Explanation:
It is given that,
Angle of incidence from air to another medium, i = 26°
The angle of reflection, r = 32°
We need to find the refractive index of the medium. The ratio of sine of angle of incidence to the sine of angle of reflection is called refractive index. It can be given by :
[tex]n=\dfrac{\sin i}{\sin r}\\\\n=\dfrac{\sin (26)}{\sin (32)}\\\\n=0.82[/tex]
So, the index of refraction is 0.82. Hence, the correct option is C.
Which has more mass electron or ion?
In a polar coordinate system, the velocity vector can be written as . The term theta with dot on top is called _______________________ angular velocity transverse velocity radial velocity angular acceleration
Answer:
I believe it's called rapid growth
Explanation:
that is my answer no matter what
A flat loop of wire consisting of a single turn of cross-sectional area 8.20 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 2.60 T in 1.02 s. What is the resulting induced current if the loop has a resistance of 2.70
Answer:
The induced current is [tex]I = 6.25*10^{-4} \ A[/tex]
Explanation:
From the question we are told that
The number of turns is [tex]N = 1[/tex]
The cross-sectional area is [tex]A = 8.20 cm^2 = 8.20 * 10^{-4} \ m^2[/tex]
The initial magnetic field is [tex]B_i = 0.500 \ T[/tex]
The magnetic field at time = 1.02 s is [tex]B_t = 2.60 \ T[/tex]
The resistance is [tex]R = 2.70\ \Omega[/tex]
The induced emf is mathematically represented as
[tex]\epsilon = - N * \frac{ d\phi }{dt}[/tex]
The negative sign tells us that the induced emf is moving opposite to the change in magnetic flux
Here [tex]d\phi[/tex] is the change in magnetic flux which is mathematically represented as
[tex]d \phi = dB * A[/tex]
Where dB is the change in magnetic field which is mathematically represented as
[tex]dB = B_t - B_i[/tex]
substituting values
[tex]dB = 2.60 - 0.500[/tex]
[tex]dB = 2.1 \ T[/tex]
Thus
[tex]d \phi = 2.1 * 8.20 *10^{-4}[/tex]
[tex]d \phi = 1.722*10^{-3} \ weber[/tex]
So
[tex]|\epsilon| = 1 * \frac{ 1.722*10^{-3}}{1.02}[/tex]
[tex]|\epsilon| = 1.69 *10^{-3} \ V[/tex]
The induced current i mathematically represented as
[tex]I = \frac{\epsilon}{ R }[/tex]
substituting values
[tex]I = \frac{1.69*10^{-3}}{ 2.70 }[/tex]
[tex]I = 6.25*10^{-4} \ A[/tex]
Two point charges of +2.0 μC and -6.0 μC are located on the x-axis at x = -1.0 cm and x 12) = +2.0 cm respectively. Where should a third charge of +3.0-μC be placed on the +x-axis so that the potential at the origin is equal to zero?
Answer:
x = 0.006 m
Explanation:
The potential at one point is given by
V = k ∑ [tex]q_{i} / r_{i}[/tex]
remember that the potential is to scale, let's apply to our case
V = k (q₁ / x₁ + q₂ / x₂ + q₃ / x)
in this case they indicate that the potential is zero
0 = k (2 10⁻⁶ / (- 1 10⁻²) + (-6 10⁻⁶) / 2 10⁻² + 3 10⁻⁶ / x)
3 / x = + 2 / 10⁻² + 3 / 10⁻²
3 / x = 500
x = 3/500
x = 0.006 m
soaring birds and glider pilots can remain aloft for hours without expending power. Discuss why this is so.
Answer:
Since their wings and body develop the drag. When there is warm air then they expand their wings. Since,soaring birds and glider pilots have no engine, they always maintain their high speed to lift their weight in air for hours without expending power by convection
Explanation:
What are the approximate dimensions of the smallest object on Earth that astronauts can resolve by eye when they are orbiting 275 km above the Earth
Answer:
s_400 = 16.5 m , s_700 = 29.4 m
Explanation:
The limit of the human eye's solution is determined by the diffraction limit that is given by the expression
θ = 1.22 λ / D
where you lick the wavelength and D the mediator of the circular aperture.
In our case, the dilated pupil has a diameter of approximately 8 mm = 8 10-3 m and the eye responds to a wavelength between 400 nm and 700 nm.
by introducing these values into the formula
λ = 400 nm θ = 1.22 400 10⁻⁹ / 8 10⁻³ = 6 10⁻⁵ rad
λ = 700 nm θ = 1.22 700 10⁻⁹ / 8 10⁻³-3 = 1.07 10⁻⁴ rad
Now we can use the definition radians
θ= s / R
where s is the supported arc and R is the radius. Let's find the sarcos for each case
λ = 400 nm s_400 = θ R
S_400 = 6 10⁻⁵ 275 10³
s_400 = 16.5 m
λ = 700 nm s_ 700 = 1.07 10⁻⁴ 275 10³
s_700 = 29.4 m
Two cars are moving towards each other and sound emitted by first car with real frequency of 3000 hertz is detected by a person in second with apparent frequency of 3400 Hertz what was the speed of cars
Answer:
v ’= 21.44 m / s
Explanation:
This is a doppler effect exercise that changes the frequency of the sound due to the relative movement of the source and the observer, the expression that describes the phenomenon for body approaching s
f ’= f (v + v₀) / (v-[tex]v_{s}[/tex])
where it goes is the speed of sound 343 m / s, v_{s} the speed of the source v or the speed of the observer
in this exercise both the source and the observer are moving, we will assume that both have the same speed,
v₀ = v_{s} = v ’
we substitute
f ’= f (v + v’) / (v - v ’)
f ’/ f (v-v’) = v + v ’
v (f ’/ f -1) = v’ (1 + f ’/ f)
v ’= (f’ / f-1) / (1 + f ’/ f) v
v ’= (f’-f) / (f + f’) v
let's calculate
v ’= (3400 -3000) / (3000 +3400) 343
v ’= 400/6400 343
v ’= 21.44 m / s
Suppose your 50.0 mm-focal length camera lens is 51.0 mm away from the film in the camera. (a) How far away is an object that is in focus
Answer:
2.55m
Explanation:
Using 1/do+1/di= 1/f
di= (1/f-1/do)^-1
( 1/0.0500-1/0.0510)^-1
= 2.55m
Two identical wooden barrels are fitted with long pipes extending out their tops. The pipe on the first barrel is 1 foot in diameter, and the pipe on the second barrel is only 1/2 inch in diameter. When the larger pipe is filled with water to a height of 20 feet, the barrel bursts. To burst the second barrel, will water have to be added to a height less than, equal to, or greater than 20 feet? Explain.
Answer:
The 1/2 inch barrel will burst at the same height of 20 ft
Explanation:
The pressure on a column of fluid increases with depth, and decreases with height. This means that if you increase the height of the fluid in the column, the pressure at the bottom will increase.
From the equation of fluid pressure,
P = ρgh
where
P is the pressure at the bottom of the fluid due to its height
ρ is the density of the fluid in question
h is the height to which the water stand.
You notice how apart from the height 'h' in the equation, all the other parts of the right hand side of the equation cannot be varied; they are a fixed property of the fluid and gravity. And there is no consideration for the horizontal diameter of the water's cross section area.
We can also think of the pressure at the bottom of the fluid to be as a result of an incremental weight of an infinitesimally small vertical section of the water down.
That been said, we can then say that if the barrel with the 1 ft diameter dimension bursts when filled with water up to 20 ft, then, the barrel with the reduced diameter will still burst at the same height as the former pipe.
NB: The only way to stop the pipe from bursting is to increase the thickness of the barrel wall to counteract the pressure forces due to the height.
Two spherical objects at the same altitude move with identical velocities and experience the same drag force at a time t. If Object 1 has twice (2x) the diameter of Object 2, which object has the larger drag coefficient? Explain your answer using the drag equation.
Answer:
The object with the twice the area of the other object, will have the larger drag coefficient.
Explanation:
The equation for drag force is given as
[tex]F_{D} = \frac{1}{2}pu^{2} C_{D} A[/tex]
where [tex]F_{D}[/tex] IS the drag force on the object
p = density of the fluid through which the object moves
u = relative velocity of the object through the fluid
p = density of the fluid
[tex]C_{D}[/tex] = coefficient of drag
A = area of the object
Note that [tex]C_{D}[/tex] is a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. The most interesting things is that it is dependent on the linear dimension, which means that it will vary directly with the change in diameter of the fluid
The above equation can also be broken down as
[tex]F_{D}[/tex] ∝ [tex]P_{D}[/tex] A
where [tex]P_{D}[/tex] is the pressure exerted by the fluid on the area A
Also note that [tex]P_{D}[/tex] = [tex]\frac{1}{2}pu^{2}[/tex]
which also clarifies that the drag force is approximately proportional to the abject's area.
In this case, the object with the twice the area of the other object, will have the larger drag coefficient.
What is the distance in m between lines on a diffraction grating that produces a second-order maximum for 775-nm red light at an angle of 62.5°?
Answer:
The distance is [tex]d = 1.747 *10^{-6} \ m[/tex]
Explanation:
From the question we are told that
The order of maximum diffraction is m = 2
The wavelength is [tex]\lambda = 775 nm = 775 * 10^{-9} \ m[/tex]
The angle is [tex]\theta = 62.5^o[/tex]
Generally the condition for constructive interference for diffraction grating is mathematically represented as
[tex]dsin \theta = m * \lambda[/tex]
where d is the distance between the lines on a diffraction grating
So
[tex]d = \frac{m * \lambda }{sin (\theta )}[/tex]
substituting values
[tex]d = \frac{2 * 775 *1^{-9} }{sin ( 62.5 )}[/tex]
[tex]d = 1.747 *10^{-6} \ m[/tex]
The index of refraction of a sugar solution in water is about 1.5, while the index of refraction of air is about 1. What is the critical angle for the total internal reflection of light traveling in a sugar solution surrounded by air
Answer:
The critical angle is [tex]i = 41.84 ^o[/tex]
Explanation:
From the question we are told that
The index of refraction of the sugar solution is [tex]n_s = 1.5[/tex]
The index of refraction of air is [tex]n_a = 1[/tex]
Generally from Snell's law
[tex]\frac{sin i }{sin r } = \frac{n_a }{n_s }[/tex]
Note that the angle of incidence in this case is equal to the critical angle
Now for total internal reflection the angle of reflection is [tex]r = 90^o[/tex]
So
[tex]\frac{sin i }{sin (90) } = \frac{1 }{1.5 }[/tex]
[tex]i = sin ^{-1} [\frac{ (sin (90)) * 1 }{1.5} ][/tex]
[tex]i = 41.84 ^o[/tex]
A device called an insolation meter is used to measure the intensity of sunlight. It has an area of 100 cm2 and registers 6.50 W. What is the intensity in W/m2
Answer:
650W/m²Explanation:
Intensity of the sunlight is expressed as I = Power/cross sectional area. It is measured in W/m²
Given parameters
Power rating = 6.50Watts
Cross sectional area = 100cm²
Before we calculate the intensity, we need to convert the area to m² first.
100cm² = 10cm * 10cm
SInce 100cm = 1m
10cm = (10/100)m
10cm = 0.1m
100cm² = 0.1m * 0.1m = 0.01m²
Area (in m²) = 0.01m²
Required
Intensity of the sunlight I
I = P/A
I = 6.5/0.01
I = 650W/m²
Hence, the intensity of the sunlight in W/m² is 650W/m²
. A 24-V battery is attached to a 3.0-mF capacitor and a 100-ohm resistor. If the capacitor is initially uncharged, what is the voltage across the capacitor 0.16 seconds after the circuit is connected to the battery
Answer:
The voltage is [tex]V_c = 9.92 \ V[/tex]
Explanation:
From the question we are told that
The voltage of the battery is [tex]V_b = 24 \ V[/tex]
The capacitance of the capacitor is [tex]C = 3.0 mF = 3.0 *10^{-3} \ F[/tex]
The resistance of the resistor is [tex]R = 100\ \Omega[/tex]
The time taken is [tex]t = 0.16 \ s[/tex]
Generally the voltage of a charging charging capacitor after time t is mathematically represented as
[tex]V_c = V_o (1 - e^{- \frac{t}{RC} })[/tex]
Here [tex]V_o[/tex] is the voltage of the capacitor when it is fully charged which in the case of this question is equivalent to the voltage of the battery so
[tex]V_c = 24 (1 - e^{- \frac{0.16}{100 * 3.0 *10^{-1}} })[/tex]
[tex]V_c = 9.92 \ V[/tex]
An RC circuit is connected across an ideal DC voltage source through an open switch. The switch is closed at time t = 0 s. Which of the following statements regarding the circuit are correct?
a) The capacitor charges to its maximum value in one time constant and the current is zero at that time.
b) The potential difference across the resistor and the potential difference across the capacitor are always equal.
c) The potential difference across the resistor is always greater than the potential difference across the capacitor.
d) The potential difference across the capacitor is always greater than the potential difference across the resistor
e) Once the capacitor is essentially fully charged, There is no appreciable current in the circuit.
Answer:
e)
Explanation:
In an RC series circuit, at any time, the sum of the voltages through the resistor and the capacitor must be constant and equal to the voltage of the DC voltage source, in order to be compliant with KVL.
At= 0, as the voltage through the capacitor can't change instantaneously, all the voltage appears through the resistor, which means that a current flows, that begins to charge the capacitor, up to a point that the voltage through the capacitor is exactly equal to the DC voltage, so no current flows in the circuit anymore, and the charge in the capacitor reaches to its maximum value.
A variable force of 6x−2 pounds moves an object along a straight line when it is x feet from the origin. Calculate the work done in moving the object from x = 1 ft to x = 18 ft. (Round your answer to two decimal places.) ft-lb
Answer:
931.00ft-lb
Explanation:
Pls see attached file
The work done in moving the object from x = 1 ft to x = 18 ft is 935 ft-lb.
What is work?
Work is the product of the displacement's magnitude and the component of force acting in that direction. It is a scalar quantity having only magnitude and Si unit of work is Joule.
Given that force = 6x - 2 pounds.
So, work done in moving the object from x = 1 ft to x = 18 ft is = [tex]\int\limits^{18}_1 {(6x-2)} \, dx[/tex]
= [ 3x² - 2x]¹⁸₁
= 3(18² - 1² ) - 2(18-1) ft-lb
= 935 ft-lb.
Hence, the work done is 935 ft-lb.
Learn more about work here:
https://brainly.com/question/18094932
#SPJ2
A dentist using a dental drill brings it from rest to maximum operating speed of 391,000 rpm in 2.8 s. Assume that the drill accelerates at a constant rate during this time.
(a) What is the angular acceleration of the drill in rev/s2?
rev/s2
(b) Find the number of revolutions the drill bit makes during the 2.8 s time interval.
rev
Answer:
a
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
b
[tex]\theta = 9124.5 \ rev[/tex]
Explanation:
From the question we are told that
The maximum angular speed is [tex]w_{max} = 391000 \ rpm = \frac{2 \pi * 391000}{60} = 40950.73 \ rad/s[/tex]
The time taken is [tex]t = 2.8 \ s[/tex]
The minimum angular speed is [tex]w_{min}= 0 \ rad/s[/tex] this is because it started from rest
Apply the first equation of motion to solve for acceleration we have that
[tex]w_{max} = w_{mini} + \alpha * t[/tex]
=> [tex]\alpha = \frac{ w_{max}}{t}[/tex]
substituting values
[tex]\alpha = \frac{40950.73}{2.8}[/tex]
[tex]\alpha = 14625 .3 \ rad/s^2[/tex]
converting to [tex]rev/s^2[/tex]
We have
[tex]\alpha = 14625 .3 * 0.159155 \ rev/s^2[/tex]
[tex]\alpha = 2327.7 \ rev/s^2[/tex]
According to the first equation of motion the angular displacement is mathematically represented as
[tex]\theta = w_{min} * t + \frac{1}{2} * \alpha * t^2[/tex]
substituting values
[tex]\theta = 0 * 2.8 + 0.5 * 14625.3 * 2.8^2[/tex]
[tex]\theta = 57331.2 \ radian[/tex]
converting to revolutions
[tex]revolution = 57331.2 * 0.159155[/tex]
[tex]\theta = 9124.5 \ rev[/tex]
An electron traveling with a speed v enters a uniform magnetic field directed perpendicular to its path. The electron travels for a time t0 along a half-circle of radius R before leaving the magnetic field traveling opposite the direction it initially entered the field. Which of the following quantities would change if the electron had entered the field with a speed 2v? (There may be more than one correct answer.)
a. The radius of the circular path the electron travels
b. The magnitude of the electron's acceleration inside the field
c. The time the electron is in the magnetic field
d. The magnitude of the net force acting on the electron inside the field
Answer:
Explanation:
For circular path in magnetic field
mv² / R = Bqv ,
m is mass , v is velocity , R is radius of circular path , B is magnetic field , q is charge on the particle .
a )
R = mv / Bq
If v is changed to 2v , keeping other factors unchanged , R will be doubled
b )
magnitude of acceleration inside field
= v² / R
= Bqv / m
As v is doubled , acceleration will also be doubled
c )
If T be the time inside the magnetic field
T = π R / v
= π / v x mv / Bq
= π m / Bq
As is does not contain v that means T remains unchanged .
d )
Net force acting on electron
= m v² / R = Bqv
Net force = Bqv
As v becomes twice force too becomes twice .
So a . b , d are correct answer.
If a bicycle starts from rest and is pedaled normally until the bike is moving at 6 meters per second across level ground, what kinds of energy have its tires been given? (Select all that apply) g
Answer: Translational Kinetic Energy
Rotational Kinetic Energy
Explanation:
An object has translational kinetic energy when it is undergoing through a linear displacement.
Rotational energy is kinetic energy due to the rotation of an object .
Here the wheel of bicycle undergoes both translational and rotational kinetic energy has it moves with linear displacement with rotation in it.
Hence, the tires have been two kinds of energy : translational and rotational kinetic energy
Two parallel plates have charges of equal magnitude but opposite sign. What change could be made to increase the strength of the electric field between the plates
Answer:
The electric field strength between the plates can be increased by decreasing the length of each side of the plates.
Explanation:
The electric field strength is given by;
[tex]E = \frac{V}{d}[/tex]
where;
V is the electric potential of the two opposite charges
d is the distance between the two parallel plates
[tex]E =\frac{V}{d} = \frac{\sigma}{\epsilon _o} \\\\(\sigma = \frac{Q}{A} )\\\\E = \frac{Q}{A\epsilon_o} \\\\E = \frac{Q}{L^2\epsilon_o}[/tex]
Where;
ε₀ is permittivity of free space
L is the length of each side of the plates
From the equation above, the electric field strength can be increased by decreasing the length of each side of the plates.
Therefore, decreasing the length of each side of the plates, could be made to increase the strength of the electric field between the plates
. If you live in a region that has a particular TV station, you can sometimes pick up some of its audio portion on your FM radio receiver. Explain how this is possible. Does it imply that TV audio is broadcast as FM
Answer:
Please see below as the answer is self-explanatory.
Explanation:
The low band of the VHF TV Spectrum, spans channels 2-6, from 54 to 88 Mhz.
In the analog TV, in the Americas, the total bandwidth of any channel is 6 Mhz, with the visual carrier modulated in VSS (Vestigial Side Band) at 1.25 Mhz from the lowest frequency of the channel.
The aural carrier is located at 4.5 Mhz from the visual carrier, and is FM modulated.
For Channel 6, which spans between 82 and 88 Mhz, the visual carrier is at 83.25 Mhz, so the aural carrier is at 87.75 Mhz, which falls within the FM Band, so it is possible to listen the audio part of this channel in a FM radio receiver, even at a lower volume, due to the FM radio has a greater deviation than TV aural carrier.
The reason why it is possible for TV station to sometimes pick up some of the audio portion on your FM radio receiver is because; TV waves can sometimes deviate into the FM radio frequency range.
Let us start with explaining the waves of TV and radio.
The frequency range utilized by TV stations is either the range 54 MHz to 88 MHz or 174 MHz to 222 MHz. In contrast, the frequency range utilized by FM Radio band is between 88 MHz and 174 MHz.
Now, in some cases, it is possible that the TV signal may deviate into the range of the FM Radio and as such in that case, the TV signal will pick the audio portion of an FM Radio. These TV waves are very high frequency waves.
Finally, it does not imply that the TV wave is broadcasting as an FM because it only deviated a bit from the TV range and not like that is where it is made to operate.
Read more about TV waves at; https://brainly.com/question/9684913
collision occurs betweena 2 kg particle traveling with velocity and a 4 kg particle traveling with velocity. what is the magnitude of their velocity
Answer:
metre per seconds
Explanation:
because velocity = distance ÷ time
An electron moves to the left along the plane of the page, while a uniform magnetic field points into the page. What direction does the force act on the moving electron
Answer:
acting force is the answer
The direction of the magnetic force on the moving electron is upward.
The direction of the magnetic force on the electron can be determined by applying right hand rule.
This rule states that when the thumb is held perpendicular to the fingers, the thumb will point in the direction of the speed while the fingers will point in the direction of the field and the magnetic force will be perpendicular to the field.
Thus, we can conclude that, the direction of the magnetic force on the moving electron is upward.
Learn more here:https://brainly.com/question/14434299
A Huge water tank is 2m above the ground if the water level on it is 4.9m high and a small opening is there at the bottom then the speed of efflux of non viscous water through the opening will be
Answer:
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
Explanation:
Let assume the existence of a line of current between the water tank and the ground and, hence, the absence of heat and work interactions throughout the system. If water is approximately at rest at water tank and at atmospheric pressure ([tex]P_{atm}[/tex]), then speed of efflux of the non-viscous water is modelled after the Bernoulli's Principle:
[tex]P_{1} + \rho\cdot \frac{v_{1}^{2}}{2} + \rho\cdot g \cdot z_{1} = P_{2} + \rho\cdot \frac{v_{2}^{2}}{2} + \rho\cdot g \cdot z_{2}[/tex]
Where:
[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Water total pressures inside the tank and at ground level, measured in pascals.
[tex]\rho[/tex] - Water density, measured in kilograms per cubic meter.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Water speeds inside the tank and at the ground level, measured in meters per second.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Heights of the tank and ground level, measured in meters.
Given that [tex]P_{1} = P_{2} = P_{atm}[/tex], [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{1} = 0\,\frac{m}{s}[/tex], [tex]z_{1} = 6.9\,m[/tex] and [tex]z_{2} = 4.9\,m[/tex], the expression is reduced to this:
[tex]\left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m) = \frac{v_{2}^{2}}{2} + \left(9.807\,\frac{m}{s^{2}} \right)\cdot (4.9\,m)[/tex]
And final speed is now calculated after clearing it:
[tex]v_{2} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m-4.9\,m)}[/tex]
[tex]v_{2} \approx 6.263\,\frac{m}{s}[/tex]
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
An electron initially at rest is accelerated over a distance of 0.210 m in 33.3 ns. Assuming its acceleration is constant, what voltage was used to accelerate it
Answer:
V = 451.47 volts
Explanation:
Given that,
Distance, d = 0.21 m
Initial speed, u = 0
Time, t = 33.3 ns
Let v is the final velocity. Using second equation of motion as :
[tex]d=ut+\dfrac{1}{2}at^2[/tex]
a is acceleration, [tex]a=\dfrac{v-u}{t}[/tex] and u = 0
So,
[tex]d=\dfrac{1}{2}(v-u)t[/tex]
[tex]v=\dfrac{2d}{t}\\\\v=\dfrac{2\times 0.21}{33.3\times 10^{-9}}\\\\v=1.26\times 10^7\ m/s[/tex]
Now applying the conservation of energy i.e.
[tex]\dfrac{1}{2}mv^2=qV[/tex]
V is voltage
[tex]V=\dfrac{mv^2}{2q}\\\\V=\dfrac{9.1\times 10^{-31}\times (1.26\times 10^7)^2}{2\times 1.6\times 10^{-19}}\\\\V=451.47\ V[/tex]
So, the voltage is 451.47 V.
Find the work done in pumping gasoline that weighs 6600 newtons per cubic meter. A cylindrical gasoline tank 3 meters in diameter and 6 meters long is carried on the back of a truck and is used to fuel tractors. The axis of the tank is horizontal. The opening on the tractor tank is 5 meters above the top of the tank in the truck. Find the work done in pumping the entire contents of the fuel tank into the tractor.
Answer:
work done in pumping the entire fuel is 1399761 J
Explanation:
weight per volume of the gasoline = 6600 N/m^3
diameter of the tank = 3 m
length of the tank = 6 m
The height of the tractor tank above the top of the tank = 5 m
The total volume of the fuel is gotten below
we know that the tank is cylindrical.
we assume that the fuel completely fills the tank.
therefore, the volume of a cylinder =
where r = radius = diameter ÷ 2 = 3/2 = 1.5 m
volume of the cylinder = 3.142 x x 6 = 42.417 m^3
we then proceed to find the total weight of the fuel in Newton
total weight = (weight per volume) x volume
total weight = 6600 x 42.417 = 279952.2 N
therefore,
the work done to pump the fuel through to the 5 m height = (total weight of the fuel) x (height through which the fuel is pumped)
work done in pumping = 279952.2 x 5 = 1399761 J
A small branch is wedged under a 200 kg rock and rests on a smaller object. The smaller object is 2.0 m from the large rock and the branch is 12.0 m long.
(a) If the mass of the branch is negligible, what force must be exerted on the free end to just barely lift the rock?
(b) What is the mechanical advantage of this lever system?
Answer:
a
[tex]F =326.7 \ N[/tex]
b
[tex]M = 6[/tex]
Explanation:
From the question we are told that
The mass of the rock is [tex]m_r = 200 \ kg[/tex]
The length of the small object from the rock is [tex]d = 2 \ m[/tex]
The length of the small object from the branch [tex]l = 12 \ m[/tex]
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as
[tex]W = m_r * g[/tex]
substituting values
[tex]W = 200 * 9.8[/tex]
[tex]W = 1960 \ N[/tex]
So at equilibrium the sum of the moment about the fulcrum is mathematically represented as
[tex]\sum M_f = F * cos \theta * l - W cos\theta * d = 0[/tex]
Here [tex]\theta[/tex] is very small so [tex]cos\theta * l = l[/tex]
and [tex]cos\theta * d = d[/tex]
Hence
[tex]F * l - W * d = 0[/tex]
=> [tex]F = \frac{W * d}{l}[/tex]
substituting values
[tex]F = \frac{1960 * 2}{12}[/tex]
[tex]F =326.7 \ N[/tex]
The mechanical advantage is mathematically evaluated as
[tex]M = \frac{W}{F}[/tex]
substituting values
[tex]M = \frac{1960}{326.7}[/tex]
[tex]M = 6[/tex]
A segment of wire of total length 3.0 m carries a 15-A current and is formed into a semicircle. Determine the magnitude of the magnetic field at the center of the circle along which the wire is placed.
Answer:
4.9x10^-6T
Explanation:
See attached file
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100 mm and a screen placed 2.0 m away. (a)How wide on the screen is the central bright fringe
Answer:
0.0127m
Explanation:
Using
Ym= (1)(633x10^-9m)(2m) / (0.1x10^-3m) = 0.0127m
A charge is placed on a spherical conductor of radius r1. This sphere is then connected to a distant sphere of radius r2 (not equal to r1) by a conducting wire. After the charges on the spheres are in equilibrium:__________.
1. the electric fields at the surfaces of the two spheres are equal.
2. the amount of charge on each sphere is q/2.
3. both spheres are at the same potential. the potentials are in the ratio V2/V1 = q2/q1.
4. the potentials are in the ratio V2/V1 = r2/r1 .
Answer:
Option 3 = both spheres are at the same potential.
Explanation:
So, let us complete or fill the missing gap in the question above;
" A charge is placed on a spherical conductor of radius r1. This sphere is then connected to a distant sphere of radius r2 (not equal to r1) by a conducting wire. After the charges on the spheres are in equilibrium BOTH SPHERES ARE AT THE SAME POTENTIAL"
The reason both spheres are at the same potential after the charges on the spheres are in equilibrium is given below:
=> So, if we take a look at the Question again, the kind of connection described in the question above (that is a charged sphere, say X is connected another charged sphere, say Y by a conducting wire) will eventually cause the movement of charges(which initially are not of the same potential) from X to Y and from Y to X and this will continue until both spheres are at the same potential.