8) B. (-8,19) C. (-19,8) D. (8,-19)

Answers

Answer 1

Answer:

(A)  (-19,-8)

Step-by-step explanation:

Given that the graph is an inverse variation.

The equation of variation is:

[tex]x=\dfrac{k}{y}[/tex]

Since point (-8, -19) is on the graph

[tex]-8=\dfrac{k}{-19}\\k=152[/tex]

Therefore, the equation connecting x and y is:

[tex]x=\dfrac{152}{y}[/tex]

[tex]\text{When y=-8},x=\dfrac{152}{-8}=-19\\\\\text{When y=19},x=\dfrac{152}{19}=8\\\\\text{When y=8},x=\dfrac{152}{8}=19\\\\\text{When y=-19},x=\dfrac{152}{-19}=-8[/tex]

Therefore, the point that is also on the graph is:

(A)  (-19,-8)


Related Questions

what is the simplest form of this expression 2(w-1) +(-2)(2w+1)

Answers

Answer:

-2w - 4

Step-by-step explanation:

What is the simplest form of this expression

2(w - 1) + (-2)(2w + 1) =

= 2w - 2 - 4w - 2

= -2w - 4

Answer: -2w-4

Step-by-step explanation:

subtract 4w of 2w

2w-2-4w-2

subtract 2 of -2

-2w-2-2

final answer

-2w-4

If f(x)=2x−1, show that f(f(x))=4x−3. Find f(f(f(x))).

Answers

Answer: f(f(f(x)))=8x-7

Step-by-step explanation:

Since we were given f(x) and f(f(x)), We plug that into f(x) again to get f(f(f(x))).

2(4x-3)-1                          [distribute]

8x-6-1                              [combine like terms]

8x-7

Evaluate. Write your answer as a fraction or whole number without exponents. 1/10^-3 =

Answers

Answer:

1000

Step-by-step explanation:

=> [tex]\frac{1}{10^{-3}}[/tex]

According to the law of exponents, [tex]\frac{1}{a^{-m}} = a^{m}[/tex]

So, it becomes

=> [tex]10^{3}[/tex]

=> 1000

What number must you add to complete the square?
X^2 + 8x= 11
A. 12
B. 16
c. 8
D. 4​

Answers

Answer:

16

Step-by-step explanation:

X^2 + 8x= 11

Take the coefficient of x

8

Divide by 2

8/2 =4

Square it

4^2 = 16

Add 16 to each side

Suppose that the scores of bowlers in particular league follow a normal distribution such that the standard deviation of the population is 6. Find the 95% confidence interval of the mean score for all bowlers in this league, using the accompanying data set of 10 random scores. Round your answers to two decimal places and use ascending order. Score 86 86 93 88 98 107 93 75 89

Answers

Answer:

A 95% confidence interval for the population mean score for all bowlers in this league is [86.64, 94.48].

Step-by-step explanation:

Since in the question only 9 random scores are given, so I am performing the calculation using 9 random scores.

We are given that the scores of bowlers in particular league follow a normal distribution such that the standard deviation of the population is 6.

The accompanying data set of 9 random scores in ascending order is given as; 75, 86, 86, 88, 89, 93, 93, 98, 107

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                             P.Q.  =  [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\bar X[/tex] = sample mean score = [tex]\frac{\sum X}{n}[/tex] = [tex]\frac{815}{9}[/tex] = 90.56

            [tex]\sigma[/tex] = population standard deviation = 6

            n = sample of random scores = 9

            [tex]\mu[/tex] = population mean score for all bowlers

Here for constructing a 95% confidence interval we have used a One-sample z-test statistics because we know about population standard deviation.

So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-1.96 < N(0,1) < 1.96) = 0.95  {As the critical value of z at 2.5% level

                                                   of significance are -1.96 & 1.96}  

P(-1.96 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.96) = 0.95

P( [tex]-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\bar X-\mu}[/tex] < [tex]1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95

P( [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.95

95% confidence interval for [tex]\mu[/tex] =  [ [tex]\bar X-1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.96 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]

                                          = [ [tex]90.56-1.96 \times {\frac{6}{\sqrt{9} } }[/tex] , [tex]90.56+1.96 \times {\frac{6}{\sqrt{9} } }[/tex] ]

                                          = [86.64 , 94.48]

Therefore, a 95% confidence interval for the population mean score for all bowlers in this league is [86.64, 94.48].

A lady buys bananas at 3 Rs 5 and sells them at 2 Rs for Rs 5; find her gain percent.​

Answers

Answer:

50%

Step-by-step explanation:

Cost of 3 bananas= Rs. 5 ⇒ cost of 1 banana= Rs. 5/3

Selling price of 2 bananas= Rs. 5 ⇒ selling price of 1 banana= Rs. 5/2

Gain= Rs. (5/2- 5/3)= Rs. (15/6- 10/6)= Rs. 5/6

Gain %= 5/6÷5/3 × 100%= 50%

If the 2412 leaves are not a random sample, but the researchers treated the 2412 leaves as a random sample, this most likely made the data more:_____________.1. accurate, but not precise2. precise, but not accurate3. neither4. both accurate and precise

Answers

Answer:

2. Precise but not accurate

Step-by-step explanation:

In a high precision, low accuracy case study, the measurements are all close to each other (high agreement between the measurements) but not near/or close to the center of the distribution (how close a measurement is to the correct value for that measurement)

Trucks in a delivery fleet travel a mean of 100 miles per day with a standard deviation of 23 miles per day. The mileage per day is distributed normally. Find the probability that a truck drives between 86 and 125 miles in a day. Round your answer to four decimal places.

Answers

Answer:

The probability that a truck drives between 86 and 125 miles in a day.

P(86≤ X≤125) = 0.5890 miles

Step-by-step explanation:

Step(i):-

Given mean of the Population = 100 miles per day

Given standard deviation of the Population = 23 miles per day

Let 'X' be the normal distribution

Let x₁ = 86

[tex]Z_{1} = \frac{x_{1} -mean}{S.D} = \frac{86-100}{23} =-0.61[/tex]

Let x₂= 86

[tex]Z_{2} = \frac{x_{2} -mean}{S.D} = \frac{125-100}{23} = 1.086[/tex]

Step(ii):-

The probability that a truck drives between 86 and 125 miles in a day.

P(86≤ X≤125) = P(-0.61 ≤ Z≤ 1.08)

                      = P(Z≤ 1.08) - P(Z≤ -0.61)

                      = 0.5 +A(1.08) - ( 0.5 - A(-0.61))    

                      = A(1.08) + A(0.61)             ( A(-Z)=  A(Z)

                      = 0.3599 + 0.2291

                     = 0.5890

Conclusion:-

The probability that a truck drives between 86 and 125 miles in a day.

P(86≤ X≤125) = 0.5890  miles per day

a silver coin is dropped from the top of a building that is 64 feet tall. the position function of the coin at time t seconds is represented by

Answers

Question:

A silver coin is dropped from the top of a building that is 64 feet tall. the position function of the coin at time t seconds is represented by

s(t) = -16t² + v₀t + s₀

Determine the position and velocity functions for the coin.

Answer:

position function: s(t) = (-16t² + 64) ft

velocity function: v(t) = (-32t) ft/s

Step-by-step explanation:

Given position equation;

s(t) = -16t² + v₀t + s₀                ---------(i)

v₀ and s₀ are the initial values of the velocity and position of the coin respectively.

(a) Since the coin is dropped, the initial velocity, v₀, of the coin is 0 at t = 0. i.e

v₀ = 0.  

Also since the drop is from the top of a building that is 64 feet tall, this implies that the initial position, s₀, of the coin is 64 ft at t=0. i.e

s₀ = 64ft

Substitute the values of v₀ = 0 and s₀ = 64 into equation (i) as follows;

s(t) = -16t² + (0)t + 64    

s(t) = -16t² + 64

Therefore, the position function of the coin is;

s(t) = (-16t² + 64) ft

(b) To get the velocity function, v(t), the position function, s(t), calculated above is differentiated with respect to t as follows;

v(t) = [tex]\frac{ds(t)}{dt}[/tex]

v(t) = [tex]\frac{d(-16t^2 + 64)}{dt}[/tex]

v(t) = -32t + 0

v(t) = -32t

Therefore, the velocity function of the coin is;

v(t) = (-32t) ft/s

1. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The expected frequency of satisfied customers from the Berwick sample is________.
a. 60
b. 75
c. 80
d. 90
2. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The expected frequency of satisfied customers from the Milton sample is________.
a. 60
b. 75
c. 80
d. 90
3. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The expected frequency of satisfied customers from the Leesburg sample is________.
a. 60
b. 75
c. 80
d. 90
4. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The chi-square test statistic for these samples is_______.
a. 1.49
b. 2.44
c. 4.15
d. 5.33
5. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The degrees of freedom for the chi-square critical value is_______.
a. 1
b. 2
c. 3
d. 4
6. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
The chi-square critical value using alpha = 0.05 is_______.
a. 2.706
b. 3.841
c. 5.991
d. 7.815
7. Lisa is a regional manager for a restaurant chain that has locations in the towns of Berwick, Milton, and Leesburg. She would like to investigate if a difference exists in the proportion of customers who rate their experience as satisfactory or better between the three locations. The following data represent the number of customers who indicated they were satisfied from random samples taken at each location.
Berwick Milton Leesburg
Number Satisfied 80 85 60
Sample Size 100 120 80
Using alpha = 0.05, the conclusion for this chi-square test would be that because the test statistic is
A. More than the critical value, we can reject the null hypothesis and conclude that there is a difference in proportion of satisfied customers between these three locations.
B. Less than the critical value, we can reject the null hypothesis and conclude that there is a difference in proportion of satisfied customers between these three locations.
C. More than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.
D. Less than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.

Answers

Answer:

1) Option B is correct.

Expected frequency of satisfied customers from the Berwick sample = 75

2) Option D is correct.

Expected frequency of satisfied customers from the Milton sample = 90

3) Option A is correct.

Expected frequency of satisfied customers from the Leesburg sample = 60

4) Option B is correct.

The chi-square test statistic for these samples = 2.44

5) Option B is correct.

The degrees of freedom for the chi-square critical value = 2

6) Option C is correct.

The chi-square critical value using alpha = 0.05 is 5.991

7) Option D is correct.

The conclusion for this chi-square test would be that because the test statistic is less than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.

Step-by-step explanation:

Berwick Milton Leesburg

Number Satisfied 80 85 60

Unsatisfied 20 35 20

Sample Size 100 120 80

Since this is a chi test that aims to check if there are differences in the proportion of expected number of customers for each location, we state the null and alternative hypothesis first.

The null hypothesis usually counters the claim we hope to test and would be that there is no difference between the proportion of expected frequency of satisfied customers at the three locations.

The alternative hypothesis confirms the claim we want to test and is that there is a significant difference between the proportion of expected frequency of satisfied customers at the three locations.

So, the total proportion of satisfied customers is used to calculate the expected number of satisfied customers for each of the three locations.

80+85+60= 225

Total number of customers = 100 + 120 + 80 = 300

Proportion of satisfied customers = (225/300) = 0.75

1) Expected frequency of satisfied customers from the Berwick sample = np = 100 × 0.75 = 75

2) Expected frequency of satisfied customers from the Milton sample = np = 120 × 0.75 = 90

3) Expected frequency of satisfied customers from the Leesburg sample = np = 80 × 0.75 = 60

4) Berwick Milton Leesburg

Number Satisfied 80 85 60

Unsatisfied 20 35 20

Sample Size 100 120 80

Proportion for unsatisfied ccustomers = 0.25

So, expected number of unsatisfied customers for the three branches are 25, 30 and 20 respectively.

Chi square test statistic is a sum of the square of deviations from the each expected value divided by the expected value.

χ² = [(X₁ - ε₁)²/ε₁] + [(X₂ - ε₂)²/ε₂] + [(X₃ - ε₃)²/ε₃] + [(X₄ - ε₄)²/ε₄] + [(X₅ - ε₅)²/ε₅] + [(X₆ - ε₆)²/ε₆]

X₁ = 80, ε₁ = 75

X₂ = 85, ε₂ = 90

X₃ = 60, ε₃ = 60

X₄ = 20, ε₄ = 25

X₅ = 35, ε₅ = 30

X₆ = 20, ε₆ = 20

χ² = [(80 - 75)²/75] + [(85 - 90)²/90] + [(60 - 60)²/60] + [(20 - 25)²/25] + [(35 - 30)²/30] + [(20 - 20)²/20]

χ² = 0.3333 + 0.2778 + 0 + 1 + 0.8333 + 0 = 2.4444 = 2.44

5) The degree of freedom for a chi-square test is

(number of rows - 1) × (number of columns - 1)

= (2 - 1) × (3 - 1) = 1 × 2 = 2

6) Using the Chi-square critical value calculator for a degree of freedom of 2 and a significance level of 0.05, the chi-square critical value is 5.991.

7) Interpretation of results.

If the Chi-square test statistic is less than the critical value, we fail to reject the null hypothesis.

If the Chi-square test statistic is unusually large and is greater than the critical value, we reject the null hypothesis.

For this question,

Chi-square test statistic = 2.44

Critical value = 5.991

2.44 < 5.991

test statistic < critical value

The test statistic is Less than the critical value, we fail to reject the null hypothesis and conclude that there is no difference in proportion of satisfied customers between these three locations.

Hope this Helps!!!

How do you determine whether the sign of a trigonometric function (sine, cosine, tangent) is positive or negative when dealing with half angles? Explain your reasoning and cite examples. Why do you think the half-angle identities include positive and negative options but the other identities don't seem to have this option built in?

Answers

Answer:

This question is about:

sin(A/2) and cos(A/2)

First, how we know when we need to use the positive or negative signs?

Ok, this part is kinda intuitive:

First, you need to know the negative/positve regions for the sine and cosine function.

Cos(x) is positive between 270 and 90, and negative between 90 and 270.

sin(x) is positive between  0 and 180, and negative between 180 and 360.

Then we need to see at the half-angle and see in which region it lies.

If the half-angle is larger than 360°, then you subtract 360° enough times such that the angle lies in the range between (0° and 360°)

and: Tan(A/2) = Sin(A/2)/Cos(A/2)

So using that you can infer the sign of the Tan(A/2)

Now, why these relationships use the two signs?

Well... this is because of the square root in the construction of the relationships.

This happens because:

(-√x)*(-√x) = (-1)*(-1)*(√x*√x) = (√x*√x)

For any value of x.

so both -√x and √x are possible solutions of these type of equations, but for the periodic nature of the sine and cosine functions, we can only select one of them.

So we should include the two possible signs, and we select the correct one based on the reasoning above.

Determine if the matrix below is invertible. Use as few calculations as possible. Justify your answer. 3 0 -4 2 0 6 -3 0 8
a. The matrix is invertible. The columns of the given matrix span R^3.
b. The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.
c. The matrix is invertible. The given matrix has 2 pivot positions.
d. The matrix is not invertible. If the given matrix is A, the equation Ax = 0 has only the trivial solution.

Answers

Answer:

b. The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.

Step-by-step explanation:

A square matrix is said to be invertible if the product of the matrix and its inverse result into an identity matrix.

3  0 -4

2  0  6

-3 0  8

 

Since the second column elements are all zero, the determinant of the matrix is zero ad this implies that the inverse of the matrix does not exist(i.e it is not invertible )

A square matrix is said to be invertible if it has an inverse.

The matrix is not invertible. If the given matrix is A, the columns of A do not form a linearly independent set.

The matrix is given as:

[tex]\left[\begin{array}{ccc}3&0&-4\\2&0&6\\-3&0&8\end{array}\right][/tex]

Calculate the determinant

The determinant of the matrix calculate as:

[tex]|A| = 3 \times(0 \times 8- 6 \times 0) - 0(2 \times 8 - 6 \times -3) -4(2 \times 0 - 0 \times -3)[/tex]

[tex]|A| = 3 \times(0) - 0(34) -4(0)[/tex]

[tex]|A| = 0 - 0 -0[/tex]

[tex]|A| = 0[/tex]

When a matrix has its determinant to be 0, then

It is not invertibleIt does not form a linear independent set.

Hence, the correct option is (b)

Read more about matrix at:

https://brainly.com/question/19759946


A pet store has 10 puppies, including 2 poodles, 3 terriers, and 5 retrievers. If Rebecka and Aaron, in that order, each select one puppy at random without replacement find the probability that both select a poodle.
The probability is​

Answers

Answer:

2/10 for Rebecka and either 2/9 or 1/9 for Aaron depending on if Rebecka selects a poodle or not.

Step-by-step explanation:

do some math

please i need this answer right now !!!! Dx

Answers

Answer: the answer is d sin30degrees equal 5/x because sin is opposite over hyponuese

PLS HELP ASAP!!!!........

Answers

Answer:

aaaaha pues

Step-by-step explanation:

Answer:

what happened

Step-by-step explanation:

the diagram shows a circle drawn inside a square the circle touches the edges of the square

Answers

Answer:

69.5309950592 cm²

Step-by-step explanation:

Area of Square:

Area = [tex]Length * Length[/tex]

Area = 18*18

Area = 324 square cm

Area of circle:

Diameter = 18 cm

Radius = 9 cm

Area = [tex]\pi r^2[/tex]

Area = (3.14)(9)²

Area = (3.14)(81)

Area = 254.469004941 square cm

Area of Shaded area:

=> Area of square - Area of circle

=> 324 - 254.469004941

=> 69.5309950592 cm²

I don't know what to do.

Answers

Answer:

104.93 in

Step-by-step explanation:

When we draw out a picture of our triangle, we should see that we need to use sin∅ to solve:

sin23° = 41/x

xsin23° = 41

x = 41/sin23°

x = 104.931

(0, 3) and (-2, -1)
Write an equation in slope intercept from of the line that passes through the given points.

Answers

Answer:

y = 2x + 3

Step-by-step explanation:

Slope Formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Slope-Intercept Form: y = mx + b

Step 1: Find slope m

m = (-1 - 3)/(-2 - 0)

m = -4/-2

m = 2

y = 2x + b

Step 2: Rewrite equation

y = 2x + 3

*You are given y-intercept (0, 3), so simply add it to your equation.

F (X) = x² - 2x and 6(x) = 3x+1
A) Find F(g(-4))
B) Find F(g(x)) simply
C) find g^-1 (x)

Answers

Part A

g(x) = 3x+1

g(-4) = 3(-4)+1 ... every x replaced with -4

g(-4) = -12+1

g(-4) = -11

Plug this into the f(x) function

f(x) = x^2 - 2x

f( g(-4) ) = (g(-4))^2 - 2( g(-4) )

f( g(-4) ) = (-11)^2 - 2(-11)

f( g(-4) ) = 121 + 22

f( g(-4) ) = 143 is the answer

====================================================

Part B

Plug the g(x) function into the f(x) function

f(x) = x^2 - 2x

f( g(x) ) = ( g(x) )^2 - 2( g(x) ) ... replace every x with g(x)

f( g(x) ) = (3x+1)^2 - 2(3x+1)

f( g(x) ) = (9x^2+6x+1) + (-6x-2)

f( g(x) ) = 9x^2+6x+1-6x-2

f( g(x) ) = 9x^2-1  is the answer

Note that we can plug x = -4 into this result and we would get

f( g(x) ) = 9x^2-1

f( g(-4) ) = 9(-4)^2-1

f( g(-4) ) = 9(16)-1

f( g(-4) ) = 144-1

f( g(-4) ) = 143 which was the result from part A

====================================================

Part C

Replace g(x) with y. Then swap x and y. Afterward, solve for y to get the inverse.

[tex]g(x) = 3x+1\\\\y = 3x+1\\\\x = 3y+1\\\\3y+1 = x\\\\3y = x-1\\\\y = \frac{1}{3}(x-1)\\\\y = \frac{1}{3}x-\frac{1}{3}\\\\g^{-1}(x) = \frac{1}{3}x-\frac{1}{3}\\\\[/tex]

Find the value of c such that the three points (5,5), (-3,1), and (6,c) lie on the same line. Note: Three points are on the same line if the slope of the line through any two points is always the same.

Answers

Answer:

c = 5.5

Step-by-step explanation:

We can find the slope of the line using the given points (5,5) and (-3,1) using rise over run:

-4/-8 = 1/2

Now, we can plug in the slope and a point into the equation y = mx + b to find b:

5 = 1/2(5) + b

5 = 2.5 + b

2.5 = b

Then, we can plug in 6 in the point (6,c) to find c:

y = (1/2)(6) + 2.5

y = 3 + 2.5

y = 5.5

c = 5.5

Answer:

c = 5.5

Step-by-step explanation:

Find the slope with two points

m = (y2-y1)/(x2-x1)

m = (1-5)/(-3-5)

   = -4/-8

   = 1/2

If all the points are on the same line, then they have the same slope

m = (y2-y1)/(x2-x1)

Using the first and third points

1/2 = (c-5)/(6-5)

1/2 =  (c-5)/1

1/2 = c-5

Add 5 to each side

5+1/2 = c

5.5 =c

The total area under the standard normal curve to the left of zequalsnegative 1 or to the right of zequals1 is

Answers

Answer:

0.3174

Step-by-step explanation:

Z-score:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the area under the normal curve to the left of Z. Subtracting 1 by the pvalue, we find the area under the normal curve to the right of Z.

Left of z = -1

z = -1 has a pvalue of 0.1587

So the area under the standard normal curve to the left of z = -1 is 0.1587

Right of z = 1

z = 1 has a pvalue of 0.8413

1 - 0.8413 = 0.1587

So the area under the standard normal curve to the right of z = 1 is 0.1587

Left of z = -1 or right of z = 1

0.1587 + 0.1587 = 0.3174

The area is 0.3174

Please answer this correctly

Answers

Answer:

The second question

Step-by-step explanation:

The orca starts at -25 meters. She goes up 25 meters.

up 25 = +25

-25+25=0

Answer:

Option 2

Step-by-step explanation:

The orca swims at the elevation of -25 meters. The orca swims up 25 meters higher than before.

-25 + 25 = 0

Which steps would be used to solve the equation? Check all that apply. 2 and two-thirds + r = 8 Subtract 2 and two-thirds from both sides of the equation. Add 2 and two-thirds to both sides of the equation. 8 minus 2 and two-thirds = 5 and one-third 8 + 2 and two-thirds = 10 and two-thirds Substitute the value for r to check the solution.

Answers

Answer:

Subtract 2 and two-thirds from both sides of the equation

8 minus 2 and two-thirds = 5 and one-third

Substitute the value for r to check the solution.

Step-by-step explanation:

2 2/3  + r   = 8

Subtract 2 2/3 from each side

2 2/3  + r  - 2 2/3   = 8 - 2 2/3

r = 5 1/3

Check the solution

2 2/3 +5 1/3 =8

8 =8

Answer:

1, 3, 5

Step-by-step explanation:

edge

Solve the system of equations for the variables: x+2y-z=3 x+y-2z= -1

Answers

Answer:

z=0

x= -5

y=4

Step-by-step explanation:

Check the attachment please

Hope this helps :)

Step-by-step explanation:

x + 2y − z = 3

x + y − 2z = -1

There are three variables but only two equations, so this system of equations is undefined.  We cannot solve for the variables, but we can eliminate one of them and reduce this to a single equation.

Double the first equation:

2x + 4y − 2z = 6

Subtract the second equation.

(2x + 4y − 2z) − (x + y − 2z) = (6) − (-1)

2x + 4y − 2z − x − y + 2z = 7

x + 3y = 7

forex is the name of the U.S. stock exchange.

-true
-false

Answers

Answer:

false

Step-by-step explanation:

hello

this is false

FOREX means Foreign Exchange

it refers to the foreign exchange market

hope this helps

Answer:

true, forex trading is a profitable than staking cryptocurrency. forex trading is the best thing I will refer someone I love because learning never stops and no on is above blowing accounts when beginning Forex

Find the product of all positive integer values of $c$ such that $3x^2+7x+c=0$ has two real roots. I will award a lot of points

Answers

Answer:  24

Step-by-step explanation:

Let's find one solution:

3x² + 7x + c = 0

a=3 b=7  c=c

First, let's find c so that it has REAL ROOTS.

⇒ Discriminant (b² - 4ac) ≥ 0

                         7² - 4(3)c ≥ 0

                         49 - 12c ≥ 0

                               -12c  ≥ -49

                                [tex]c\leq\dfrac{-49}{-12}\quad \rightarrow c\leq \dfrac{49}{12}[/tex]      

Since c must be a positive integer, 1 ≤ c ≤ 4

Example: c = 4

3x² + 7x + 4 = 0

(3x + 4)(x + 1) = 0

x = -4/3, x = -1         Real Roots!

You need to use Quadratic Formula to solve for c = {1, 2, 3}

Valid solutions for c are: {1, 2, 3, 4)

Their product is: 1 x 2 x 3 x 4 = 24

Answer:

$3x^2+7x+c=0$

comparing above equation with ax²+bx+c

a=3

b=7

c=1

using quadratic equation formula

[tex]x = \frac{ - b + - \sqrt{b {}^{2} - 4ac} }{ 2a} [/tex]

x=(-7+-√(7²-4×3×1))/(2×3)

x=(-7+-√13)/6

taking positive

x=(-7+√13)/6=

taking negative

x=(-7-√13)/6=

The graph shows a gasoline tank being filled at a rate of 2,500 gallons of gas per
hour. How will the graph change if the rate slows?

Answers

The correct answer is The line will be less steep because the rate will be slower

Explanation:

The rate of the graph is defined by the number of gallons filled vs the time; this relation is shown through the horizontal axis (time) and the vertical axis (gallons). Additionally, there is a constant rate because each hour 2,500 gallons are filled, which creates a steep constant line.

However, if the rate decreases, fewer gallons would be filled every hour, and the line will be less steep, this is because the number of gallons will not increase as fast as with the original rate. For example, if the rate is 1,250 gallons per hour (half the original rate), after 8 hours the total of gallons would be 1000 gallons (half the amount of gallons); and this would make the line to be less steep or more horizontal.

Arrange the functions for which the result is a non-infinite value and the limit exists in ascending order of their limit values as x tends to infinity. Please see picture attached.

Answers

Answer:

  see attached

Step-by-step explanation:

The limit as x gets large is the ratio of the highest-degree terms. In most cases, the limit can be found by evaluating that ratio. Where an absolute value is involved, the absolute value of the highest-degree term is used.

If the ratio gives x to a positive power, the limit does not exist. If the ratio gives x to a negative power, the limit is zero.

The arrangement of functions according to the given condition

[tex]m(x)=\frac{4x^{2}-6 }{1-4x^{2} }[/tex]

[tex]h(x)=\frac{x^{3} -x^{2} +4}{1-3x^{2} }[/tex]

[tex]k(x)=\frac{5x+1000}{x^{2} }[/tex]

[tex]i(x)=\frac{x-1}{|1-4x| }[/tex]

[tex]g(x)=\frac{|4x-1|}{x-4}[/tex]

[tex]l(x)=\frac{5x^{2} -4}{x^{2} +1}[/tex]

[tex]f(x)=\frac{x^{2} -1000}{x-5}[/tex]

[tex]j(x)=\frac{x^{2}-1 }{|7x-1|}[/tex]

What is limit?

A limit is the value that  a function approaches as the input approaches some value.

According to the given question

[tex]l(x)=\frac{5x^{2} -4}{x^{2} +1}[/tex]

⇒[tex]\lim_{nx\to \infty} \frac{5x^{2} -1}{x^{2} +1}[/tex]

⇒[tex]\lim_{x \to \infty} \frac{x^{2} }{x^{2} } \frac{5-\frac{1}{x^{2} } }{1+\frac{1}{x^{2} } }[/tex]

= 5           ([tex]\frac{1}{x^{2} } = 0[/tex] ,as x tends to infinity  [tex]\frac{1}{x^{2} }[/tex] tends to 0)

[tex]i(x)=\frac{x-1}{|1-4x|}[/tex]

⇒[tex]\lim_{x \to \infty} \frac{x-1}{|1-4x|}[/tex] =  [tex]\lim_{x \to \infty} \frac{x}{x} \frac{1-\frac{1}{x} }{|\frac{-1}{4}+\frac{1}{x} | }[/tex]  =[tex]\frac{1}{\frac{1}{4} }[/tex] =[tex]\frac{1}{4}[/tex]

As x tends to infinity 1/x tends to 0, and |[tex]\frac{-1}{4}[/tex]| gives 1/4

[tex]f(x)= \frac{x^{2} -1000}{x--5}[/tex]

⇒[tex]\lim_{x \to \infty} \frac{x^{2} -1000}{x-5}[/tex]= [tex]\lim_{x \to \infty} \frac{x^{2} }{x} \frac{1-\frac{1000}{x^{2} } }{1-\frac{5}{x} }[/tex]= [tex]\lim_{x \to \infty} x\frac{1-\frac{1000}{x^{2} } }{1-\frac{5}{x} }[/tex] ⇒ limit doesn't exist.

[tex]m(x)=\frac{4x^{2}-6 }{1-4x^{2} }[/tex]

⇒[tex]\lim_{x\to \infty} \frac{4x^{2} -6}{1-4x^{2} }[/tex]=[tex]\lim_{x\to \infty} \frac{x^{2} }{x^{2} } \frac{4-\frac{6}{x^{2} } }{\frac{1}{x^{2} } -4}[/tex]  [tex]= \lim_{n \to \infty} \frac{4}{-4}[/tex] = -1

As x tends to infinity [tex]\frac{1}{x^{2} }[/tex] tends to 0.

[tex]g(x)=\frac{|4x-1|}{x-4}[/tex]

⇒[tex]\lim_{x\to \infty} \frac{|4x-1|}{x-4}[/tex] = [tex]\lim_{x \to \infty} \frac{|x|}{x} \frac{4-\frac{1}{x} }{1 -\frac{4}{x} } }[/tex] = 4

as x tends to infinity 1/x tends to 0

and |x|=x ⇒[tex]\frac{|x|}{x}=1[/tex]

[tex]h(x)=\frac{x^{3}-x^{2} +4 }{1-3x^{3} }[/tex][tex]\lim_{x \to \infty} \frac{x^{3} -x^{2} +4}{1-3x^{3} }[/tex][tex]= \lim_{x \to \infty} \frac{x^{3} }{x^{3} } \frac{1-\frac{1}{x}+\frac{4}{x^{3} } }{\frac{1}{x^{3} -3} }[/tex]  = [tex]\frac{1}{-3}[/tex] =[tex]-\frac{1}{3}[/tex]

[tex]k(x)=\frac{5x+1000}{x^{2} }[/tex]

[tex]\lim_{x \to \infty} \frac{5x+1000}{x^{2} }[/tex] = [tex]\lim_{x \to \infty} \frac{x}{x} \frac{5+\frac{1000}{x} }{x}[/tex] =0

As x tends to infinity 1/x tends to 0

[tex]j(x)= \frac{x^{2}-1 }{|7x-1|}[/tex]

[tex]\lim_{x \to \infty} \frac{x^{2}-1 }{|7x-1|}[/tex] = [tex]\lim_{x \to \infty} \frac{x}{|x|}\frac{x-\frac{1}{x} }{|7-\frac{1}{x}| }[/tex]  = [tex]\lim_{x \to \infty} 7x[/tex] = limit doesn't exist.

Learn more about limit here:

https://brainly.in/question/5768142

#SPJ2

Researchers wanted to know whether it is better to give the diphtheria, tetanus and pertussis (DTaP) vaccine in the thigh or the arm. They collect data on severe reactions to this vaccine in children aged 3 to 6 years old. What would be the best statistical test for them to utilize?
A. One-sample chi-square
B. Linear regression
C. T-test
D. Two-sample chi-square

Answers

Answer:

D. Two-sample chi-square

Step-by-step explanation:

A chi-square test is a test used to compare the data that is observed, from the data that is expected.

In a two-sample chi-square test the observed data should be similar to the expected data if the two data samples are from the same distribution.

The hypotheses of the two-sample chi-square test is given as:

H0: The two samples come from a common distribution.

Ha: The two samples do not come from a common distribution

Therefore, in this case, the best statistical test to utilize is the two-sample chi-square test.

a geometric series has second term 375 and fifth term 81 . find the sum to infinity of series .

Answers

Answer:  [tex]\bold{S_{\infty}=\dfrac{3125}{2}=1562.5}[/tex]

Step-by-step explanation:

  a₁,  375,  a₃,   a₄,  81

First, let's find the ratio (r). There are three multiple from 375 to 81.

[tex]375r^3=81\\\\r^3=\dfrac{81}{375}\\\\\\r^3=\dfrac{27}{125}\qquad \leftarrow simplied\\\\\\\sqrt[3]{r^3} =\sqrt[3]{\dfrac{27}{125}}\\ \\\\r=\dfrac{3}{5}[/tex]

Next, let's find a₁

[tex]a_1\bigg(\dfrac{3}{5}\bigg)=375\\\\\\a_1=375\bigg(\dfrac{5}{3}\bigg)\\\\\\a_1=125(5)\\\\\\a_1=625[/tex]

Lastly, Use the Infinite Geometric Sum Formula to find the sum:

[tex]S_{\infty}=\dfrac{a_1}{1-r}\\\\\\.\quad =\dfrac{625}{1-\frac{3}{5}}\\\\\\.\quad =\dfrac{625}{\frac{2}{5}}\\\\\\.\quad = \dfrac{625(5)}{2}\\\\\\.\quad = \large\boxed{\dfrac{3125}{2}}[/tex]

Other Questions
PLEASE HELP. FINAL TEST QUESTION!!!! Devon is having difficulty determining if the relation given in an input-output table is a function. Explain why he is correct or incorrect. All automobile makers around the world are in the same strategic group because they manufacture automobiles.a) trueb) false Given that the velocity of blood pumping through the aorta is about 30 cm/s, what is the total current of the blood passing through the aorta (in grams of blood per second)? A superintendent of a school district conducted a survey to find out the level of job satisfaction among teachers. Out of 53 teachers who replied to the survey, 13 claim they are satisfied with their job.z equals fraction numerator p with hat on top minus p over denominator square root of begin display style fraction numerator p q over denominator n end fraction end style end root end fractionThe superintendent wishes to construct a significance test for her data. She find that the proportion of satisfied teachers nationally is 18.4%.What is the z-statistic for this data? Answer choices are rounded to the hundredths place.a. 2.90b. 1.15c. 1.24d. 0.61 a point charge q is located at the center of a cube with edge length d. whatis the value of the flux over one face of the cube The vertex form of the equation of a parabola is y = = 6(x-2)-8.What is the standard form of the equation?A. y = 12x2 - 6x + 8B. y = 6x2 - - 24x + 16c. y = 6x2 - 4x + 4O D. y = 12x2 - 12x + 16 the number 3^13 - 3^10 is divisible by What view of marriage does the story present? The story was published in 1894; does it only represent attitudes toward marriage in the nineteenth century, or could it equally apply to attitudes about marriage today? * Homolysis, or homolytic bond dissociation, produces a very specific type of product under certain reaction conditions. In Part 1, select all the products (in formulae and general chemical terms) that could result from homolysis. In Part 2, select the reaction conditions that are most likely to promote homolysis. Part 1. Choose all that may occur as possible products of a homolysis reaction. Choose one or more:_______. a. hydride ion b. R3CO c. Br2 d. H e. a carbocation f. H3C g. H3CO- h. hydrogen ion i. a carbon free radical Part 2. Choose the conditions under which homolysis is likely to occur. Choose one or more:_______. a. strong base b. ultraviolet irradiation c. high temperature d. strong acid e. infrared irradiation f. low temperature When you take your first job, you decide to start saving right away for your retirement. You put $5,000 per year into a saving plan, which interest rate 10% per year. Five years later, you move to another job and stop making contributions to the saving plan. If the first plan continued to earn interest for another 35 years, determine the future worth in year 40. Which pair of terms best describes a wooden table?biotic and nonlivingbiotic and livingabiotic and nonlivingabiotic and living HELP!!! How far have I travelled if I biked at 10mph for hhrs, I walked at 3mph for twice as long as I biked, and ran at 10mph for one quarter as long as I walked? Qu significa, segn tu propia opinin la frase llevar la pregunta a la mxima expresin, preguntar el porqu del porqu del porqu del porqu y as, al infinito? The grade of a road is its slope written as a percent. A warningsign must be posted if a section of road has a grade of at least 8% and ismore than 750 feet long.a. Interpret and Apply A road rises 63 feet over a horizontal distanceof 840 feet. Should a warning sign be posted? Explain your thinking.b. Critical Thinking The grade of a section of road that stretches over ahorizontal distance of 1000 feet is 9%. How many feet does the roadrise over that distance? A motor is 85.4 % efficient: that is, the output is 85.4 % of the input.What is the input if the motor delivers 10.75 hp. ( Round your answer to 1decimal place.) An electron, moving west, enters a magnetic field of a certain strength. Because of this field the electron curves upward. What is the direction of the magnetic field? Evaluate the expression......... If 4 is added to three quarter of a number and the result is 1. Find the number. Find a quadratic polynomial the sum and product of whose zeroes are -8 and 12 respectively. Hence find the zeroes. How do you find the amount of electrons for any element?