Answer:
1. Brown dwarf.
2. Red giant.
3. Black dwarf.
4. White dwarf.
5. Black hole.
Explanation:
A star is a giant astronomical or celestial object that is comprised of a luminous sphere of plasma, binded together by its own gravitational force.
Basically, stars are typically made up of two (2) main hot gas, Hydrogen (H) and Helium (He).
Some of the examples of stars are; Canopus, Sun (closest to the Earth), Betelgeus, Antares, Vega etc.
1. Brown dwarf: does not undergo hydrogen fusion.
2. Red giant: has an outer shell of burning hydrogen and a core of helium.
3. Black dwarf: a white dwarf that has lost all its energy.
4. White dwarf: has a core of carbon that is not massive enough to fuse. A white dwarf also known as degenerate dwarf is a star or an electron degenerate matter and is as massive as the Sun but only about as large in size as planet Earth. Also, the maximum mass of a white dwarf is about 1.4 times the mass of the Sun.
5. Black hole: formed from the collapse of a white dwarf beyond 1.5 solar masses.
Answer:
other person is correct!!!
Explanation:
got 100 on test
write the characteristic of aluminum
Answer:
see below
Explanation:
alluminium is,
1.lustrous
2.highly malleable
3.reactive metal
4.some times acts as non metal
5.good conductor
6.obtained from bauxite
7.Atomic number 13 so electrons and protons are 13
8.neurons are 14
9.ductile
10.melting point is very high approximately 660 degree celsius.
Answer:
It has low density, is non-toxic, has a high thermal conductivity, has excellent corrosion resistance and can be easily cast, machined and formed.
Explanation:
HELP NOW PLS !!
If you exert 950 N*s of impulse on a 12 kg frictionless cart over the course of 5 seconds, how far will it travel during those seconds?
Answer:
The value is [tex]s =197.88 \ m[/tex]
Explanation:
From the question we are told that
The impulse is [tex]I = 950 \ N\cdot s[/tex]
The mass is [tex]m = 12 \ kg[/tex]
The time t = 5 s
Generally impulse is mathematically represented as
[tex]I = F * t[/tex]
=> [tex]F = \frac{I}{t}[/tex]
=> [tex]F = \frac{950 }{ 5 }[/tex]
=> [tex]F = 190 \ N[/tex]
Generally force is mathematically represented as
[tex]F = m * a[/tex]
=> [tex]a = \frac{F }{ m }[/tex]
=> [tex]a = \frac{190 }{ 12 }[/tex]
=> [tex]a = 15.83 \ m/s^2[/tex]
Generally from kinematic equation , the distance covered is
[tex]s = ut + \frac{1}{2} * at^2[/tex]
Here u is the initial velocity of the cart and the value is [tex]u = m/s[/tex]
=> [tex]s = 0 * 5 + \frac{1}{2} * 15.83 * 5^2[/tex]
=> [tex]s =197.88 \ m[/tex]
Given a force of 100N and an acceleration of 5 m/s2 , what is the mass?
Answer:
20kg
Explanation:
Given parameters:
Force = 100N
Acceleration = 5m/s²
Unknown:
Mass = ?
Solution:
According to Newton's second law of motion:
Force = mass x acceleration;
So;
Mass = [tex]\frac{force }{acceleration}[/tex]
Mass = [tex]\frac{100}{5}[/tex] = 20kg
What is true of the bottom layer of the ocean
Answer:
well i tough it was infinte but its not an the layer is a d i c k
Explanation:
Car 1 drives 20 mph to the south, and car 2 drives 30 mph to the north. From
the frame of reference of car 1, what is the velocity of car 2?
Answer:
10 mph faster than car 1 is going
Explanation:
A 430.0 g mass is being pushed by a 1.1 N net force. What is the acceleration?
Answer:
[tex]a = 2.56\ m/s^2[/tex]
Explanation:
Mechanical Force
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = m.a
Where a is the acceleration of the object.
The object has a mass of m=430 g = 0.43 Kg and is pushed by a net force of F=1.1 N. To calculate the acceleration, we solve for a:
[tex]\displaystyle a=\frac{F}{m}[/tex]
[tex]\displaystyle a=\frac{1.1}{0.43}[/tex]
[tex]\mathbf{a = 2.56\ m/s^2}[/tex]
A food processor draws 8.47 A of current when connected to a potential difference of 110 V.
How much electrical energy is consumed by this food processor monthly (30 days) if it is used on average of 10.0 min every day?
Answer:
27.95[kW*min]
Explanation:
We must remember that the power can be determined by the product of the current by the voltage.
[tex]P=V*I[/tex]
where:
P = power [W]
V = voltage [volt]
I = amperage [Amp]
Now replacing:
[tex]P=110*8.47\\P=931.7[W][/tex]
Now the energy consumed can be obtained mediate the multiplication of the power by the amount of time in operation, we must obtain an amount in Kw per hour [kW-min]
[tex]Energy = 931.7[kW]*30[days]*10[\frac{min}{1day} ]=279510[W*min]or 27.95[kW*min][/tex]
A 0.3 g mosquito is flying toward a girl with a speed of 4.5 mph. Just before landing on the girl, the fly is swatted straight back at a speed of 12 mph. If the fly swatter and the fly were in contact for 0.2 s, what is the force that was exerted on the fly
Answer:
1.1x10^-2N
Explanation:
We have the change in momentum as
P = 0.3(4.5+12)g.mph
= 0.3x0.447x(4.5+12)x10^-3
Then the force that is exerted will be
F = p/∆t
∆t = 0.2
= 0.3x0.447x(4.5+12)x10^-3/0.2
= 0.1341x16.5x10^-3/0.2
= 1.1x10^-2
Therefore the force that was exerted is equal to 1.1x10^-2
The required magnitude of the force exerted on the fly is of [tex]5.025 \times 10^{-3} \;\rm N[/tex].
Given data:
The mass of mosquito is, [tex]m =0.3 \;\rm g =3 \times 10^{-4} \;\rm kg[/tex]
The speed of flying is, u = 4.5 mph = 4.5 ( 0.447) = 2.01 m/s.
The swatting speed of mosquito is, v = 12 mph = 12 (0.447 ) = 5.36 m/s.
The time of contact is, t = 0.2 s.
In this problem, we will first calculate the change in momentum, and the change in momentum is given as,
p = m ( v - u)
Solving as,
[tex]p = 3 \times 10^{-4} (5.36 - 2.01)\\\\p = 1.005 \times 10^{-3} \;\rm kg.m/s[/tex]
Now as per the Newton's second law,
[tex]F = p/t\\\\F = 1.005 \times 10^{-3} / 0.2\\\\F= 5.025 \times 10^{-3} \;\rm N[/tex]
Thus, the required magnitude of the force exerted on the fly is of [tex]5.025 \times 10^{-3} \;\rm N[/tex].
Learn more about the Newton's second law here:
https://brainly.com/question/19860811
Two men, Joel and Jerry, push against a car that has stalled, trying unsuccessfully to get it moving. Jerry stops after 10 min, while Joel is able to push for 5.0 min longer. Compare the work they do on the car.
a. Joel does 75% more work than Jerry.
b. Joel does 25% more work than Jerry.
c. Jerry does 50% more work than Joel.
d. Joel does 50% more work than Jerry
e. None of the above .
Answer:
the answer is B
Explanation:
A red laser with a wavelength of 670 nm and a blue laser with a wavelength of 450 nm emit laser beams with the same light power. How do their rates of photon emission compare
E=hf C=wavelength*F
E=hC/wavelength
E=(6.626*10^-34)*(3.00*10^8)/670*10^-9
E=(6.626*10^-34)*(3.00*10^8)/450*10^-9
Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view aditional
questions
Cause and Effect Graphic Organizers
Describe how T-charts and Star Charts can be used to organize information into cause and effect relationships.
I
Answer:
A T-chart is used comparing two sides of a topic for example pros and cons or cause and effect. A star diagram is used for organizing the characteristics of a single topic, a central space is used for displaying the topic, with each point showing or listing an attribute about the topic.
You might think that an ultraviolet light shining on an initially uncharged electroscope would cause the electroscope to become positively charged as photoelectrons are emitted. In fact, ultraviolet light has no noticeable effect on an uncharged electroscope. Why not
Answer:
Positively Charge formation on the electroscope pulls the electrons so no emission happens.
Explanation:
Photoelectric effect is the process by which the electrons get ejected when light of certain frequency falls on the material. The energy from the electromagnetic radiation excites the electron by providing it enough energy as a result it gets ejected.
The Ultraviolet(UV) light is a form of electromagnetic radiation, If the UV radiation strikes an uncharged electroscope, it is predicted that it will cause the electrons in the electroscope to excite and to be emitted. But on the contrary no noticeable effect is observed on the electroscope this happened because when UV light makes the electroscope positively(+) charged this creates a pull for the electrons, as a result rather emitting the electrons gets pulled by the positively charged electroscope.
Therefore the positively charge formation on the electroscope hinder the electrons emission and there is no noticeable effect.
A 50.0-kg child stands at the rim of a merry-go-round of radius 2.00 m, rotating in such a way that it makes one revolution in 2.09 s. What minimum coefficient of static friction between her feet and the floor of the merry-go-round is required to keep her in the circular path
Answer:
2.01
Explanation:
First, we need to find the centripetal acceleration.
We're given that the merry go round rotates 1 revolution in 2.09 seconds. Converting to rpm, we know that it rotates 30 revolution per minute
Now this speed gotten in rpm will be converted to m/s, to ease the calculation
30 rpm = πdN/60 m/s
30 rpm = (3.142 * 4 * 30)/60
30 rpm = 377.04/60
30 rpm = 6.284 m/s
a(c) = v²/r
a(c) = 6.284²/2
a(c) = 39.49 / 2
a(c) = 19.74 m/s²
F = ma
F = 50 * 19.74
F = 987 N
Also, Normal Force, F(n) =
F(n) = mg
F(n) = 50 * 9.81
F(n) = 490.5
We then use this to find the coefficient of static friction, μ
μ = F/F(n)
μ = 987 / 490.5
μ = 2.01
Which list ranks the three types of radiation from lowest penetrating power to
highest penetrating power?
A. Gamma < alpha < beta
B. Beta < alpha < gamma
C. Alpha < beta < gamma
D. Gamma < beta < alpha
Answer:gamma>beta>alpha
Explanation: Just took the test
The weight of an astronaut plus his space suit on the Moon is only 319 N. How much (in N) do they weigh on Earth?
Answer:
The weight of an astronaut plus his space suit on the Earth is 1,931.69 N.
Explanation:
Newton's second law, called the fundamental law or fundamental principle of dynamics, states that a body accelerates if a force is applied to it. This law indicates that the net force applied on a body is proportional to the acceleration that the body acquires. The constant of proportionality is the mass of the body, so Newton's second law is expressed in the following formula:
F = m*a
Where:
F is the net force. It is expressed in Newton (N) m is the mass of the body. It is expressed in kilograms (Kg). a is the acceleration that the body acquires. It is expressed in meters over second squared (m/s²).The weight of an astronaut plus his space suit on the Moon is only 319 N. Then, being:
F= weight= 319 Nm= ?a = acceleration of the Moon's gravity, whose value is 1.62 m/s²you get:
319 N= m* 1.62 m/s²
Solving:
[tex]m=\frac{319 N}{1.62 \frac{m}{s^{2} } }[/tex]
m=196.91 kg
The mass is an invariable quantity, regardless of the planet in which the astronaut plus his space suit on the Moon is, then you have:
F= weight= ?m= 196.91 kga = acceleration of the Earth's gravity, whose value is 9.81 m/s²replacing in the definition of force:
Weight= 196.91 kg* 9.81 m/s²
Weight= 1,931.69 N
The weight of an astronaut plus his space suit on the Earth is 1,931.69 N.
A woman exerts a horizontal force of 3 pounds on a box as she pushes it up a ramp that is 10 feet long and inclined at an angle of 30 degrees above the horizontal. Find the work done on the box.
Answer: 67 how much candy does nick have
Explanation:
Find the resultant of the following displacement:
A = 20 Km 30° south of east;
B = 50 Km due west;
C = 40 Km north east;
D = 30 Km 60° south of west.
Answer:
Explanation:
Basically you just have to find the left vectors. To do so divide A, C and D into horizontal and vertical vector. A: 10km to south and 10root3 to east. Just sine and cosine of 30 at 20km. D: 15 km to west and 15root3 to south. Again sine and cosine of 60 at 30 km. C: 45 degrees so 20root2 to north and east. Add all these up with B. Then you have 7.696 km due south and 19.395 km due west. Resultant displacement magnitude = root(7.696^2+19.395^2)=20.866 south of west with angle=arctan(7.696/19.395)=21.644 degrees
23 POINTS!! will get brainiest
What is the relationship between temperature range and proximity to the coast?
Answer:I think it’s because both can provide heat and cold
Explanation:
Find the range of projectile launched at the angle of 45 with an intial velocity of 25 m/s
Answer:
10
Explanation:
Given that :
Initial Velocity (u) = 25 m/s
Range can be obtained using the relation :
Range = (u² * sin2θ) / g
g = 10m/s ; θ = 45
Range = [10² * sin2(45)] / 10
Range = [100 * 1] ÷ 10
Range = 10
what is the shallowest part of the ocean ecosystem is called
Answer:
intertidal zone.
the shallowest part of the ocean ecosystem, where the ocean floor os covered and uncovered as the tide goes in and out. Plankton. the organisms that float on the water in aquatic ecosystems and are unable to swim.
A boy on a bicycle approaches a brick wall as he sounds his horn at a frequency 400 Hz. The sound he hears reflected back from the wall is at a frequency 408 Hz. At what speed is the boy riding his bicycle toward the wall
Answer:
6.8 m/s
Explanation:
To solve this, we would use the Doppler's Effect. Doppler's effect is represented by the formula
f = [(g + vr)/(g + vs)].fo, where
f = observed frequency, 408 Hz
g = speed of sound in air, 340 m/s
vr = velocity of the receiver
vs = velocity of the source, 0 m/s
fo = source frequency, 400 Hz
Now, applying the values to the equation, we have
408 = [(340 + vr)/(340 + 0) * 400
408/400 = (340 + vr)/340
1.02 * 340 = 340 + vr
346.8 = 340 + vr
vr = 346.8 - 340
vr = 6.8 m/s
Therefore the speed at which the boy is riding his bicycle towards the wall is 6.8 m/s
When calculating speed what goes into the calculator first
A. Time
B. Distance
C. Speed
Answer:
B. Distance
Explanation:
When calculating speed, the value of the given distance is first entered on the calculator because it is in the numerator.
Speed is the rate of change of distance with time;
Speed = [tex]\frac{distance}{time}[/tex]
The value of the distance is inputted first before that of the time is entered.
This way the division sign evaluates for the speed.
room's become bright at the day time although there is no bright sunlight in the rooms why
this is give reason
Answer:
The room become bright in the day by a process call scattering of light or Rayleigh scattering.
Explanation:
It is called Rayleigh scattering or scattering of light because Rayleigh scattering is the scattering if light or electromagnetic radiation by smaller particles which have radius of less than 110 nanometer in a medium and the wavelengths of the electromagnetic. Wave or light remain unchanged. The scattering of light occur in the day time in the room and this bring of brighten up of the room.
Which type of circuit would be best to use for lights used for decorations? Question 1 options: Series circuit. One bulb could go out and the strand will stay on. Series circuit. One bulb could go out and the rest go out. Parallel circuit. One bulb goes out and the rest go out. Parallel circuit. One bulb could go out and the strand will stay on.
Answer:
One bulb could go out and the strand will stay on.
Explanation:
In series circuit, there is only one path provided for the current to flow. So, all the lights are required to be in working condition, for the others to work. And if anyone light bulb goes out, the circuit will become incomplete and the rest of the strand will also go out. Because there is only one path for current flow which is now broken.
On the other hand, in parallel circuits, each light bulb has a separate connection with the source. Current path to each bulb is independent of the others. Therefore, if one bulb goes out, the rest of the strand will stay on.
So, the correct option is:
One bulb could go out and the strand will stay on.
pls tell the answer
Just flip one of the batteries to connect one's positive terminal to others negative terminal.
What determines the type of air mass that forms in an area?
Question 11 options:
The amount of oxygen present
The amount of air present
The direction of air flow
The location where it forms
Answer: no because you have left the number
Explanation:
Determine e when I = 0.50 A and R = 12 W.
Answer:
The correct answer is "24 V".
Explanation:
The given values are:
Current,
I = 0.50 A
Resistance,
R = 12 W
As we know,
⇒ [tex]I = 0.5\times (\frac{E}{2R})[/tex]
On substituting the given values, we get
⇒ [tex]0.5= (\frac{E}{4\times 12} )[/tex]
⇒ [tex]0.5= (\frac{E}{48} )[/tex]
⇒ [tex]E=24 \ V[/tex]
An earth satellite travels in a circular orbit at 20,000 mph if the radius of the orbit is 4,300 mi what angular velocity is generated?
Answer:
0.00129rad/s
Explanation:
The angular velocity is expressed as;
v = wr
w is the angular velocity
r is the radius
Given
v = 20,000 mph
r = 4300mi
Get w;
w = v/r
w = 20000* 0.44704/4300*1609.34
w = 8940.8/6,920,162
w = 0.00129rad/s
Hence the angular velocity generated is 0.00129rad/s
A model airplane with mass 1.0 kg is held by a wire so that it flies in a horizontal circle with radius 20.0 m. The airplane engine provides a net thrust of 1.0 N perpendicular to the wire. (a) Find the torque the net thrust produces about the center of the circle. (b) Find the angular acceleration of the airplane when it is in this horizontal flight.
Answer:
330
Explanation:
(a) The torque the net thrust produces about the center of the circle is of 20 N-m.
(b) The angular acceleration of the airplane when it is in this horizontal flight is 0.1 rad/s².
Given data:
The mass of model airplane is, m = 1.0 kg.
The radius of horizontal circle is, r = 20.0 m.
The magnitude of net thrust by engine is, F = 1.0 N.
(a)
The effort made to turn any object is known as the torque. The mathematical expression for the torque is given as,
T = F × r
Solving as,
T = 1.0 × 20.0
T = 20 N-m
Thus, we can conclude that the torque the net thrust produces about the center of the circle is of 20 N-m.
(b)
The expression for the angular acceleration of airplane during the horizontal flight is given as,
[tex]T = I \times \alpha[/tex]
Here, I is the moment of inertia of airplane and its value is,
[tex]I = \dfrac{1}{2}mr^{2}\\\\\\I = \dfrac{1}{2} \times 1.0 \times 20^{2}\\\\\\I =200 \;\rm kg.m^{2}[/tex]
So, the angular acceleration is,
20 = 200 × α
α = 20/200
α = 0.1 rad/s²
Thus, we can conclude that the angular acceleration of the airplane when it is in this horizontal flight is 0.1 rad/s².
Learn more about the torque here:
https://brainly.com/question/19247046
To celebrate a victory, a pitcher throws her glove straight upward with an initial speed of 5.3 m/s. How long does it take for the glove to reach its maximum height
Hello!!
For the maximum height the final velocity is zero, because can't up more.
Then, use the formula:
V = Vi + gt
Replacing, we have:
0 m/s = 5,3 m/s + (-9,8 m/s² * t)
0 m/s - 5,3 m/s = -9,8 m/s² * t
(-5,3 m/s) / -9,8 m/s² = t
t = 0,54 s
The time it will take to reach the maximum height is 0,54 seconds.