Answer:
The speed of blood through the aorta is 0.265 m/s
Explanation:
Given;
volumetric flow rate, Q = 5.0L/min = 0.005 m³/min x 1min/60s = 8.333 x 10⁻⁵ m³/s
radius of the aorta, r = 1.0 cm = 0.01 m
Area of the aorta = πr²
Area of the aorta = π(0.01)² = 3.142 x 10⁻⁴ m²
Volumetric flow rate is given by;
Q = Av
where;
v is the speed of blood through the aorta
v = Q /A
v = (8.333 x 10⁻⁵ ) / (3.142 x 10⁻⁴)
v = 0.265 m/s
Therefore, the speed of blood through the aorta is 0.265 m/s
The blood's speed through the aorta will be "0.265 m/s". To understand the calculation, check below.
Blood and AortaAccording to the question,
Volumetric flow rate, Q = 5.0 L/min or,
= 0.005 × [tex]\frac{1 \ min}{60 \ s}[/tex]
= 8.333 × 10⁻⁵ m³/s
Aorta's radius, r = 1.0 cm
We know the formula,
→ Q = A × v
or,
Speed, v = [tex]\frac{Q}{A}[/tex]
By substituting the values,
= [tex]\frac{8.333\times 10^{-5}}{3.142\times 10^{-4}}[/tex]
= 0.265 m/s
Thus the above answer is correct.
Find out more information about Blood here:
https://brainly.com/question/9797618
When separated by distance d, identically charged point-like objects A and B exert a force of magnitude F on each other. If you reduce the charge of A to one-half its original value, and the charge of B to one-tenth, and reduce the distance between the objects by half, what will be the new force that they exert on each other in terms of force F
Answer:
F = F₀ 0.2
Explanation:
For this exercise we apply Coulomb's law with the initial data
F₀ = k q_A q_B / d²
indicate several changes
q_A ’= ½ q_A
q_B ’= 1/10 q_B
d ’= ½ d
let's substitute these new values in the Coulomb equation
F = k q_A ’q_B’ / d’²
F = k ½ q_A 1/10 q_B / (1/2 d)²
F = (k q_A q_B / d2) ½ 1/10 2²
F = F₀ 0.2
A vertically polarized light wave of intensity 1000 mW/m2 is coming toward you, out of the screen. After passing through this polarizing filter, the wave's intensity is
Answer:
The intensity is [tex]I = 500 mW/m^2[/tex]
Explanation:
From the question we are told that
The intensity of the unpolarized light is [tex]I_o = 1000 \ m W /m^2 = 1000 *10^{-3} \ W/m^2[/tex]
Generally the intensity of the light emerging from the polarizer is mathematically represented as
[tex]I = \frac{I_o}{2}[/tex]
substituting values
[tex]I = \frac{1000 *10^{-3}}{2}[/tex]
[tex]I = 500 *10^{-3} W/m^2[/tex]
[tex]I = 500 mW/m^2[/tex]
A person bends over to grab a 20 kg object. The back muscle responsible for supporting his upper body weight and the object is located 2/3 of the way up his back (where it attaches to the spine) and makes an angle of 12 degrees with the spine. His upper body weighs 36 kg. What is the tension in the back muscle
Answer:
T = 2689.6N
Explanation:
Considering the situation, one can say that torque due to tension in the spine is counter balanced by the torque due to weight of upper part of the body and the weight of the object. Hence, the tension force is acting at an angle of 12 degree
while both weight are acting perpendicular to the length. Hence we have :
Torque ( clockwise) = Torque ( anticlockwise)
m1g (L/2)+ m2g(L) = Tsin 12(2L/3)........1
Where m1 = 36kg
m2 = 20kg
g = 9.81m/s^2
Theta = 12
Substituting into equation 1
36(9.81) * (L/2)+20(9.81)(L) = Tsin12(2L/3)
353.16L/2+196.2L = T ×0.2079(2L/3)
176.58L+196.2L = T × 0.1386L
372.78L = 0.1386LT
T = 372.78L/0.1386L
T = 2689.6N
A sinusoidal wave travels along a string. The time for a particular point to move from maximum displacement to zero is 0.17 s. What are the (a) period and (b) frequency? (c) The wavelength is 1.5 m; what is the wave speed?
Answer:
31
Explanation:
g The current in a series circuit is 15.0 A. When an additional 8.00-% resistor is inserted in series, the current drops to 12.0 A. What is the resistance in the original circuit
Answer:
Explanation:
Let the original resistance be R and voltage be V
Applying ohm's law
V / R = 15
V = 15 R
In second case
V / (R+8 ) = 12
V = 12 R + 96
15 R = 12 R + 96
3R = 96
R = 32 ohm .
The process of star and planet formation begins with a large cloud of gas and dust called a solar nebula. Rank the formation events that occur within a cloud from earliest to latest.
Rank from earliest to latest. To rank items as equivalent, overlap them.
A. The cloud is large, cool, and slowly rotating
B. The cloud collapses into a disk
C. Competing rotational and gravitational forces begin to flatten the cloud
D. The cloud becomes denser, heats up, and rotates faster
E. The cloud starts to contract under the influence of gravity
A, B, E , C, D
What is Nebula?A nebula is an enormous cloud of dust and gas occupying the space between stars and acting as a nursery for new stars.
Nebulae are made up of dust, basic elements such as hydrogen and other ionized gases.
Nebula Formation:
In essence, a nebula is formed when portions of the interstellar medium undergo gravitational collapse.
Mutual gravitational attraction causes matter to clump together, forming regions of greater and greater density.
The formation events that occur within a cloud from earliest to latest are:
A. The cloud is large, cool, and slowly rotating
B. The cloud collapses into a disk.
E. The cloud starts to contract under the influence of gravity
C. Competing rotational and gravitational forces begin to flatten the cloud.
D. The cloud becomes denser, heats up, and rotates faster
Therefore , The rank from earliest to latest is A, B, E , C, D
Learn more about Nebula here:https://brainly.com/question/9497068
#SPJ2
Damon purchased a pair of sunglasses that were advertised as being polarized. Describe how Damon could test the sunglasses to verify they are polarized.
Answer:
To verify that they're polarized, he could hold the two lenses perpendicular (90 degrees) to each other, one lens in front of the other, and point it at a light source. If no light passes through then the lenses are polarized
The test of Polarization of pair of sunglasses is , hold the two lenses perpendicular to each other, one lens in front of the other, and point it towards a light source. If no light passes through then the lenses are polarized.
When a beam of light is reflected from a smooth surface, such as water or ice, it becomes polarized.Polarized light irritates the eyes and makes it hard to see clearly.For example, when fishing on a sunny day, you wouldn't see through the water. You would only see a reflection of the sun hitting the water.
Polarized lenses will neutralize the reflection of the water, and you will be able to into the water.To verify that pair of sunglasses are polarized, he could hold the two lenses perpendicular to each other, one lens in front of the other, and point it towards a light source. If no light passes through then the lenses are polarized.
Learn more:
https://brainly.com/question/11452190
1. A coil is formed by winding 250 turns of insulated 16-gauge copper wire, that has a diameter d = 1.3 mm, in a single layer on a cylindrical form of radius 12 cm. What is the resistance of the coil? Neglect the thickness of the insulation and the resistivity of copper is ???? = 1.69 × 10−8 Ω ∙ m.
Answer:
2.39 Ω
Explanation:
Given that
Number of winnings on the coil, = 250 turns
Radius if the copper wire, r(c) = 1.3/2 = 0.65 mm
Radius of single cylinder layer, R = 12 cm
Length of the cylinderical coil, L = 250 * 2π * 12 = 188.4 m
Resistivity of copper, ρ = 1.69*10^-8 Ωm
Area is πr(c)², which is
A = 3.142 * (0.65*10^-3)²
A = 3.142 * 4.225*10^-7
A = 1.33*10^-6 m²
The formula for resistance is given as
R = ρ.L/A, if we substitute, we have
R = (1.69*10^-8 * 188.4) / 1.33*10^-6
R = 3.18*10^-6 / 1.33*10^-6
R = 2.39 Ω.
Therefore, the resistance is 2.39 Ω
calculate the upthrust aciting on a body if its
true weight is 550 N and apparent weight
lis 490 N
Answer:
As a body moving upward
T=real weight + apparent weight
T=550+490
T=1040
hope u will get the answer:)
Explanation:
An FM radio station transmits a signal with a frequency of 89.1 MHz. Give the wavelength in meters. (use at least three significant digits)
Answer:
3m
Explanation:
89.1 MHz means
89.1×10^6 cycles/second.
Electromagnetic radiation (including radio waves) travel at
3.0×10^8meters/second
Wavelength = Speed/Frequency
The wavelength of a
89.1MHz radio signal is
3.0×10^8/89.1x10^6
= 0.03x10^2
= 3meters
When a current of 2.0 A flows in the 100-turn primary of an ideal transformer, this causes 14 A to flow in the secondary. How many turns are in the secondary
Answer:
14.29 turns.
Explanation:
From the question,
Ns/Np = Ip/Is........................ Equation 1
Where Ns = Secondary turn, Np = Primary turn, Is = current flowing in the secondary turn, Ip = current flowing in the primary turn.
Make Ns the subject of the equation
Ns = NpIp/Is.................... Equation 2
Given: Np = 100 turns, Ip = 2.0 A, Is = 14 A.
Substitute these values into equation 2
Ns = 100(2.0)/14
Ns = 14.29 turns.
Which of the following statements about Masters programs is not correct?
A. Most Masters athletes did not compete when they were in school.
B. The social life is as important as the athletics on most Masters
teams.
C. The level of competition is not very high in most Masters
programs.
D. Masters programs allow adults to work out and socialize with
people who share their love of a sport.
SUBMIT
The correct answer is C. The level of competition is not very high in most Masters programs.
Explanation:
In sports, the word "master" is used to define athletes older than 30 and that usually are professional or have trained for many years, although novates are also allowed. This means in most cases in Master programs and teams a high level of competition can be expected due to the experience and extensive training of Master athletes. Indeed, many records in the field of sport belong to Master athletes rather than younger athletes. According to this, the incorrect statement is "The level of competition is not very high in most Masters programs".
A stone is thrown vertically upward with a speed of 29.0 m/s and when it reaches a height of 13 m, the velocity is 24.2 m/s.
Using the formula x = v0 • t + ½ • a • t2, find the time it takes to reach this height? Why do you get two values for time? Explain.
Answer:
the value of t = 0.49 seconds shows that its upward journey
and
at t = 5.43 seconds shows in downward journey
Explanation:
Given:
initial speed, u = 29 m/s
acceleration due to gravity, g = - 9.8 m/s^2
h = 13 m
Let it is moving with velocity v at a height of 13 m.
Use third equation of motion
v² = u² + 2gh
By substituting the values
v² = 29² - (2 * 9.8 * 13)
v = sqrt 585.94
v = 24.2 m/s
Let it takes time t to reach at height 13 m
Use second equation of motion
s = u * t + 1/2 * g * t²
13 = 29t - 4.9t²
4.9t² - 29t + 13 = 0
using quadratic equation to solve time
29 ± [tex]\sqrt{29^2 - 4 * 4.9 * 13}\\[/tex]
t = ------------------------------------
2 * 4.9
t = 5.43 second or t = 0.49 second
Therefore...
the value of t = 0.49 seconds shows that its upward journey
and
at t = 5.43 seconds shows in downward journey
I wish to use a step up transformer to turn an initial RMS AC voltage of 100 V into a final RMS AC voltage of 200 V. What is the ratio of the number of turns in the primary to the secondary
Answer:
1:2
Explanation:
It is given that,
Initial RMS AC voltage is 100 V and final RMS AC voltage is 200 V.
We need to find the ratio of the number of turns in the primary to the secondary for step up transformer.
For a transformer, [tex]\dfrac{V_1}{V_2}=\dfrac{N_1}{N_2}[/tex]
So,
[tex]\dfrac{N_1}{N_2}=\dfrac{100}{200}\\\\\dfrac{N_1}{N_2}=\dfrac{1}{2}[/tex]
So, the ratio of the number of turns in the primary to the secondary is 1:2.
"Pipe A has length L and is open at one end and closed at the other. Pipe B is open at both ends and has length 2L. Which harmonic of pipe B matches in frequency the fundamental of pipe A?"
Answer:
Explanation:
length of pipe A is L
frequency of fundamental note of pipe A which is closed organ pipe
= velocity of sound / 4 x length of pipe
= V / 4 x L where V is velocity of sound .
Similarly frequency of fundamental note of pipe B which is open organ pipe
= velocity of sound / 2 x length of pipe
= V / (2 x 2L) = V / 4L , This is also called first harmonic
so fundamental frequency of pipe A will be equal to first harmonic of pipe B .
Help me with these question and please explainnn
Explanation:
1. Impulse = change in momentum
J = Δp
J = mΔv
In the x direction:
Jₓ = mΔvₓ
Jₓ = (0.40 kg) (30 m/s cos 45° − (-20 m/s))
Jₓ = 16.5 kg m/s
In the y direction:
Jᵧ = mΔvᵧ
Jᵧ = (0.40 kg) (30 m/s sin 45° − 0 m/s)
Jᵧ = 8.49 kg m/s
The magnitude of the impulse is:
J = √(Jₓ² + Jᵧ²)
J = 18.5 kg m/s
The average force is:
FΔt = J
F = J/Δt
F = 1850 N
2. Momentum is conserved.
m₁u₁ + m₂u₂ = (m₁ + m₂) v
In the x direction:
(1000 kg) (0 m/s) + (1500 kg) (-12 m/s) = (1000 kg + 1500 kg) vₓ
vₓ = -7.2 m/s
In the y direction:
(1000 kg) (20 m/s) + (1500 kg) (0 m/s) = (1000 kg + 1500 kg) vᵧ
vᵧ = 8 m/s
The magnitude of the final speed is:
v = √(vₓ² + vᵧ²)
v = 10.8 m/s
3. Momentum is conserved.
m₁u₁ + m₂u₂ = (m₁ + m₂) v
In the x direction:
(0.8 kg) (18 m/s cos 45°) + (0.36 kg) (9.0 m/s) = (0.8 kg + 0.36 kg) vₓ
vₓ = 11.6 m/s
In the y direction:
(0.8 kg) (-18 m/s sin 45°) + (0.36 kg) (0 m/s) = (0.8 kg + 0.36 kg) vᵧ
vᵧ = -8.78 m/s
The magnitude of the final speed is:
v = √(vₓ² + vᵧ²)
v = 14.5 m/s
A plane progressive
the expression
in time, ys
where you
progressivo ware is no presented by
(At + A
y- 5 sin
in metre, t es in time the doplicensel
Calculate
the amplitude of the wave.
Answer:
Amplitude, A = 5 m
Explanation:
Let a progressive wave is given by equation :
[tex]y=5\sin (100\pi t-0.4\pi x)[/tex] .....(1)
The general equation of a progressive wave is given by :
[tex]y=A\sin (\omega t-kx)[/tex] ....(2)
Here,
A is the amplitude of the wave
[tex]\omega[/tex] is the angular frequency
k is propagation constant
We need to find the amplitude of the wave.
If we compare equations (1) and (2), we find that the amplitude of the given plane progressive wave is 5 m.
You connect three resistors with resistances R, 2R, and 3R in parallel. The equivalent resistance of the three resistors will have a value that is
Answer:
The equivalent is 6R/11Explanation:
We know that the equivalent resistance of resistors connected in parallel is expressed as
[tex]\frac{1}{Re} =\frac{1}{R1} +\frac{1}{R2}+\frac{1}{R3}\\\\\frac{1}{Re} =\frac{1}{R} +\frac{1}{2R}+\frac{1}{3R}\\[/tex]
the L.C.M is 6R
[tex]\frac{1}{Re} =\frac{6+3+2}{6R} = \frac{11}{6R} \\\\Re= \frac{6R}{11}[/tex]
A planet in another solar system orbits a star with a mass of 5.0 x 1030 kg. At one point in its orbit, it is 150 x 106 km from the star and is moving at 55 km/s. What is the semimajor axis of the planet's orbit
Answer:
32
Explanation:
if you place 0°c ice into 0°c water in an insulated container, what will happen? Will some ice melt, will more water freeze, or will neither take place?
Answer:
neither will happen
Explanation:
cause the water is already defreezed
radiation transfers energy through___. a metal. b liquid. c touch. d waves.
Answer:
Radiation is transferred through electromagnetic waves so D.
Explanation:
Answer:
D. Waves
Explanation:
a and b don't make much sense, conduction is transfer of energy through touch
g When attempting to determine the coefficient of kinetic friction, why is it necessary to move the block with constant velocity
Answer:
This is because motion is intended to occur but at zero acceleration. It means at a constant velocity, henceFor that to happen the pulling force F must exactly equal the frictional force Fk .
5. A nail contains trillions of electrons. Given that electrons repel from each other, why do they not then fly out of the nail?
Answer:
Nails are made of iron. Iron consists of 26 protons and 26 electrons. protons are positively charged and electrons are negatively charged, so this force of attraction keeps the electrons together.
If electrons repel from each other, the positively charge protons and nucleus allow them to move in a definite orbit and prevent them flying out of the nail.
The flywheel of an engine has I of 1.60kg.m2 about its rotation axis. What constant torque is required to bring it up to an angular speed of 400 rpm in 8.00s, starting from rest?
Answer:
Torque = 8.38Nm
Explanation:
Time= 8.00s
angular speed (w) =400 rpm
Moment of inertia (I)= 1.60kg.m2 about its rotation axis
We need to convert the angular speed from rpm to rad/ sec for consistency
2PI/60*n = 0.1047*409 = 41.8876 rad/sec
What constant torque is required to bring it up to an angular speed of 40rev/min in a time of 8s , starting from rest?
Then we need to use the formula below for our torque calculation
from basic equation T = J*dω/dt ...we get
Where : t= time in seconds
W= angular velocity
T = J*Δω/Δt = 1.60*41.8876/8.0 = 8.38 Nm
Therefore, constant torque that is required is 8.38 Nm
Torque can be defined as the twisting or turning force that tends to cause rotation around an axis. The required constant torque is 8.38 N-m.
Given-
Inertia of the flywheel is 1.60 kg m squared.
Angular speed of the flywheel [tex]n[/tex] is 400 rpm. Convert it into the rad/sec, we get,
[tex]\omega =\dfrac{2\pi }{60} \times n[/tex]
[tex]\omega =\dfrac{2\pi }{60} \times 400[/tex]
[tex]\omega = 41.89[/tex]
Thus, the angular speed of the flywheel [tex]\omega[/tex] is 41.89 rad/sec.
When a torque [tex]\tau[/tex] is applied to an object it begins to rotate with an acceleration inversely proportional to its moment of inertia [tex]I[/tex]. Mathematically,
[tex]\tau=\dfrac{\Delta \omega }{\Delta t} \times I[/tex]
[tex]\tau=\dfrac{ 41.89 }{8} \times 1.6[/tex]
[tex]\tau=8.38[/tex]
Hence, the required constant torque is 8.38 N-m.
to know more about the torque, follow the link below-
https://brainly.com/question/6855614
Why does front side of spoon forms inverted image but the back side form opposite of inverted image?
Answer:
our face is outside the focal length of the concave side of the spoon. We see a virtual inverted image whereas in case of concave mirror we can see a virtual image which is erect.
An object has an acceleration of 6.0 m/s/s. If the net force was tripled and the mass were doubled, then the new acceleration would be _____ m/s/s.
Answer:
The new acceleration would be 9 m/s².
Explanation:
Acceleration of an object is 6 m/s²
Net force is equal to the product of mass and acceleration i.e.
F = ma
[tex]a=\dfrac{F}{m}\\\\\dfrac{F}{m}=6\ m/s^2[/tex]
If the net force was tripled and the mass were doubled, it means,
F' = 3F
m' = 2m
Let a' is new acceleration. So,
[tex]a'=\dfrac{F'}{m'}\\\\a'=\dfrac{(3F)}{(2m)}\\\\a'=\dfrac{3}{2}\times \dfrac{F}{m}\\\\a'=\dfrac{3}{2}\times 6\\\\a'=9\ m/s^2[/tex]
So, the new acceleration would be 9 m/s².
The inner and outer surface temperature of a glass window 10 mm thick are 25 and 5 degree-C, respectively. What is the heat loss through a 1 m x 3 m window
Answer:
The heat loss is [tex]H = 8400\ W[/tex]
Explanation:
From the question we are told that
The thickness is [tex]t = 10 \ mm = 0.01 \ m[/tex]
The inner temperature is [tex]T_i = 25 ^oC[/tex]
The outer temperature is [tex]T_o = 5 ^oC[/tex]
The length of the window is L = 1 m
The width of the window is w = 3 m
Generally the heat loss is mathematically represented as
[tex]H = \frac{k * A * \Delta T}{t}[/tex]
Where k is the thermal conductivity of glass with value [tex]k = 1.4\ W/m \cdot K[/tex]
and A is the area of the window with value
[tex]A = 1 * 3[/tex]
[tex]A = 3 \ m^2[/tex]
substituting values
[tex]H = \frac{1.4 * 3 * (23-5)}{0.01}[/tex]
[tex]H = 8400\ W[/tex]
A mass M = 4 kg attached to a string of length L = 2.0 m swings in a horizontal circle with a speed V. The string maintains a constant angle \theta\:=\:θ = 35.4 degrees with the vertical line through the pivot point as it swings. What is the speed V required to make this motion possible?
Answer:
The velocity is [tex]v = 2.84 1 \ m/s[/tex]
Explanation:
The diagram showing this set up is shown on the first uploaded image (reference Physics website )
From the question we are told that
The mass is m = 4 kg
The length of the string is [tex]L = 2.0 \ m[/tex]
The constant angle is [tex]\theta = 35.4 ^o[/tex]
Generally the vertical forces acting on the mass to keep it at equilibrium vertically is mathematically represented as
[tex]Tcos (\theta ) - mg = 0[/tex]
=> [tex]mg = Tcos (\theta )[/tex]
Now let the force acting on mass horizontally be k so from SOHCAHTOA rule
[tex]sin (\theta ) = \frac{k }{T}[/tex]
=> [tex]k = T sin \theta[/tex]
Now this k is also equivalent to the centripetal force acting on the mass which is mathematically represented as
[tex]F_v = \frac{m v^2}{r}[/tex]
So
[tex]k = F_v[/tex]
Which
=> [tex]T sin \theta= \frac{ m v^2}{ r }[/tex]
So
[tex]\frac{Tsin (\theta )}{Tcos (\theta )} = \frac{mg}{ \frac{mv^2}{r} }[/tex]
=> [tex]Tan (\theta ) = \frac{v^2}{ r * g }[/tex]
=> [tex]v = \sqrt{r * g * tan (\theta )}[/tex]
Now the radius is evaluated using SOHCAHTOA rule as
[tex]sin (\theta) = \frac{ r}{L}[/tex]
=> [tex]r = L sin (\theta)[/tex]
substituting values
[tex]r = 2 sin ( 35.4 )[/tex]
[tex]r = 1.1586 \ m[/tex]
So
[tex]v = \sqrt{1.1586* 9.8 * tan (35.4 )}[/tex]
[tex]v = 2.84 1 \ m/s[/tex]
Suppose a tank filled with water has a liquid column with a height of 19 meter. If the area is 2 square meters 2m squared, what’s the force of gravity acting on the column of water?
Answer:
372,400 N
Explanation:
The volume of the column is ...
V = Bh = (2 m^2)(19 m) = 38 m^3
If we assume the density is 1000 kg/m^3, then the mass of the water is ...
M = ρV = (1000 kg/m^3)(38 m^3) = 38,000 kg
The force of gravity on that mass is ...
F = Mg = (38,000 kg)(9.8 m/s^2) = 372,400 N
an ice sheet 5m thick covers a lake that is 20m deep. at what is the temperature of the water at the bottom of the lake?
Answer:
4°C
Explanation:
Water is densest at 4°C. Since dense water sinks, the bottom of the lake will be 4°C.