The image formed by the concave mirror is enlarged or magnified.
optionC.
What type of image is formed?When an object is placed in front of a concave mirror, between the center of curvature of the mirror and its focal point, the image formed by the concave mirror has the following characteristics;
the image formed is beyond the center of curvature. the image formed is realthe image formed is invertedthe image formed is magnifiedSo based on the given options, we can that the option that falls in the characteristics given above is "the image is enlarged or magnified.
Learn more about concave mirror here: https://brainly.com/question/27841226
#SPJ1
During capillary action, the water will rise higher in which situation?
During capillary action, the water will rise higher in a narrower tube or channel with a smaller diameter.
This is because the smaller diameter creates a greater surface tension, which pulls the water upward against gravity. Additionally, a surface with a higher degree of attraction to the water molecules will also enhance capillary action, allowing the water to rise higher.
This is because the adhesive forces between the water molecules and the tube's surface, as well as the cohesive forces between the water molecules themselves, are stronger in smaller diameter tubes, leading to a greater capillary rise.
Learn more about narrower tube
brainly.com/question/30882026
#SPJ11
what do you do for labored, contstriction, or lack of tidal volume
If someone is experiencing labored breathing, constriction, or a lack of tidal volume, it could indicate an underlying medical issue that needs to be addressed by a healthcare professional. In the meantime, some strategies that may help include relaxation techniques such as deep breathing exercises, and using an inhaler or nebulizer if prescribed.
Ensuring proper posture to facilitate breathing, and avoiding triggers such as smoke or allergens. It is important to seek medical attention if these symptoms persist or worsen.
Thus, If you are experiencing labored breathing, constriction in the airways, or a lack of tidal volume, you should take the following steps:-
1. Stay calm: Try to remain calm and composed, as anxiety can exacerbate your symptoms.
2. Assess your environment: Ensure that you are in a well-ventilated area free from allergens, pollutants, or irritants that could be contributing to your symptoms.
3. Practice deep breathing: Focus on slow, deep breaths. Inhale through your nose and exhale through your mouth to help regulate your breathing and increase tidal volume.
4. Sit or stand upright: Maintaining an upright posture can help to alleviate constriction and improve airflow.
5. Seek medical attention: If your symptoms persist or worsen, consult a healthcare professional for further evaluation and treatment. They may recommend medications or therapies to alleviate constriction and improve tidal volume.
Learn more about the environment here:- brainly.com/question/30821114.
#SPJ11
g what is the angular velocity (in rad/s) of a 62.0 cm diameter tire on an automobile traveling at 93.5 km/h? (enter the magnitude.)
The angular velocity of the tire is 84.02 rad/s
To find the angular velocity of the tire, we need to convert the linear velocity of the automobile into angular velocity of the tire using the formula:v = ωrwhere v is the linear velocity, ω is the angular velocity, and r is the radius of the tire.First, we need to convert the speed of the car from km/h to m/s:93.5 km/h = 26.0 m/sThe radius of the tire is half the diameter:r = 0.5(62.0 cm) = 0.31 mSubstituting these values into the formula, we get:26.0 m/s = ω(0.31 m)Solving for ω, we get:ω = 84.02 rad/sTherefore, the angular velocity of the tire is 84.02 rad/s.In physics, the rotational velocity or angular velocity ( or ), also known as the angular frequency vector, is a pseudovector representation of how quickly an object spins or revolves in relation to a point or axis.For more such question on angular velocity
https://brainly.com/question/29342095
#SPJ11
a potential difference of 0.020 v is developed across the 10-cm -long wire of (figure 1) as it moves through a magnetic field perpendicular to the plane of the figure. figure1 of 1 a horizontal 10 centimeter long wire segment has positive charges on the left end and negative charges on the right end. the segment moves vertically upward with a velocity of 5.0 meters per second. part a what is the strength of the magnetic field?
If the segment moves vertically upward with a velocity of 5.0 meters per second, the strength of the magnetic field is 0.040 T.
To solve for the strength of the magnetic field, we need to use the equation:
EMF = B*L*V
where EMF is the potential difference developed across the wire, B is the strength of the magnetic field, L is the length of the wire, and V is the velocity of the wire.
Substituting the given values, we get:
0.020 V = B*(10 cm)*(5.0 m/s)
First, we need to convert the length of the wire from centimeters to meters:
L = 10 cm = 0.1 m
Substituting this value, we get:
0.020 V = B*(0.1 m)*(5.0 m/s)
Simplifying, we get:
B = 0.020 V / (0.1 m * 5.0 m/s)
B = 0.040 T
Therefore, the strength of the magnetic field is 0.040 T.
More on magnetic field: https://brainly.com/question/16439132
#SPJ11
in the following equation, a is acceleration, m is mass, v is velocity, r is radius, t is time, is an angle, and c is a constant. a=c mv2sin0/rtif this equation is valid, which of the following could be the units of c?a.s/kgb.m/s2c.m2/sd.kg/me.kg m/s2
The units of c are: [c] = m²/s³. The answer is b.
The given equation is a = cmv²sinθ/rt, where a is acceleration, m is mass, v is velocity, r is radius, t is time, θ is an angle, and c is a constant.
To determine the units of c, we can analyze the units of each term in the equation and then determine the units of c such that the units of the equation are consistent.
Units of each term in the equation are:
a: m/s²
m: kg
v: m/s
r: m
t: s
sinθ: dimensionless
Substituting these units in the given equation, we get:
[m/s²] = [c] x [kg] x [m/s]² x [dimensionless] / [m] x [s]
Simplifying the above equation, we get:
[c] = [m/s²] x [m] x [s] / [kg] x [m/s]² x [dimensionless]
Therefore, the units of c are:
[c] = m²/s³
Hence, option (b) m²/s³ could be the units of c.
To know more about acceleration, refer here:
https://brainly.com/question/30660316#
#SPJ11