Answer:
define d first?
you need to list more variables
Answer:
list more valuable unit
The force between two charges when they are 2 cm apart is
0.036 N. If the sum of two charges is 10uC, what are the
charges? (1/4ttɛo=9x109 Nm-C-2).
Answer:
[tex]q_1=9.9998\mu C[/tex] and [tex]q_2=0.0002\mu C[/tex]
Or
[tex]q_1=0.00016\mu C[/tex] and [tex]q_2=9.99984\mu C[/tex]
Explanation:
We are given that
Force between two charges=0.036 N=[tex]36\times 10^{-3}N[/tex]
Distance between two charges, r=2cm=[tex]2\times 10^{-2}[/tex]m
1m=100cm
Sum of two charges=[tex]10\mu C[/tex]
Let one charge=[tex]q_1=q\mu C=q\times 10^{-6}C[/tex]
[tex]q_2=(10-q)\times 10^{-6} C[/tex]
We know that
Electric force between two charges
[tex]F=\frac{kq_1q_2}{r^2}[/tex]
Where [tex]k=\frac{1}{4\pi \epsilon_0}=9\times 10^{9}[/tex]
Using the formula
[tex]36\times 10^{-3}=9\times 10^{9}\times \frac{q\times 10^{-6}\times(10-q)\times 10^{-6}}{(2\times 10^{-2})^2}[/tex]
[tex]\frac{144\times 10^{-7}}{9\times 10^{9}\times 10^{-12}}=q(10-q)[/tex]
[tex]0.0016=10q-q^2[/tex]
[tex]q^2-10q+0.0016=0[/tex]
[tex]10000q^2-100000q+16=0[/tex]
[tex]q=\frac{100000\pm\sqrt{(100000)^2-4\times 10000\times 16}}{2\times 10000}[/tex]
Using the formula
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]q=9.999[/tex] and [tex]q=0.00016[/tex]
[tex]q_2=10-9.9998=0.0002[/tex]
[tex]q_2=10-0.00016=9.99984[/tex]
Hence, two charges are
[tex]q_1=9.9998\mu C[/tex] and [tex]q_2=0.0002\mu C[/tex]
Or
[tex]q_1=0.00016\mu C[/tex] and [tex]q_2=9.99984\mu C[/tex]
Do you ever have a sensation of loneliness?
Answer:
nope
Explanation:
sige bigyan kitang Happy pills
A man pushes a block of ice across a frozen pond at a constant velocity. While the coefficients of static and kinetic friction for ice are low, they are not zero. Consider this problem to involve friction. If necessary, use Fs for the force of static friction, and Fk as the force of kinetic friction.
Required:
Draw the Free Body Diagram for the block of ice.
Answer:
F₁> F₂
Explanation:
For this exercise Newton's second law is used, in the adjoint we can see the unapplied forces in this exercise.
Y axis y
N- W = 0
in this axis there is no movement
X axis
F -fr = m a
as they indicate that the velocity is consonant the acceleration is worth zero
F - fr = 0
friction force has the expression
fr = μ N
fr = μ mg
we substitute
F = μ m g
by the time the block is stopped the deferred force is
F₁ = μ_s m g
when it begins to move the force should decrease to
F₂ = μ_k k m g
as the static coefficient is greater than the dynamic coefficient
F₁> F₂
The free body diagram consists of applied force (F) and kinetic frictional force acting in opposite direction.
Net force on the blockThe net force on the block will result constant speed of the block which is zero acceleration.
[tex]\Sigma F= 0\\\\F - F_f = 0\\\\F - \mu_k F_n= 0\\\\F - \mu_k mg = 0\\\\F - \mu k W = 0\\\\F = F_f\ \ \ or \ \ F = \mu_k W[/tex]
Free body diagramThe free body diagram consists of applied force (F) and kinetic frictional force acting in opposite direction.
F → Ф ← Ff
Learn more about free body diagram here: https://brainly.com/question/21691401
A point charge, Q1 = -4.2 μC, is located at the origin. A rod of length L = 0.35 m is located along the x-axis with the near side a distance d = 0.45 m from the origin. A charge Q2 = 10.4 μC is uniformly spread over the length of the rod.Part (a) Consider a thin slice of the rod, of thickness dx, located a distance x away from the origin. What is the direction of the force on the charge located at the origin due to the charge on this thin slice of the rod? Part (b) Write an expression for the magnitude of the force on the point charge, |dF|, due to the thin slice of the rod. Give your answer in terms of the variables Q1, Q2, L, x, dx, and the Coulomb constant, k. Part (c) Integrate the force from each slice over the length of the rod, and write an expression for the magnitude of the electric force on the charge at the origin. Part (d) Calculate the magnitude of the force |F|, in newtons, that the rod exerts on the point charge at the origin.
Answer:
a) attractiva, b) dF = [tex]k \frac{Q_1 \ dQ_2}{dx}[/tex], c) F = [tex]k Q_1 \frac{Q_2}{d \ (d+L)}[/tex], d) F = -1.09 N
Explanation:
a) q1 is negative and the charge of the bar is positive therefore the force is attractive
b) For this exercise we use Coulomb's law, where we assume a card dQ₂ at a distance x
dF = [tex]k \frac{Q_1 \ dQ_2}{dx}[/tex]
where k is a constant, Q₁ the charge at the origin, x the distance
c) To find the total force we must integrate from the beginning of the bar at x = d to the end point of the bar x = d + L
∫ dF = [tex]k \ Q_1 \int\limits^{d+L}_d {\frac{1}{x^2} } \, dQ_2[/tex]
as they indicate that the load on the bar is uniformly distributed, we use the concept of linear density
λ = dQ₂ / dx
DQ₂ = λ dx
we substitute
F = [tex]k \ Q_1 \lambda \int\limits^{d+L}_d \, \frac{dx}{x^2}[/tex]
F = k Q1 λ ([tex]-\frac{1}{x}[/tex])
we evaluate the integral
F = k Q₁ λ [tex](- \frac{1}{d+L} + \frac{1}{d} )[/tex]
F = k Q₁ λ [tex]( \frac{L}{d \ (d+L)})[/tex]
we change the linear density by its value
λ = Q2 / L
F = [tex]k Q_1 \frac{Q_2}{d \ (d+L)}[/tex]
d) we calculate the magnitude of F
F =9 10⁹ (-4.2 10⁻⁶) [tex]\frac{10.4 10x^{-6} }{0.45 ( 0.45 +0.35)}[/tex]
F = -1.09 N
the sign indicates that the force is attractive
Answer:
a)Toward the rod
b)|dF| = k|Q1|Q2(dx/L)/x^2
c)|F| = k|Q1|Q2/(d(d+L))
d)Plug in for answer c and solve
Explanation:
A)
Q1 is negative and Q2 is positive so it is an attractive force to where the rod is located.
B)
The formula for Force due to electric charges is F=kQ1Q2/r^2
In this case, Q2 is distrusted through the length of the rod as opposed to a single point charge. As such Q2 is actually Q2*dx/L as dx is a small portion of the full length, L.
The radius between Q1 and Q2 depends on the section of the rod taken so r will be the variable x distance from Q1.
The force is only from a small portion of the rod so more accurately, we are finding |dF| as opposed to the full force, F, caused by the whole rod.
The final formula is |dF| = k|Q1|Q2(dx/L)/x^2
C)
Integrating with respect to the only changing variable, x, which spans the length of the rod, from radius = d to d+L we get this:
F = integral from d to d+L of k|Q1|Q2(dx/L)/x^2
factor out constants
F = kQ1Q2/L * integral d to d+L(1/x^2)dx
F = kQ1Q2/L * (-1/x)| from d to d+L
F = kQ1Q2/L * (-1/d+L - -1/d)
F = kQ1Q2/L * (-d/(d(d+L)) + (d+L)/(d(d+L))
F = kQ1Q2/L * (L)/(d(d+L))
F = kQ1Q2/(d(d+L))
D)
Plug in the given values into c and you have your answer.
Find the GCF of each set of numbers.
12, 21, 30
Math
Answer:
3 is the GCF for all these numbers if thats what you're asking
what is borh's postulates for the hydrogen atom
Answer:
An atom has a number of stable orbits in which an electron can reside without the emission of radiant energy. ... Each orbit corresponds, to a certain energy level.
Explanation:
Hope it is helpful....
a man is trying to pull a box a distance of 3 m with a force of 20 N that makes a 35º with the horizontal.
Answer:
34.4Joules
Explanation:
Complete question
a man is trying to pull a box a distance of 3 m with a force of 20 N that makes a 35º with the horizontal. Find the workdone
Work done = Fdsin theta
Force F = 20N
distance d = 3m
theta = 35 degrees
Substitute
Workdone = 20(3)sin 35
Workdone = 60sin35
Workdone = 34.4Joules
Hence the workdone by the man is 34.4Joules
An aluminum wire having a cross-sectional area equal to 2.20 10-6 m2 carries a current of 4.50 A. The density of aluminum is 2.70 g/cm3. Assume each aluminum atom supplies one conduction electron per atom. Find the drift speed of the electrons in the wire.
Answer:
The drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
Explanation:
We can find the drift speed by using the following equation:
[tex] v = \frac{I}{nqA} [/tex]
Where:
I: is the current = 4.50 A
n: is the number of electrons
q: is the modulus of the electron's charge = 1.6x10⁻¹⁹ C
A: is the cross-sectional area = 2.20x10⁻⁶ m²
We need to find the number of electrons:
[tex] n = \frac{6.022\cdot 10^{23} atoms}{1 mol}*\frac{1 mol}{26.982 g}*\frac{2.70 g}{1 cm^{3}}*\frac{(100 cm)^{3}}{1 m^{3}} = 6.03 \cdot 10^{28} atom/m^{3} [/tex]
Now, we can find the drift speed:
[tex]v = \frac{I}{nqA} = \frac{4.50 A}{6.03 \cdot 10^{28} atom/m^{3}*1.6 \cdot 10^{-19} C*2.20 \cdot 10^{-6} m^{2}} = 2.12 \cdot 10^{-4} m/s[/tex]
Therefore, the drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
I hope it helps you!
a girl whose mass is 40kg walk up a flight of 20steps each 15mm hight in 10seconds.find power developed by the girl showing the solution
Answer: Approximately 11.76 joules per second
=========================================================
Work Shown:
Mass = 40 kg
Force pulling down = (mass)*(gravity) = 40*9.8 = 392 newtons
Roughly 392 newtons of force are pulling down on her.
To climb the steps, she must apply 392 newtons of force upward.
---------------
Displacement = 20*(15 mm) = 300 mm = 0.3 m
Work = Force*Displacement
Work = 392*0.3
Work = 117.6 joules of energy
---------------
Power = (Work)/(Time)
Power = (117.6 joules)/(10 seconds)
Power = (117.6/10) joules per second
Power = 11.76 joules per second, which is approximate
On a car trip you drive for 2 hours and 41 minutes on a highway at a speed of 107.0 km/h. Then you stop at a gas station to fill up your tank. You also eat a quick lunch. The whole break lasts 23 minutes. After the break you start your engine up and you switch to a state road. You drive for another 3 hours and 31 minutes at a speed of 67.0 km/h before you arrive to your destination. What was your average speed for the whole trip with the lunchbreak included
Answer:
v = 79.3 km/h
Explanation:
By definition, the average speed, is the quotient between the total distance traveled and the time needed to travel that distance.The total time, is the sum of three times: one while driving before stopping at the gas station (t₁), the time spent there (t₂) and the time since leaving the gas station until reaching the final destination (t₃) .Let's convert these times to seconds first:[tex]t_{1} = 161 min* \frac{60s}{1min} = 9660 s (1)[/tex]
[tex]t_{2} = 23 min* \frac{60s}{1min} = 1380 s (2)[/tex]
[tex]t_{3} = 211 min* \frac{60s}{1min} = 12660 s (3)[/tex]
[tex]t_{tot} =t_{1} +t_{2} +t_{3} = 9660s + 1380s + 12660s = 23700s (4)[/tex]
In order to find the total distance traveled, we need to add the distance traveled before stopping at the gas station (x₁) and the distance traveled after leaving it (x₂).Applying the definition of average speed, we can find these distances as follows:[tex]x_{1} = v_{1} * t_{1} (5)[/tex]
[tex]x_{2} = v_{2} * t_{3} (6)[/tex]
where v₁ = 107.0 km/h, and v₂= 67.0 km/hAs we did with time, let's convert v₁ and v₂ to m/s:[tex]v_{1} = 107.0 km/h*\frac{1000m}{1km}*\frac{1h}{3600s} = 29.7 m/s (7)[/tex]
[tex]v_{2} = 67.0 km/h*\frac{1000m}{1km}*\frac{1h}{3600s} = 18.6 m/s (8)[/tex]
Replacing (7) and (1) in (5) we get x₁, as follows (in meters):[tex]x_{1} = v_{1} * t_{1} = 29.7 m/s * 9660 s = 286902 m (9)[/tex]
Doing the same for x₂ with (3) and (8):[tex]x_{2} = v_{2} * t_{3} = 18.6 m/s * 12660 s = 235476 m (10)[/tex]
Total distance traveled is just the sum of (9) and (10):[tex]x_{tot} = x_{1} +x_{2} = 286902 m + 235476 m = 522378 m (11)[/tex]
As we have already said, the average speed is just the quotient between (11) and (4), as follows:[tex]v_{avg} =\frac{\Delta x}{\Delta t} = \frac{522378m}{23700s} = 22.0 m/s (12)[/tex]
Converted back to km/h:[tex]v_{avg} = 22.0 m/s*\frac{1km}{1000m}*\frac{3600s}{1h} = 79.3 km/h (13)[/tex]
convert 0.0345mW
to MW
Answer:
3.45e-11MV
that is ur answer
I love you
Please answer my question :-)
Answer:
A- Astronomical body
C- Galaxy
D- Comet
B- Moon
Hope this helps you! Have a great day!
Answer:
1. A
2. C
3. D
4. B
Explanation:
help please due today
Answer:
equal and opposite
Explanation:
..........
Velocity time graph and how to draw it
Answer:
Velocity time graph
Explanation:
Draw on graph paper two straight lines originating at the same point and perpendicular to each other. This is the x-y axis. The x-axis is the horizontal line and the y-axis is the vertical line.
Mark appropriate equally-spaced time intervals on the x-axis so that you can easily graph the time values from the table.
Mark appropriate velocity increments on the y-axis so that you can easily graph the velocity values from the table. If you have negative velocity values, extend the y-axis downward.
Find the first time value from the table and locate it on the x-axis. Look at the corresponding velocity value and find it on the y-axis.
Put a dot where a straight line vertically drawn up through the x-axis value and a straight line horizontally drawn through the y-axis value intersect.
Plot in similar fashion for all other velocity-time pairs in your table.
Draw a straight line with a pencil, connecting each dot you have put down on the graph paper, going from left to right
In the human arm, the forearm and hand pivot about the elbow joint. Consider a simplified model in which the biceps muscle is attached to the forearm 3.80 cm from the elbow joint. Assume that the person's hand and forearm together weigh 15.0 N and that their center of gravity is 15.0 cm from the elbow (not quite halfway to the hand). The forearm is held horizontally at a right angle to the upper arm, with the biceps muscle exerting its force perpendicular to the forearm.
A. Find the force exerted by the biceps when the hand is empty.
B. Now the person holds a 80.0-N weight in his hand, with the forearm still horizontal. Assume that the center of gravity of this weight is 33.0 cm from the elbow. Find the force now exerted by the biceps.
C. Explain why the biceps muscle needs to be very strong.
D. Under the conditions of part B, find the magnitude of the force that the elbow joint exerts on the forearm.
E. Under the conditions of part B, find the direction of the force that the elbow joint exerts on the forearm.
F. While holding the 80.0-N weight, the person raises his forearm until it is at an angle of 53.0∘ above the horizontal. If the biceps muscle continues to exert its force perpendicular to the forearm, what is this force when the forearm is in this position?
G. Has the force increased or decreased from its value in part B? Explain why this is so, and test your answer by actually doing this with your own arm.
Answer:
Answer is explained in the explanation section below.
Explanation:
Part A)
From conserve moment of force, we have:
F1d1 = F2d2
F1 x (3.80 x [tex]10^{-2}[/tex] m) = 15N x (15 x [tex]10^{-2}[/tex] m)
F1 = [tex]\frac{15 . 15 . 10^{-2} }{3.80 . 10^{-2} }[/tex]
F1 = 59.2 N
Force exerted by the biceps when the hand is empty.
Part B)
The 80 N weight acts at 33 cm and 15 N at 15 cm, then the center of mass is:
x = [tex]\frac{m1x1 + m2x2}{m1+m2}[/tex]
x = [tex]\frac{\frac{80}{9.8} (33 .10^{-2}) + \frac{15}{9.8}(15.10^{-2} }{\frac{80}{9.8} + \frac{15}{9.8} }[/tex]
x = 30.16 x [tex]10^{-2}[/tex] m
Total Weight is:
F = 80N + 15N = 95N
From the conserve moment of force, we have:
F ( 3.8 x [tex]10^{-2}[/tex] ) = 95N (30.16 x [tex]10^{-2}[/tex])
F = 754 N
Part C:
From the above two examples solved, the force exerted by the biceps is higher than downward force, due to this muscle need to be very strong.
Part D)
The force exerted by elbow on the forearm is:
The force exerted by the elbow and biceps are in upward direction and total weight is in downward direction. So, the balancing force in vertical direction is:
F2 + 754N = 95N
F2 = 95N -754N
F2 = -659N
Negative sign shows the force is in downward direction.
Part E)
The bicep muscle acts perpendicular to the forearm, so it is lever arm stays the same. but those of the other two forces decreases as the arm is raised. There tension in the biceps muscle decreases.
Part F)
Angle = 53 degrees.
So,
Force = FcosФ
Force = 754 cos 53
Force = 453.76 N
Part G)
The value of force has gone downwards. It has decreased from that of part B.
To increase the gravitational force between the two objects above, I could
Your answer:
A. increase the mass of the objects and decrease the distance between the objects.
B. increase BOTH the distance and the mass between the two objects
C. decrease the mass of the objects and increase the distance between the objects.
D. decrease BOTH the mass and distance between the two objects.
Answer:
Option A
Explanation:
How do dog whistles work?
The sound it emits comes from what is known as the ultrasonic range, a pitch that is so high humans can't hear it. Dogs can hear these sounds, however, as can cats and other animals. Because of this, the dog whistle is a favored training tool, though it may not be for every dog parent.
Earth's magnetic field is approximately 1/2 gauss, that is 50 micro-tesla because the SI field unit of a tesla is 10,000 gauss. Earth's north geographic pole is close to its south magnetic pole, and magnetic field is directed from the north to the south poles of a magnetic dipole so it goes from Earth's south geographic pole towards its north. Suppose you have wire carrying a large DC current from the south wall of a building to its north wall and that it is horizontal, on the floor. If Earth's field is parallel to the ground and does not dip, what force if any would the wire experience
Answer:
F = 0
Explanation:
The magnetic force is described by two expressions
for a moving charge
F = q v x B
for a wire with a current
F = I L xB
bold indicates vectors
let's write this equation in module form
F = I L B sin θ
where the angle is between the direction of the current and the direction of the magnetic field
In this case they indicate that the cable goes from the South wall to the North wall, so this is the direction of the current
The magnetic field of the Earth goes from the south to the north and in this part it is horizontal
Therefore the current and the magnetic field are parallel, the angle between them is zero
sin 0 = 0
consequently the magnetic force is zero
F = 0
In which situation are waves transmitted?
O A. A patient wears a lead apron at the dentist's office when getting
teeth X-rays.
O B. A light in a swimming pool comes on after dark to prevent
accidents in the water.
O C. A person wears earplugs to prevent hearing damage when fueling
a jet plane at the airport.
O D. A reflective screen is put on a parked car's dashboard to keep the
car from heating up in sunlight.
Answer: B. A light in a swimming pool comes on after dark to prevent
accidents in the water.
Valence electron of the first 20 elements
Answer:
Hydrogen
1 valence electron
Helium
2 valence electrons
lithium
1 valence electrons
beryllium
2 valence electrons
boron
3 valence electrons
carbon
4 valence electrons
nitrogen
5 valence electrons
oxygen
6 valence electrons
flourine
7 valence electrons
neon
8 valence electrons
sodium
1 valence electron
magnesium
2 valence electrons
aluminum
3 valence electrons
silicon
4 valence electrons
phosphorus
5 valence electrons
Answer: 17 Chlorine -1, +1, (+2), +3, (+4), +5, +7
18 Argon 0
19 Potassium +1
20 Calcium +2
Explanation:
what is the mathematical formula associated with newton's 2nd law of motion?
Answer:
F= m x a
Explanation:
Force (f) = mass (m) x acceleration (a)
How many planets on the solar system?
Answer:
8
Explanation:
tsijtsiztuztuistizrizturzurz
Answer:
8
Explanation:
Mercury, Venus, earth , Mars, jupiter, saturn , Uranus,Neptune
a body of mass 20kg initially at rest is subjected to a force of 40N for 1sec calculate the change in kinetic energy showing the solution
Answer:
Change in KE is 40 J
Explanation:
Recall that the impulse exerted on an object equal the change of momentum of the object (ΔP), which in time is defined as the product of the force exerted on it times the time the force was acting:
Change in momentum is: ΔP = F * Δt
In our case,
ΔP = 40 N * 1 sec = 40 N s
Since the object was initially at rest, its initial momentum was zero, and the final momentum should then be 40 N s.
So, the initial KE was 0, and the final (KEf) can be calculated using:
KEf = 1 /(2 m) Pf^2 = 1 / (40) 40^2 = 40 J
So, the change in kinetic energy is:
KEf - KEi = 40 J - 0 j = 40 J
2.) The lob in tennis is an effective tactic when your opponent is near the net. It consists of lofting the ball over his/her head, forcing them to move quickly away from the net. Suppose that you loft the ball with an initial speed of 15m/s at an angle of 50 degrees from the horizontal. At this moment your opponent is 10m from the ball. They begin to run away from you 0.3 seconds after the ball was launched hoping to reach the ball and hit it back to you at a height of 2.1m above where you hit it. What is the minimum average speed that your opponent must move so that he is in position to hit this ball
Answer:
The minimum average speed the opponent must move so that he is in position to hit the ball is approximately 5.79 m/s
Explanation:
The given parameters of the ball are;
The initial speed of the ball = 15 m/s
The direction in which the ball is launched = 50° above the horizontal
The location of the other tennis player when the ball is launched = 10 m from the ball
The time at which the other tennis player begins to run = 0.3 seconds after the ball is launched
The height at which the ball is hit back = 2.1 m above the height from which the ball is launched
The vertical position, 'y', at time, 't', of a projectile motion is given as follows;
y = (u·sinθ)·t - 1/2·g·t²
When y = 2.1 m, we have;
2.1 = (15·sin(50°))·t - 1/2·9.8·t²
∴ 4.9·t² - (15·sin(50°))·t + 2.1 = 0
Solving with the aid of a graphing calculator function, we get;
t = 0.199776187257 s or t = 2.14525782198 s
Therefore, the ball is at 2.1 m above the start point on the other side of the court at t ≈ 2.145 seconds
The horizontal distance, 'x', the ball travels at t ≈ 2.145 seconds is given as follows;
x = u × cos(50°) × t = 15 × cos(50°) × 2.145 ≈ 20.682 m
The horizontal distance the ball travels at t ≈ 2.145 seconds, x ≈ 20.682 m
Therefore, we have;
The time the other player has to reach the ball, t₂ =2.145 s - 0.3 s ≈ 1.845 s
The distance the other player has to run, d = 20.682 m - 10 m = 10.682 m
The minimum average speed the other player has to move with, [tex]v_s[/tex] = d/t₂
∴ [tex]v_s[/tex] = 10.682 m/(1.845 s) ≈ 5.78970189702 m/s ≈ 5.79 m/s
The minimum average speed the opponent must move so that he is in position to hit the ball, [tex]v_s[/tex] ≈ 5.79 m/s.
Which option correctly matches the chemical formula of a compound with its name?
A. N2O3, dinitrogen trioxide
B. N2O, trinitrogen dioxide
C. N2O, dinitrogen trioxide
D. N2O3, trinitrogen dioxide
Answer:
A is indeed correct
Explanation:
just did the question
The option that correctly matches the chemical formula of a compound with its name is N₂O₃ dinitrogen trioxide.
What is dinitrogen trioxide?
Dinitrogen trioxide is one of the simple nitrogen oxide. The chemical compound formula of Dinitrogen trioxide N₂O₃.
That is, it consists of 2 molecules of nitrogen, hence the prefix "Di" and 3 molecules of oxygen given the prefix tri.
Thus, the option that correctly matches the chemical formula of a compound with its name is N₂O₃ dinitrogen trioxide.
Learn more about Dinitrogen trioxide here: https://brainly.com/question/21392313
#SPJ2
Explain the difference in the function of plant and animal cell organelles, including cell membrane, cell wall, nucleus, cytoplasm, mitochondria, chloroplast, and vacuole
Answer:
Plant cell Animal cell
2. Have a cell membrane. 2. Have no chloroplasts.
3. Have cytoplasm. 3. Have only small vacuoles.
4. Have a nucleus. 4. Often irregular in shape.
5. Often have chloroplasts
containing chlorophyll. 5. Do not contain plastids.
true or false please help me now.
Calibration graphs can be used to determine unknown concentrations in electrochemical
Answer:
false
Explanation:
The steepness of a line on a graph is called the
O A. rise
OB. slope
C.
run
D. verticle axis
Answer:
slope
Explanation:
The slope is how how steep the line is.
Which two statements help explain why digital storage of data is so reliable?
A. Memory chips are sturdy.
U B. Digital data usually deteriorate over time.
C. It is usually possible to recover data from a memory chip even
when the device containing it is broken.
D. Digital data are easier to copy than analog data are, making them
more accessible to thieves.
Answer:
A. Memory chips are sturdy.
C. It is usually possible to recover data from a memory chip even when the device containing it is broken.
Explanation:
Digital storage of data refers to the process which typically involves saving computer files or documents on magnetic storage devices usually having flash memory. Some examples of digital storage devices are hard drives, memory stick or cards, optical discs, cloud storage, etc.
A reliable storage ensures that computer files or documents are easily accessible and could be retrieved in the event of a loss.
The two statements which help explain why digital storage of data is so reliable are;
A. Memory chips are sturdy: they are designed in such a way that they are compact and firm.
C. It is usually possible to recover data from a memory chip even when the device containing it is broken.
Answer:
A and C
Explanation:
got it right on a p e x
Which of the following is a part of both geocentric model and heliocentric model
Answer:
These planets rotate around the sun in a circular path. Likewise in a heliocentric model it is believed that the sun is at the center of the universe and the planet earth along with all other planet move around it. Thus in both geocentric model and heliocentric model bodies in space move in circular orbits.
Answer:
The bodies in space move in circular orbits
Explanation:
I got it right on my test