Answer:
The balanced equation is given below:
UO2(s) + 4HF(l) —› UF4(s) + 2H2O(l)
The coefficients are: 1, 4, 1, 2
Explanation:
UO2(s) + HF(l) —› UF4(s) + H2O(l)
The above equation can be balance as follow:
There are 2 atoms of O on the left side and 1 atom on the right side. It can be balanced by writing 2 in front of H2O as shown below:
UO2(s) + HF(l) —› UF4(s) + 2H2O(l)
There are 4 atoms of F on the right side and 1 atom on the left side. It can be balanced by writing 4 in front of HF as shown below:
UO2(s) + 4HF(l) —› UF4(s) + 2H2O(l)
Now, the equation is balanced.
The coefficients are: 1, 4, 1, 2.
A compound is found to contain 18.28 % phosphorus , 18.93 % sulfur , and 62.78 % chlorine by mass. To answer the question, enter the elements in the order presented above. QUESTION 1: The empirical formula for this compound is . QUESTION 2: The molar mass for this compound is 169.4 g/mol. The molecular formula for this compound is
Answer:
1. EF = PSCl₃; 2. MF = PSCl₃
Explanation:
1. Empirical formula
The empirical formula is the simplest whole-number ratio of atoms in a compound.
The ratio of atoms is the same as the ratio of moles.
So, our first job is to calculate the molar ratio of P:S:Cl.
Assume 100 g of the compound.
(a) Calculate the mass of each element.
Then we have 18.28 g P, 18.93 g S, and 67.28 g Cl.
(b) Calculate the moles of each element
[tex]\text{Moles of P} = \text{18.28 g C} \times \dfrac{\text{1 mol P}}{\text{30.97 g P}} = \text{0.5902 mol P}\\\\\text{Moles of S} = \text{18.93 g S} \times \dfrac{\text{1 mol S}}{\text{32.06 g S }} = \text{0.5905 mol S}\\\\\text{Moles of Cl} = \text{62.78 g Cl} \times \dfrac{\text{1 mol Cl}}{\text{35.45 g Cl }} = \text{1.771 mol Cl}[/tex]
(c) Calculate the molar ratio of the elements
Divide each number by the smallest number of moles
P:S:Cl = 0.5902:0.5905:1.898 = 1:1.000:3.000 ≈ 1:1:3
(d) Write the empirical formula
EF = PSCl₃
The empirical formula for this compound is PSCl₃.
2. Molecular formula
(a) Calculate the ratio of the molecular and empirical formula masses
n = (169.4 u)/(169.40 u) = 1.000 ≈ 1
(b) Calculate the molecular formula
MF = (EF)ₙ = (EF)₁ = PSCl₃
The molecular formula for this compound is PSCl₃.
Consider the reaction 2N2(g) O2(g)2N2O(g) Using the standard thermodynamic data in the tables linked above, calculate Grxn for this reaction at 298.15K if the pressure of each gas is 22.20 mm Hg.
Answer:
[tex]\Delta G^0 _{rxn} = 207.6\ kJ/mol[/tex]
ΔG ≅ 199.91 kJ
Explanation:
Consider the reaction:
[tex]2N_{2(g)} + O_{2(g)} \to 2N_2O_{(g)}[/tex]
temperature = 298.15K
pressure = 22.20 mmHg
From, The standard Thermodynamic Tables; the following data were obtained
[tex]\Delta G_f^0 \ \ \ N_2O_{(g)} = 103 .8 \ kJ/mol[/tex]
[tex]\Delta G_f^0 \ \ \ N_2{(g)} =0 \ kJ/mol[/tex]
[tex]\Delta G_f^0 \ \ \ O_2{(g)} =0 \ kJ/mol[/tex]
[tex]\Delta G^0 _{rxn} = 2 \times \Delta G_f^0 \ N_2O_{(g)} - ( 2 \times \Delta G_f^0 \ N_2{(g)} + \Delta G_f^0 \ O_{2(g)})[/tex]
[tex]\Delta G^0 _{rxn} = 2 \times 103.8 \ kJ/mol - ( 2 \times 0 + 0)[/tex]
[tex]\Delta G^0 _{rxn} = 207.6\ kJ/mol[/tex]
The equilibrium constant determined from the partial pressure denoted as [tex]K_p[/tex] can be expressed as :
[tex]K_p = \dfrac{(22.20)^2}{(22.20)^2 \times (22.20)}[/tex]
[tex]K_p = \dfrac{1}{ (22.20)}[/tex]
[tex]K_p[/tex] = 0.045
[tex]\Delta G = \Delta G^0 _{rxn} + RT \ lnK[/tex]
where;
R = gas constant = 8.314 × 10⁻³ kJ
[tex]\Delta G =207.6 + 8.314 \times 10 ^{-3} \times 298.15 \ ln(0.045)[/tex]
[tex]\Delta G =207.6 + 2.4788191 \times \ ln(0.045)[/tex]
[tex]\Delta G =207.6+ (-7.687048037)[/tex]
[tex]\Delta G =[/tex] 199.912952 kJ
ΔG ≅ 199.91 kJ
If phosphorus (P) has 4 naturally occurring isotopes, phosphorus-29(32.7.%), phosphorus-30(48.03%), phosphorus-31(18.4%), and phosphorus-33 (0.87%), what is its average r.a.m.?
The Average atomic mass of phosphorus is 29.9.
What is Average atomic mass ?The average atomic mass (sometimes called atomic weight) of an element is the weighted average mass of the atoms in a naturally occurring sample of the element.
Average masses are generally expressed in unified atomic mass units (u), where 1 u is equal to exactly one-twelfth the mass of a neutral atom of carbon-12.
An element can have differing numbers of neutrons in its nucleus, but it always has the same number of protons.
The versions of an element with different neutrons have different masses and are called isotopes.
The average atomic mass for an element is calculated by summing the masses of the element’s isotopes, each multiplied by its natural abundance on Earth i.e,
Average atomic mass of P = ∑(Isotope mass) (its abundance)
∴ Average atomic mass of P = (P-29 mass) (its abundance) + (P-30 mass)(its abundance) + (P-31 mass) (its abundance) + (P-33 mass) (its abundance)
Abundance of isotope = % of the isotope / 100.
∴ Average atomic mass of P = (29)(0.327) + (30)(0.4803) + (31)(0.184) + (33)(0.0087) = 29.88 a.m.u ≅ 29.9 a.m.u.
Hence , The Average atomic mass of phosphorus is 29.9.
Learn more about Average atomic mass here ;
https://brainly.com/question/21025876
#SPJ1
Enough of a monoprotic weak acid is dissolved in water to produce a 0.01660.0166 M solution. The pH of the resulting solution is 2.532.53 . Calculate the Ka for the acid.
Answer:
Explanation:
Let the monoprotic acid be HX
HX ⇄ H⁺ + X⁻
pH = 2.53
Hydrogen ion concentration
[tex][ H^+]=10^{-2.53}[/tex]
[tex][ X^-]=10^{-2.53}[/tex]
Concentration of undissociated acid will remain almost the same as it is a weak acid
So
Ka = concentration of H⁺ x concentration of Cl⁻ / concentration of acid
= [ H⁺] x [Cl⁻ ] / [ HX]
[tex]k_a=\frac{10^{-2.53}\times 10^{-2.53}}{.0166}[/tex]
[tex]k_a=\frac{.00295^2}{.0166}[/tex]
= 5.24 x 10⁻⁴ M .
Mass of the condensed unknown liquid: 0.3175 g Temperature of the water bath: 99.00 oC Pressure of the gas: 748.2 mmHg Volume of the flask (volume of the gas): 145.0 mL Given : Kelvin = t oC + 273.15 1 L = 1000 mL 1 atm = 760 mmHg Gas constant: R = 0.08206 atm L / mole K; Ideal Gas Law: PV = nRT 1. What is the pressure of the gas in atm? (1 points) 2.
Answer:
1. 0.98 atm
Explanation:
The following data were obtained from the question:
Mass of unknown liquid (m) = 0.3175 g
Temperature (T) = 99 °C
Pressure (P) = 748.2 mmHg
Volume (V) = 145.0 mL
Gas constant (R) = 0.08206 atm.L/Kmol
1. Determination of the pressure in atm.
760 mmHg = 1 atm
Therefore,
748.2 mmHg = 748.2/760 = 0.98 atm
Therefore, the pressure in atm is 0.98 atm.
Which is the electron configuration for bromine?
Answer:
The answer below would be written in a straight line from left to right but I wrote it as a list to make it easier to read.
Explanation:
1s^2
2s^2
2p^6
3s^2
3p^6
4s^2
3d^10
4p^5
Which statement describes global winds?
They flow from the same direction.
They travel over short distances.
They generate land breezes.
They blow away from the poles to the equator.
Idk the answer
Answer:
They blow away from poles to the equator.
Explanation:
Hello,
In this case, we must take into account that global wind systems are formed by the constant increase in the temperature of the Earth’s surface. Thus, they drive the oceans’ surface currents. In such a way, we can say wind is the basic movement of air from an area of higher pressure to an area of lower pressure, for that reason they blow away from the poles to the equator.
Best regards.
The statement that describes the global winds is they travel over short distances.
What is winds?
Wind is a pattern or type of the movement of the natural air or any other composition of gases over to the relative position of the planet's surface.
Global winds are those winds which can travel in a straight path and originated due to global convention currents. Global winds always move from west to east direction and travels short distances only.
Hence, option (2) is correct.
To know more about global winds, visit the below link:
https://brainly.com/question/1319281
Write electron configurations for the following ion: Cd2 Cd2 . Express your answer in order of increasing orbital energy. For example, the electron configuration of LiLi would be entered in complete form as 1s^22s^1 or in condensed form as [He]2s^1.
Answer:
Cd2+ : 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10 or [Kr] 4d¹⁰
Explanation:
Before proceeding to write out the electron configuration of Cd2+, we have to obtain the electron configuration of Cadmium (Cd),
Cadmium has an atomic number of 48, this means that a neutral cadmium atom will have a total of 48 electrons surrounding its nucleus.
The electronic configuration of Cadmium is;
Cd: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10
The shorthand notation is given as;
Cd: [Kr] 4d¹⁰5s²
Cd2+ means that it has two less electrons, hence it's electron configuration is given as;
Cd2+ : 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 4d10 or [Kr] 4d¹⁰
Which of the following elements is in the same family as fluorine?
a. silicon
b. antimony
O c. iodine
O d. arsenic
e. None of these.
Answer:
c iodine
Explanation:
fluorine is a halogen group element like Bromine, Iodine,Astatine,Chloride
Not all bonds are "created equal". From the following molecules, which one contains the most easily broken carbon to carbon bond? Group of answer choices H3C—CH3 F2C=CF2 H2C=CH2 HCCH
Answer:
H3C—CH3
Explanation:
The strength of a bond is indicated by the value of its bond dissociation energy. Simply put, the bond dissociation energy is the energy required to break the bond.
Carbon forms single, double and triple bonds with itself. As a matter of fact, carbon atoms can link to each other indefinitely. This is known as catenation and has been attributed to the low bond energy of the carbon-carbon single bond.
The bond energy of the carbon-carbon single bond is about 90KJmol-1 while that of carbon-carbon double bond is about 174KJmok-1. The carbon-carbon triple bond has the highest bond dissociation energy of about 230KJmol-1.
Hence, it is easier to break carbon-carbon single bonds than double and triple bonds respectively, hence the answer.
According to the forces of attraction, the molecule which can be easily broken is CH₃-CH₃ as it has a single bond with low dissociation energy as compared to double or triple bonds.
Forces of attraction is a force by which atoms in a molecule combine. it is basically an attractive force in nature. It can act between an ion and an atom as well.It varies for different states of matter that is solids, liquids and gases.
The forces of attraction are maximum in solids as the molecules present in solid are tightly held while it is minimum in gases as the molecules are far apart . The forces of attraction in liquids is intermediate of solids and gases.
The physical properties such as melting point, boiling point, density are all dependent on forces of attraction which exists in the substances.Single bonds have least dissociation energy while triple bonds have the maximum dissociation energy.
Thus,the molecule which can be easily broken is CH₃-CH₃.
Learn more about forces of attraction,here:
https://brainly.com/question/32820512
#SPJ6
Suppose you have a container filled with air at 212 oF. The volume of the container 1.00 L, the pressure of air is 1.00 atm. The molecular composition of air is 79% N2 and 21% O2 for simplification. Calculate the mass of air and moles of O2 in the container.
Answer:
[tex]m_{air}=0.947g[/tex]
[tex]n_{O_2} =0.00686molO_2[/tex]
Explanation:
Hello,
In this case, we can firstly use the ideal gas equation to compute the total moles of the gaseous mixture (air) with the temperature in Kelvins:
[tex]T=212\°F=100\°C=373.15K\\\\n=\frac{PV}{RT}=\frac{1.00atm*1.00L}{0.082\frac{atm*L}{mol*K}*373.15K}\\ \\n=0.0327mol[/tex]
In such a way, since the molar mass of air is 28.97 g/mol, we can compute the mass of air with a single mass-mole relationship:
[tex]m_{air}=0.0327mol*\frac{28.97g}{1mol} =0.947g[/tex]
Finally, knowing that the 21% of the 0.0327 moles of air is oxygen, its moles turn out:
[tex]n_{O_2}=0.0327mol*\frac{0.21molO_2}{1mol} =0.00686molO_2[/tex]
Best regards.
1. Methanol is a high-octane fuel used in high performance racing engines. 2 CH3OH(l) + 3O2(g) → 2CO2(g) + 4 H20(g) a) Calculate ∆H० and ∆S० using thermodynamic data, and then ∆G
Answer:
The reaction given in the question is:
2CH₃OH (l) + 3O₂ (g) ⇒ 2CO₂ (g) + 4H₂O (g)
The values of ΔH°formation and ΔS° of the reactants and products given in the reaction based on the thermodynamics data is:
ΔH°formation values of CH3OH (l) is -238.4 kJ/mol, CO2(g) is -393.52 kJ/mol, H2O (g) is -241.83 kJ/mol and O2 (g) is 0.
The S° values of CH3OH (l) is 127.19 J/molK, CO2(g) is 213.79 J/molK, H2O (g) is 188.84 J/moleK, and O2 (g) is 205.15 J/molK.
Now the values of ΔH° and ΔS° are,
ΔH°rxn = 2 * ΔH°formation CO2 (g) + 4 * ΔH°formation H2O (g) - 2*ΔH°formation CH3OH (l)
ΔH°rxn = 2 * (-393.52) + 4 (-241.83) -2 * (-238.4)
ΔH°rxn = -1277.56 kJ/mole
ΔS°rxn = 2 * S° CO2 (g) + 4 * S° H2O (g) - 2*S° CH3OH (l) - 3 * S° O2 (g)
ΔS°rxn = 2 * 213.79 + 4 * 188.84 - 2 * 127.19 - 3*205.15
ΔS°rxn = 313.11 J/mole/K
Now the formula for calculating ΔG°rxn is,
ΔG°rxn = ΔH°rxn - TΔS°rxn
ΔG°rxn = -1277.56 * 1000 J/mole - 298 * 313.11 J/mole
ΔG°rxn = -1370.86 kJ/mol
6. Potassium hydrogen phthalate (KHP, KHC8H4O4) is also a good primary standard. 20 mL of NaOH was titrated with 0.600 M KHC8H4O4 solution. The data was graphed and the equivalence point was found when 15.5 mL of the standard 0.600 M KHP solution was added. The reaction equation is: a. What is the molar ratio of NaOH:KHC8H4O4? b. What is the molarity of the NaOH solution?
Answer:
a. 1
b. 0.465M NaOH
Explanation:
KHP reacts with NaOH as follows:
KHP + NaOH → KP⁻ + Na⁺ + H₂O
a. Molar ratio represents how many moles of NaOH reacts per mole of KHP. As you can see in the reaction, 1 mole of NaOH reacts with 1 mole of KHP. Molar ratio is:
1/1 = 1
b. With volume and molar concentration of the KHP solution you can find how many moles of KHP were added until equivalence point, thus:
15.5mL = 0.0155L ₓ (0.600 moles KHP / L) = 0.0093 moles of KHP
In equivalence point, moles of NaOH = Moles KHP. That means moles of NaOH titrated are 0.0093 moles NaOH.
The volume of the NaOH solution was 20mL = 0.020L. Molarity of the solution is:
0.0093 moles NaOH / 0.020L =
0.465M NaOHa. The balanced equation shows a 1:1 molar ratio between NaOH and KHC₈H₄O₄. This means that for every 1 mole of NaOH, we require 1 mole of KHC₈H₄O₄. Therefore, the molar ratio of NaOH:KHC₈H₄O₄ is 1:1.
The balanced equation for the reaction:
NaOH + KHC₈H₄O₄ → NaKC₈H₄O₄ + H₂O
b. Molarity of KHP solution × volume of KHP solution = Molarity of NaOH solution × volume of NaOH solution at the equivalence point
Molarity of KHP solution = 0.600 M
Volume of KHP solution = 15.5 mL = 0.0155 L
Volume of NaOH solution at the equivalence point = 20 mL = 0.0200 L
Molarity of NaOH solution = (Molarity of KHP solution × volume of KHP solution) / volume of NaOH solution at the equivalence point
Molarity of NaOH solution = (0.600 M × 0.0155 L) / 0.0200 L
Molarity of NaOH solution ≈ 0.465 M
To learn more about the balanced equation, follow the link:
https://brainly.com/question/12192253?referrer=searchResults
#SPJ6
A gas mixture containing N2 and O2 was kept inside a 2.00 L container at a temperature of 23.0°C and a total pressure of 1.00 ATM the partial pressure of oxygen was 0.722 ATM how many grams of nitrogen are present in the gas mixture
Answer:
0.641 g of Nitrogen are present in the mixture.
Explanation:
We use the Ideal Gases Law, to solve this question.
For the mixture:
P mixture . V mixture = mol mixture . R . T
We convert the T° to K → 23°C + 273 = 296 K
R = Ideal gases constant → 0.082 L.atm/mol.K
1 atm . 2L = mol mixture . 0.082 L.atm/mol.K . 296K
2 atm.L / ( 0.082 mol /L.atm) . 296 = 0.0824 moles
We know that sum of partial pressure = 1
Partial pressure N₂ + Partial pressure O₂ = 1
1 - 0.722 atm = Partial pressure N₂ → 0.278 atm
We apply the mole fraction concept:
Partial pressure N₂ / Total pressure = Moles N₂ / Total moles
Moles N₂ = (Partial pressure N₂ / Total pressure) . Total moles
Moles N₂ = (0.278 atm / 1 atm) . 0.0824 mol → 0.0229 moles
We convert the moles to mass → 0.0229 mol . 28 g/mol = 0.641 g
641 mg
Phosphorus pentafluoride, PF5, acts as a __________ during the formation of the anion PF−6. Select the correct answer below: A. Lewis acid B. Lewis base C. catalyst D. drying agent
Answer:
Lewis acid
Explanation:
In chemistry, a Lewis acid is any chemical specie that accepts a lone pair of electrons while a Lewis base is any chemical specie that donates a lone pair of electrons.
If we look at the formation of PF6^-, the process is as follows;
PF5 + F^- -----> PF6^-
We can see that PF5 accepted a lone pair of electrons from F^- making PF5 a lewis acid according to our definition above.
Hence in the formation of PF6^-, PF5 acts a Lewis acid.
Which best describes the total mass of a sample of water when it condenses
from a liquid to a gas?
A. The mass is less because the water molecules get closer together
and take up more space.
B. The mass is the same because the decrease in energy equals the
increase in the number of molecules.
C. The mass is the same because water molecules are not created or
destroyed during a phase change.
D. The mass is greater after water condenses because the mass of
the molecules increases.
Answer:
Its C I hopefully help you
The cell potential for an electrochemical cell with a Zn, Zn2 half-cell and an Al, Al3 half-cell is _____ V. Enter your answer to the hundredths place and do not leave out a leading zero, if it is needed.
Answer:
0.900 V
Explanation:
Oxidation half cell;
2Al(s) -----> 2Al^3+(aq) + 6e
Reduction half equation;
3Zn^2+(aq) + 6e ----> 3Zn(s)
E°anode = -1.66V
E°cathode= -0.76 V
E°cell= E°cathode - E°anode
E°cell= -0.76-(-1.66)
E°cell= 0.900 V
18. Sucralose contains which two functional groups: (2 points)
A) benzene
B) halogen
C) carboxyl
D) hydroxy!
Answer:
The correct answer is option B and D, that is, halogen (chlorine) and hydroxyl.
Explanation:
An artificial sweetener and sugar substitute is sucralose. It is noncaloric as the majority of the sucralose ingested does not get dissociated within the body. The generation of sucralose takes place by the chlorination of sucrose. It is about 300 to 1000 times sweeter in comparison to sucrose.
The consumption of sucralose is safe for both nondiabetics and diabetics, it is used in various food and beverage components due to non-caloric sweetener characteristics. It does not affect the levels of insulin and does not affect dental health. As it is produced by chlorination of sucrose, thus, the functional groups present in it are a halogen (chlorine) and a hydroxyl.
Which of these groups of elements show the least electronegativity?
Explanation:
On the periodic table, electronegativity generally increases as you move from left to right across a period and decreases as you move down a group. As a result, the most electronegative elements are found on the top right of the periodic table, while the least electronegative elements are found on the bottom left. The answer is alkali metals.The blending of one s atomic orbital and three p atomic orbitals produces ________.
A three sp3
B four sp3
C three sp
D four sp2
E four sp
Answer:
B. four sp3
Hope that helps.
We have that for the Question "The blending of one s atomic orbital and three p atomic orbitals produces?"
Answer:
Option B = four [tex]sp^3[/tex]
Explanation:
When 1 s orbital blends with 3 p orbitals, they form a tetrahedrical shaped figure with each being a [tex]SP^3[/tex] orbital.. A total of 4 orbitals
For more information on this visit
https://brainly.com/question/17756498
A four carbon chain; the second carbon is also single bonded to CH3. Spell out the full name of the compound
Answer:
This description shows a methyl group.
Explanation:
Draw the Lewis structure of acetaldehyde (CH₃CHO) and then choose the appropriate pair of molecular geometries of the two central atoms.
a) tetrahedral/trigonal pyramidal.
b) trigonal planar / linear.
c) tetrahedral / trigonal planar.
d) trigonal/tetrahedral.
e) planar /trigonal planar.
Given that,
Draw the Lewis structure of acetaldehyde (CH₃CHO).
We know that,
The Lewis structure shows the number of electrons around an atom.
According to structure,
We need to find the molecular geometries of the two central atoms
Using molecular geometries
For first central atom,
Number of bond pair = 2
Here, double bond to O count as single bond
The number of lone pair is zero.
The geometry is Trigonal planar.
For second central atom,
Number of bond pair = 4
The number of lone pair is zero.
The geometry is tetrahedral
Hence, The molecular geometries of the two central atoms are trigonal planar and tetrahedral.
(d) is correct option.
The central carbon atoms in acetaldehyde have a tetrahedral geometry and a trigonal planar geometry respectively.
Acetaldehyde has two central carbon atoms. The Lewis structure of acetaldehyde shows the arrangement of electrons around the atoms in the compound. The lone pairs are shown as dots while the bond pairs are represented using a single dash.
The first central carbon atom in acetaldehyde has a tetrahedral geometry while the second central carbon atom in acetaldehyde has a trigonal planar geometry.
Learn more: https://brainly.com/question/7558603
How many mL of 2.5M HCl would be needed to completely neutralize a standard solution of 0.53M NaOH in a titration
Answer:
Amount of HCL = 0.00318 L of 3.18 ml
Explanation:
Given:
HCL = 2.5 M
NaOH = 0.53 M
Amount of NaOH = 15 ml = 0.015 L
Find:
Amount of HCL
Computation:
HCL react with NaOH
HCl + NaOH ⇒ NaCl + H₂O
So,
Number of moles = Molarity × volume
Number of moles of NaOH = 0.53 × 0.015
Number of moles of NaOH = 0.00795 moles
So,
Number of moles of HCl needed = 0.00795 mol es
So,
Volume = No. of moles / Molarity
Amount of HCL = 0.00795 / 2.5
Amount of HCL = 0.00318 L of 3.18 ml
This pluton occurs deep in Earth and does not cause any changes to the surface of Earth . True or False
Answer:
The given statement is false.
Explanation:
However, if the pluton exists beneath the ground, this could be conveniently shown in the illustration something from the peak such pluton appears convex in form resembling a lopolith and perhaps diapir, which would be a particular form of statistically significant pluton recognized as the sill.Mostly from the figure it could also be shown that subsurface sheets are lined or curved, throughout the pluton mold. And therefore it is inferred that such a pluton creates adjustment to something like the ground atmosphere by altering the form of the levels above it.So that the given is incorrect.
1)The average lethal dose of Valium is 1.52 mg/kg of body weight. Estimate how many grams of Valium would be lethal for a 200.-lb woman. Show all your calculations. (1lb = 453.6 g)
2) A patient in hospital is receiving the antibiotic amoxcillin IV at the rate of 50. mL/h. The IV contains 1.5 g of the antibiotic in 1000. mL. (IV stands for intravenous). Calculate the mg/min of the drip. Show all your calculations
Answer:
1. 0.138g of valium would be lethel in the woman
2. 125mg/min is the drip of the patient
Explanation:
1. In a body, an amount of Valium > 1.52mg / kg of body weight would be lethal.
A person that weighs 200lb requires:
200lb × (453.6g / 1lb) × (1kg / 1000g) = 90.72kg (Weight of the woman in kg)
90.72kg × (1.52mg / kg) =
137.9mg ≡
0.138g of valium would be lethel in the woman2. The IV contains 1.5g = 1500mg/mL.
If the patient is receiving 5.0mL/h, its rate in mg/h is:
5.0mL/h × (1500mg/mL) = 7500mg/h
Now as 1h = 60min:
7500mg/h × (1h / 60min) =
125mg/min is the drip of the patientThe NMR spectrum of your final compound will contain extra peaks that were not present in your starting material. For what hydrogen nuclei do those peaks occur?
Answer:
The peaks are registered from tetramethyl silane (TMS)
Explanation:
Tetramethyl silane (TMS) is used as internal reference in proton nmr (H NMR) spectrometry.
Its peak is usually registered at about a 2.0 chemical shift means that the hydrogen atoms which caused that peak need a magnetic field two millionths less than the field needed by TMS to produce resonance. This is not affected by the chemical shift of the sample analysed.
I hope this helped.
A molecule of aluminum fluoride has one aluminum atom. How many fluorine atoms are present?
Answer:
3 fluorine atoms will be present
Answer:
3
Explanation:
The chemical formula of aluminum fluoride is AlF3. As you can see, there is a 1:3 ratio of aluminum atoms to fluorine atoms. Therefore, if a molecule of AlF3 has one aluminum atom, you know there must be 3 fluorine atoms present.
If you want further tutoring help in chemistry or other subjects for FREE, check out growthinyouth.org.
Solid sodium oxide and gaseous water are formed by the decomposition of solid sodium hydroxide (NaOH) .
Write a balanced chemical equation for this reaction.
Answer:
2NaOH(s) → Na₂O(s) + H₂O(g)
Hope that helps.
Calculate the standard enthalpy change for the reaction at 25 ∘ C. Standard enthalpy of formation values can be found in this list of thermodynamic properties.HCl(g)+NaOH(s)⟶NaCl(s)+H2O(l)
Answer:
-179.06 kJ
Explanation:
Let's consider the following balanced reaction.
HCl(g) + NaOH(s) ⟶ NaCl(s) + H₂O(l)
We can calculate the standard enthalpy change for the reaction (ΔH°r) using the following expression.
ΔH°r = 1 mol × ΔH°f(NaCl(s)) + 1 mol × ΔH°f(H₂O(l)) - 1 mol × ΔH°f(HCl(g)) - 1 mol × ΔH°f(NaOH(s))
ΔH°r = 1 mol × (-411.15 kJ/mol) + 1 mol × (-285.83 kJ/mol) - 1 mol × (-92.31 kJ/mol) - 1 mol × (-425.61 kJ/mol)
ΔH°r = -179.06 kJ
Draw the structure of 1,4-hexanediamine.
Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced TemplateTowbars. The single bond is active by default. Include all hydrogen atoms.
View Available Hint(s)
Answer:
1,4-hexanediamine contains two [tex]-NH_{2}[/tex] functional groups.
Explanation:
1,4-hexanediamine is an organic molecule which contains two [tex]-NH_{2}[/tex] functional groups at C-1 and C-4 position.
The longest carbon chain in 1,4-hexanediamine contains six carbon atoms.
Molecular formula of 1,4-hexanediamine is [tex]C_{6}H_{16}N_{2}[/tex].
1,4-hexanediamine used as a bidentate ligand in organometallic chemistry.
The structure of 1,4-hexanediamine is shown below.