Answer:
The upper confidence bound for the true average difference between 1-minute modulus and 4-week modulus is 2933.82.
Step-by-step explanation:
Compute the mean difference and standard deviation of the difference as follows:
[tex]\bar d=\frac{1}{n}\sum d_{i}=\frac{1}{15}\times [1380+3370+2580+...+3520]=2642.67\\\\S_{d}=\sqrt{\frac{1}{n-1}\sum (d_{i}-\bar d)^{2}}\\=\sqrt{\frac{1}{15-1}[(1380-2642.67)^{2}+(3370-2642.67)^{2}+...}=525.69[/tex]
The degrees of freedom is:
df = n - 1
= 15 - 1
= 14
Th critical value of t is:
[tex]t_{\alpha/2, (n-1)}=t_{0.05/2, 14}=2.145[/tex]
*Use a t-table.
Compute the upper confidence bound for the true average difference between 1-minute modulus and 4-week modulus as follows:
[tex]\text{Upper Confidence Bound}=\bar d+t_{\alpha/2, (n-1)}\cdot \frac{S_{d}}{\sqrt{n}}[/tex]
[tex]=2642.67+2.145\cdot \frac{525.69}{\sqrt{15}}\\\\=2642.67+291.15\\\\=2933.82[/tex]
Thus, the upper confidence bound for the true average difference between 1-minute modulus and 4-week modulus is 2933.82.
What percent of the area underneath
this normal curve is shaded?
the answer is not 36%
Answer:
95%
Step-by-step explanation:
Answer:
99.7
Step-by-step explanation:
hope this helps !
if a varies inversely as the cube root of b and a=1 when b=64, find b
Answer:
b = 64/a³
Step-by-step explanation:
Using the given information, we can only find a relation between a and b. We cannot find any specific value for b.
Since a varies inversely as the cube root of b, we have ...
a = k/∛b
Multiplying by ∛b lets us find the value of k:
k = a·∛b = 1·∛64 = 4
Taking the cube of this equation gives ...
64 = a³b
b = 64/a³ . . . . . divide by a³
The value of b is ...
b = 64/a³
Which point is on the graph of f(x)=3.4x
Answer: The answer is (1, 12).
12 = 3 x 4^{1}
Step-by-step explanation: Hope it helps!
Answer:
Hi! The answer to your question is (1,12)
Step-by-step explanation:
The steps are:
I attached a picture to make sure if that’s the same problem as yours.
So in the picture you can see that there is option A, B, C, D
When we do A and B we will know that it is wrong
When we try C let’s see what we get!
When I did C I got 3.4₁ which equals to 12
Work:
Y=F [1] which equals to 3.4
3.4=12
So the answer will be C. (1,12)
Hope this helps! :)
Suppose you pay a dollar to roll two dice. if you roll 5 or a 6 you Get your dollar back +2 more just like it the goal will be to find the amount of money you can expect to win or lose if you play this game 100 times. How many times would you win? how many times would you lose?
Answer:
(a)$67
(b)You are expected to win 56 Times
(c)You are expected to lose 44 Times
Step-by-step explanation:
The sample space for the event of rolling two dice is presented below
[tex](1,1), (2,1), (3,1), (4,1), (5,1), (6,1)\\(1,2), (2,2), (3,2), (4,2), (5,2), (6,2)\\(1,3), (2,3), (3,3), (4,3), (5,3), (6,3)\\(1,4), (2,4), (3,4), (4,4), (5,4), (6,4)\\(1,5), (2,5), (3,5), (4,5), (5,5), (6,5)\\(1,6), (2,6), (3,6), (4,6), (5,6), (6,6)[/tex]
Total number of outcomes =36
The event of rolling a 5 or a 6 are:
[tex](5,1), (6,1)\\ (5,2), (6,2)\\( (5,3), (6,3)\\ (5,4), (6,4)\\(1,5), (2,5), (3,5), (4,5), (5,5), (6,5)\\(1,6), (2,6), (3,6), (4,6), (5,6), (6,6)[/tex]
Number of outcomes =20
Therefore:
P(rolling a 5 or a 6) [tex]=\dfrac{20}{36}[/tex]
The probability distribution of this event is given as follows.
[tex]\left|\begin{array}{c|c|c}$Amount Won(x)&-\$1&\$2\\&\\P(x)&\dfrac{16}{36}&\dfrac{20}{36}\end{array}\right|[/tex]
First, we determine the expected Value of this event.
Expected Value
[tex]=(-\$1\times \frac{16}{36})+ (\$2\times \frac{20}{36})\\=\$0.67[/tex]
Therefore, if the game is played 100 times,
Expected Profit =$0.67 X 100 =$67
If you play the game 100 times, you can expect to win $67.
(b)
Probability of Winning [tex]=\dfrac{20}{36}[/tex]
If the game is played 100 times
Number of times expected to win
[tex]=\dfrac{20}{36} \times 100\\=56$ times[/tex]
Therefore, number of times expected to loose
= 100-56
=44 times
The mean MCAT score 29.5. Suppose that the Kaplan tutoring company obtains a sample of 40 students with a mean MCAT score of 32.2 with a standard deviation of 4.2. Test the claim that the students that took the Kaplan tutoring have a mean score greater than 29.5 at a 0.05 level of significance.
Answer:
We conclude that the students that took the Kaplan tutoring have a mean score greater than 29.5.
Step-by-step explanation:
We are given that the Kaplan tutoring company obtains a sample of 40 students with a mean MCAT score of 32.2 with a standard deviation of 4.2.
Let [tex]\mu[/tex] = population mean score
So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] 29.5 {means that the students that took the Kaplan tutoring have a mean score less than or equal to 29.5}
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > 29.5 {means that the students that took the Kaplan tutoring have a mean score greater than 29.5}
The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;
T.S. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean MCAT score = 32.2
s = sample standard deviation = 4.2
n = sample of students = 40
So, the test statistics = [tex]\frac{32.2-29.5}{\frac{4.2}{\sqrt{40} } }[/tex] ~ [tex]t_3_9[/tex]
= 4.066
The value of t-test statistics is 4.066.
Now, at 0.05 level of significance, the t table gives a critical value of 1.685 at 39 degrees of freedom for the right-tailed test.
Since the value of our test statistics is more than the critical value of t as 4.066 > 1.685, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region.
Therefore, we conclude that the students that took the Kaplan tutoring have a mean score greater than 29.5.
4 builders are building some new classrooms at Trinity. It takes them 5 months to build the classrooms. How long will it take 10 builders?
Answer:
it takes
[tex]\boxed {\red {2 \: \: months}}[/tex]
for 10 builders
Step-by-step explanation:
[tex]4 \: \: \: builders = 5 \: month \\ 10 \: builders = x[/tex]
Let us solve
[tex]4 = 5 \\ 10 = x[/tex]
so
[tex]4 = x \\ 10 = 5[/tex]
use cross multiplication
[tex]5 \times 4 = 10 \times x \\ 20 = 10x \\ \frac{20}{10} = \frac{10x}{10} \\ \green {x = 2}[/tex]
Answer:
[tex]\boxed{2months}[/tex]
Step-by-step explanation:
B1 = 4
M1 = 5
B2 = 10
M2 = x (we have to find this)
Since it is an inverse proportion (more builders will take less time and vive versa), we'll write it in the order of
=> B1 : B2 = M2 : M1
=> 4:10 = x : 5
Product of Means = Product of Extremes
=> 10*x = 4*5
=> 10x = 20
Dividing both sides by 10
=> x = 2 months
So, it will take 2 months to build classrooms by 10 builders.
Given a right triangle with a hypotenuse length of radical 26 and base length of 3. Find the length of the other leg (which is also the height).
Answer:
√17
Step-by-step explanation:
The Pythagorean theorem can be used for the purpose.
hypotenuse² = base² +height²
(√26)² = 3² +height²
26 -9 = height²
height = √17
The length of the other leg is √17.
7.1 A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, then she wins one-half of the value that appears on the die. Determine her expected winnings.
Answer:
1.875
Step-by-step explanation:
To find the expected winnings, we need to find the probability of all cases possible, multiply each case by the value of the case, and sum all these products.
In the die, we have 6 possible values, each one with a probability of 1/6, and the value of each output is half the value in the die, so we have:
[tex]E_1 = \frac{1}{6}\frac{1}{2} + \frac{1}{6}\frac{2}{2} +\frac{1}{6}\frac{3}{2} +\frac{1}{6}\frac{4}{2} +\frac{1}{6}\frac{5}{2} +\frac{1}{6}\frac{6}{2}[/tex]
[tex]E_1 = \frac{1}{12}(1+2+3+4+5+6)[/tex]
[tex]E_1 = \frac{21}{12} = \frac{7}{4}[/tex]
Now, analyzing the coin, we have heads or tails, each one with 1/2 probability. The value of the heads is 2 wins, and the value of the tails is the expected value of the die we calculated above, so we have:
[tex]E_2 = \frac{1}{2}2 + \frac{1}{2}E_1[/tex]
[tex]E_2 = 1 + \frac{1}{2}\frac{7}{4}[/tex]
[tex]E_2 = 1 + \frac{7}{8}[/tex]
[tex]E_2 = \frac{15}{8} = 1.875[/tex]
I NEED HELP PLEASE, THANKS! :)
A discus is thrown from a height of 4 feet with an initial velocity of 65 ft/s at an angle of 44° with the horizontal. How long will it take for the discus to reach the ground? (Show work)
Answer:
2.908 s
Step-by-step explanation:
The "work" is most easily done by a graphing calculator. We only need to tell it the equation of motion.
For speeds in feet per second, the appropriate equation for vertical ballistic motion is ...
h(t) = -16t² +v₀t +s₀
where v₀ is the initial vertical velocity in ft/s and s₀ is the initial height in feet. The vertical velocity is the vertical component of the initial velocity vector, so is (65 ft/s)(sin(44°)). We want to find t for h=0.
0 = -16t² +65sin(44°) +4
Dividing by -16 gives ...
0 = t^2 -2.82205t -0.2500
Using the quadratic formula, we find ...
t ≈ (2.82205 ±√(2.82205² -4(1)(-0.25))/2 ≈ 1.41103 +√2.24099
t ≈ 2.90802
It will take about 2.908 seconds for the discus to reach the ground.
_____
Comment on the question
You're apparently supposed to use the equation for ballistic motion even though we know a discus has a shape that allows it to "fly". It doesn't drop like a rock would.
Jeremy makes $57,852 per year at his accounting firm. How much is Jeremy’s monthly salary? (There are 12 months in a year.) How much is Jeremy’s weekly salary? (There are 52 weeks in a year.)
Answer:
Monthly: $4,821
Weekly: $1112.54
Step-by-step explanation:
Monthly
A monthly salary can be found by dividing the yearly salary by the number of months.
salary / months
His salary is $57,852 and there are 12 months in a year.
$57,852/ 12 months
Divide
$4,821 / month
Jeremy makes $4,821 per month.
Weekly
To find the weekly salary, divide the yearly salary by the number of weeks.
salary / weeks
He makes $57,852 each year and there are 52 weeks in one year.
$57,852 / 52 weeks
Divide
$1112.53846 / week
Round to the nearest cent. The 8 in the thousandth place tells use to round the 3 up to a 4 in the hundredth place.
$1112.54 / week
Jeremy makes $1112.54 per week
What is the value of 45-0.023
The value is 44.977
Feel pleasure to help u
Answer:
44.977
Step-by-step explanation:
The following data represent the miles per gallon for a particular make and model car for six randomly selected vehicles. Compute the mean, median, and mode miles per gallon 24.2. 22.2. 37.8, 22.7. 35 4. 31.61. Compute the mean miles per gallon. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The mean mileage per gallon is _______B. The mean does not exist 2. Compute the median miles per gallon. Select the correct choice below and, if necessary, fill in the answer box to complete your choice A. The median mileage per gallon is __________B. The median does not exist. 3. Compute the mode miles per gallon. Select the correct choice below and, if necessary,fill in the answer box to complete your choice. A. The mode is _________B. The mode does not exist.
Answer:
A. The mean mileage per gallon is _____ 28.99__
A. The median mileage per gallon is _____27.905_____
B. The mode does not exist.
Step-by-step explanation:
Mean= Sum of values/ No of Values
Mean = 24.2 + 22.2+ 37.8+ 22.7 + 35.4 +31.61/ 6
Mean = 173.91/6= 28.985 ≅ 28.99
The median is the middle value of an ordered data which divides the data into two equal halves. For an even data the median is the average of n/2 and n+1/2 value where n is the number of values.
Rearranging the above data
22.2 , 22.7 , 24.2 , 31.61 , 35.4, 37.8
Third and fourth values are =24.2 + 31.61 = 55.81
Average of third and fourth values is = 55.81/2= 27.905
Mode is the values which is occurs repeatedly.
In this data there is no mode.
How many solutions does the system have? { y = − 3 x + 9 3 y = − 9 x + 9 ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ y=−3x+9 3y=−9x+9
Answer:
no solutions
Step-by-step explanation:
y = − 3 x + 9
3 y = − 9 x + 9
Multiply the first equation by -3
-3(y )=-3( − 3 x + 9)
-3y = 9x -27
3 y = − 9 x + 9
-------------------------
0 = 0 -18
0 = -18
This is never true so there are no solutions
Answer:
for kahn academy -- b -- ( no solutions)
Step-by-step explanation:
what is the axis of symmetry of f(x)=-3(x+2)^2+4
Answer:
line passes through the vertex
Step-by-step explanation:
f(x)=-3(x+2)^2+4
x=-2 it is the x of the vertex
Solve the system by graphing (Simplify your answer completely.)
Will someone please help me with this and give an explanation on how you got it? I don’t understand.
{x+y=8
{x-y=4
Answer:
(6,2)
Step-by-step explanation:
1) convert both equations to slope intercept form:
y=-x+8
and
y=x-4
now graph both equations separately by intercepts:
x int: 0=-x+8
-8=-x
8=x
y int: y=0+8
y=8
so the two coordinate points for first equation are (0,8) and (8,0)
lets move on two second equation: y=x-4
x int: 0=x-4
4=x
y int y=0-4
y=-4
so the 2 coordinate points are (4,0) and (0,4)
lets graph these two equations and see where they intersect:
(see graph below), the intersection is at (6,2) so (6,2) is our answer
hope this helps
Please help. !!!!! Only if you are good at college algebra
In a survey, 205 people indicated they prefer cats, 160 indicated they prefer dots, and 40 indicated they don’t enjoy either pet. Find the probability that if a person is chosen at random, they prefer cats
Answer: probability = 0.506
Step-by-step explanation:
The data we have is:
Total people: 205 + 160 + 40 = 405
prefer cats: 205
prefer dogs: 160
neither: 40
The probability that a person chosen at random prefers cats is equal to the number of people that prefer cats divided the total number of people:
p = 205/405 = 0.506
in percent form, this is 50.6%
Karl has $1,500. He spends $375 on a phone and of the rest on a gaming system. What percent of his money is spent on the gaming system?
Answer:
75 %
Step-by-step explanation:
1500 - 375 =1125
So 1125 is spent on the gaming system
Take this over the total amount to get the decimal form
1125/1500 =.75
Change to percent form
75 %
Answer:
75%
Step-by-step explanation:
First we have to find the amount he is using for the gaming system which is
$1500 - $375 = $1125
Now we will express $1125 as a percentage of the total amount and we do that like this;
[tex]\frac{1125}{1500}[/tex] * 100%
= [tex]\frac{1125}{15}[/tex]
=75%
Fill in the table using this function rule.
Answer:
1, 2.2, 5.5, 10.2.
Step-by-step explanation: these are simplified to the nearest tenth
A random variable X counts the number of successes in 20 independent trials. The probability that any one trial is unsuccessful is 0.42. What is the probability of exactly eight successful trials
Answer:
[tex] P(X=8)[/tex]
And using the probability mass function we got:
[tex]P(X=8)=(20C8)(0.58)^8 (1-0.58)^{20-8}=0.0486[/tex]
Step-by-step explanation:
Let X the random variable of interest, on this case we now that:
[tex]X \sim Binom(n=20, p=1-0.42=0.58)[/tex]
The probability mass function for the Binomial distribution is given as:
[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]
Where (nCx) means combinatory and it's given by this formula:
[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]
And we want to find this probability:
[tex] P(X=8)[/tex]
And using the probability mass function we got:
[tex]P(X=8)=(20C8)(0.58)^8 (1-0.58)^{20-8}=0.0486[/tex]
The probability of exactly eight successful trials is 0.0486 and this can be determined by using the formula of the probability mass function.
Given :
A random variable X counts the number of successes in 20 independent trials.The probability that any one trial is unsuccessful is 0.42.According to the binomial distribution, the probability mass function is given by:
[tex]\rm P(X) = \; (^nC_x )(p^x)(1-p)^{n-x}[/tex]
where the value of n is 20 and the value of (p = 1 - 0.42 = 0.58).
Now, substitute the values of known terms in the above expression of probability mass function.
[tex]\rm P(X=8) = \; (^{20}C_8 )((0.58)^8)(1-0.58)^{20-8}[/tex]
Simplify the above expression in order to determine the probability of exactly eight successful trials.
P(X = 8) = 0.0486
For more information, refer to the link given below:
https://brainly.com/question/23017717
16 square meters is equivalent to how many square yards?
Answer:
16 square meters is equivalent to 19.14 square yards
Hope this helps you
Solve for x.
Simplify your answer as much as possible.
QUESTION 2
Find Percent Increase:
The original price for a product is $53.93 and the sale's tax rate is 29%. Find the amount of tax and the total selling price. Round to the nearest cent.
A $15.64 and $69.57
B. $38.29 and 592.22
C. $15.64 and $38.29
D. $16.78 and $70.21
QUESTION 3
Find Future Value Using Simple Interest Formula:
Chad got a student loan for $10,000 at 8% annual simple interest. How much does he owe after two years?
A $12,800
B. $10,800
C. $11,600
D. $11,664
Answer:
QUESTION 2 -> Correct option: A.
QUESTION 3 -> Correct option: C.
Step-by-step explanation:
QUESTION 2
To find the amount of tax we just need to multiply the tax rate by the original price of the product:
[tex]Tax = 29\% * 53.93[/tex]
[tex]Tax = 0.29 * 53.93[/tex]
[tex]Tax =\$15.64[/tex]
Then, to find the total selling price, we need to sum the original price to the tax value:
[tex]Total = tax + price[/tex]
[tex]Total = 15.64 + 53.93[/tex]
[tex]Total = \$69.57[/tex]
Correct option: A.
QUESTION 3
To find the final value after 2 years, we can use the formula:
[tex]P = Po * (1 + r*t)[/tex]
Where P is the final value, Po is the inicial value, r is the interest and t is the amount of time. Then, we have that:
[tex]P = 10000 * (1 + 0.08 * 2)[/tex]
[tex]P = \$11600[/tex]
Correct option: C.
The graphs below have the same shape. What is the equation of the red
graph?
Step-by-step explanation:
If they have the same shape, the red graph is a translation of the blue, which is given to be y=x^2.
Since the red graph stays on the y axis at two units above the blue (y=x^2) curve, therefore the red curve is given by y=x^2+2.
The equation of the red graph is f(x) = x² + 2.
Option B is the correct answer.
What is an equation?An equation contains one or more terms with variables connected by an equal sign.
Example:
2x + 4y = 9 is an equation.
2x = 8 is an equation.
We have,
The graphs of f(x) = x² and f(x) = x² + 2 are both quadratic functions, which means they have a parabolic shape.
The graph of f(x) = x^2 is an upward-opening parabola with its vertex at the origin (0,0).
The parabola is symmetric about the y-axis and the x-axis.
The graph of f(x) = x² + 2 is also an upward-opening parabola, but it has been shifted upward by 2 units compared to the graph of f(x) = x².
This means that the vertex of the parabola has been shifted from (0,0) to (0,2).
Thus,
The equation of the red graph is f(x) = x² + 2.
Learn more about equations here:
https://brainly.com/question/17194269
#SPJ7
Evaluate the expression (image provided). A.) 1.5 B.) 6 C.) 6^15 D.) 1.5^6
Answer:
1.5
Step-by-step explanation:
6 to the log base of 6 will be one (they essentially cancel each other out, log is the opposite of exponents) and we are left with 1.5.
Find the z-score corresponding to the given area. Remember, z is distributed as the standard normal distribution with mean of and standard deviation .
Answer:
Step-by-step explanation:
The z-score corresponding to a given area of a distribution, is the number of standard deviations that the values in that area have/are from the mean.
In this case, we have a STANDARD normal distribution. In a standard normal distribution, the mean is 0 and the standard deviation is 1.
The Z-score corresponding to a given area, say the 30th percentile is
X = 0 + (-0.524)(1)
Hence, the X (number of values in the given percentile - in this case, 30th) is same as the z-table or z-calculator value for the 30th percentile in ANY normal distribution.
Find the substance's half-life, in days.
Round your answer to the nearest tenth.
Answer:
t = 5.6 day
t =5 days 14 hours 24 minutes
Step-by-step explanation:
Half life is the time it will take for the original value or quantity I'd a particular substance to decrease by half of it's original self.
N = N•e(-kt)
N• = 25
K = 0.1229
Then
N = 25/2 = 12.5
The reason because at the half life , it's original value will decrease to half.
Let's solve for the half life t
N = N•e(-kt)
12.5 = 25e(-0.1229t)
12.5/25 = e(-0.1229t)
0.5 = e(-0.1229t)
In 0.5 =-0.1229t
-0.69314 = -0.1229t
-0.69314/-0.1229 = t
5.6399 = t
To the nearest tenth
5.6 days = t
For a certain salesman, the probability of selling a car today is 0.30. Find the odds in favor of him selling a car today.
Answer:
The odds in favor of him selling a car today are 3 to 10
Step-by-step explanation:
Probability and odds:
Suppose we have a probability p.
The odds are of: 10p to 10
In this question:
Probability of selling a car is 0.3.
10*0.3 = 3
So the odds in favor of him selling a car today are 3 to 10
A pen in the shape of an isosceles right triangle with legs of length x ft and hypotenuse of length h ft is to be built. If fencing costs $ 2 divided by ft for the legs and $ 4 divided by ft for the hypotenuse, write the total cost C of construction as a function of h.
Answer
(4h/√2)+4h
Explanation:
the side length as a function of h will be needed, so we will compute it first,
Let x be the side length of the right isosceles triangle, then using Pythagorean theorem.
CHECK THE ATTACHMENT FOR DETAILED EXPLANATION
What is a15 of the sequence −7,2,11,…
?
Step-by-step explanation:
a=-7
d=9
n=15
we have to find a15
a(n)= a+(n-1)d
a(15)= -7+(15-1)9
a(15)= -7+126
a(15)=119
so 15 term of the sequence is 119
The 15th term in the given sequence is 119.
The given sequence is −7,2,11,…
Here, a=-7, d=9
What is the formula to find the nth term of the sequence?The formula to find the nth term of the sequence is [tex]a_{n} =a+(n-1)d[/tex].
Now, [tex]a_{15} =-7+(15-1) \times9=119[/tex].
Therefore, the 15th term in the sequence is 119.
To learn more about the arithmetic sequence visit:
https://brainly.com/question/15412619.
#SPJ5