calculate the applied torque needed to accelerate the wheel from rest to 1950 rpm in 5.00 s . take into account a fritional torque that has been measured to slow down the wheel from 1500 rpm to rest in 55.0 s .

Answers

Answer 1

1.43 Nm is the torque needed to accelerate the wheel from rest to 1950 rpm in 5.00 s. take into report a frictional torque that has been calculated to slow down the wheel from 1500 rpm to rest in 55.0 s

Speed of wheel = 1950 rpm

Time is taken to accelerate =  5.00 s

Speed of wheel to slowdown =  1500 rpm

Time taken to rest =55.0 s

To calculate the torque needed to accelerate the wheel:

τ = Iα

To calculate the angular acceleration:

α = Δω / Δt

the change in angular velocity is calculated by using the formula:

Δω = ωf - ωi

At initial the velocity is Zero.

ωf = 1950 rpm

ωf = 1950 rev/min = 1950/60 rad/s

ωf = 32.5 rad/s

The angular acceleration is:

α = Δω / Δt = (32.5 rad/s)  ÷ 5.00

α =  6.50 rad/s^2

To calculate the moment of inertia,

I = (1/2)MR^2

The final speed of the wheel is 1950 rpm, which corresponds to a linear speed of:

v = ωf R = (1950/60 rev/s) ÷ (2π R)

v  = 204.2 R m/s

To calculate the circumference,

C = 41.67 * (2π R)

C = 83.34 π R

The linear distance traveled during this time is:

d = v t = (204.2 R m/s) (55.0 s)

d = 11,231 R m

to calculate the radius of wheels:

83.34 π R = 11,231 R m

R = 42.7 m

V = π R^2 h

V =[tex]3.14 * (0.427 m)^2 *(0.02 m)[/tex]

V = 0.000574 m

The mass is:

M = V ρ = [tex](0.000574 m^3) (7.8 g/cm^3) (1000 cm^3/m^3)[/tex]

M = 4.49 kg

Now we can calculate the torque needed to accelerate the wheel using the formula:

τ = Iα = (1/2)MR^2 α

τ = [tex](1/2) (4.49 kg) (0.427 m)^2 (6.50 rad/s^2)[/tex]

τ = 1.43 Nm

Therefore, we can conclude that the applied torque needed is 1.43 Nm.

To learn more about Torque

https://brainly.com/question/30499052

#SPJ4


Related Questions

A disk of radius R = 7. 52 cm is centered at the origin and lies along the y – z plane. The disk has a surface charge density σ = 5. 88 × 10 − 6 C / m 2. Evaluate the electric field produced by this disk along the x axis at point (P = 1. 01 m, 0. 00 m). The Coulomb force constant k = 1 / ( 4 π ϵ 0 ) = 8. 99 × 10 9 N ⋅ m 2 / C 2

Answers

The electric field produced by the disk at point P along the x-axis is approximately 333.89 N/C.

Since the disk lies in the y-z plane, the electric field produced by the disk will only have an x-component, which can be calculated using the formula for the electric field produced by a charged disk:

E = σ / (2ε₀) * [1 - (z / √(R² + z²))]

At point P(1.01 m, 0.00 m), the distance from the disk along the z-axis is z = 0, so the formula reduces to:

E = σ / (2ε₀) = (5.88 × 10^-6 C/m²) / (2 * 8.85 × 10^-12 F/m) ≈ 333.89 N/C

Therefore, the electric field produced by the disk is 333.89 N/C.

To know more about electric field , here

brainly.com/question/15800304

#SPJ4

what is the average magnitude of the poynting vector 4.50 mi from a radio transmitter broadcasting isotropically (equally in all directions) with an average power of 200 kw?

Answers

The average magnitude of the Poynting vector at a distance of 4.50 miles from the transmitter is approximately 40.8 nanowatts per square meter.

This problem is about finding the average magnitude of the Poynting vector, which is a measure of the energy flow of electromagnetic waves, at a distance of 4.50 miles from an isotropic radio transmitter.

The transmitter broadcasts equally in all directions with an average power of 200 kW. We can use a formula that relates the power density of the transmitter to the Poynting vector. By substituting the given values and using the speed of light as the propagation velocity of electromagnetic waves, we can calculate the Poynting vector.

The average magnitude of the Poynting vector at a distance of 4.50 miles from the transmitter is approximately 40.8 nanowatts per square meter.

Learn more about magnitude:

https://brainly.com/question/30881682

#SPJ4

how can sonar best be used to monitor the hydrosphere

Answers

Sonar can be a useful tool for monitoring the hydrosphere, which includes all of the water on and beneath the Earth's surface.

Sonar works by emitting sound waves that bounce off objects in the water, and then measuring the time it takes for the sound waves to return to the source. By analyzing the echoes, scientists can map the seafloor, measure the depth of the water, and even identify the size and location of marine organisms.

Sonar can also be used to monitor the movements of water masses, including ocean currents, tides, and storm surges. This information is important for understanding global climate patterns and predicting the effects of natural disasters

Learn more about global climate

https://brainly.com/question/27919422

#SPJ4

a certain rifle bullet has a mass of 8.37 g. calculate the de broglie wavelength of the bullet traveling at 1793 miles per hour.

Answers

The de Broglie wavelength of the bullet traveling at 1793 miles per hour is approximately 9.90 x 10^-37 meters.

To calculate the de Broglie wavelength of the rifle bullet, we can use the formula:

λ = h / p

where λ is the de Broglie wavelength, h is the Planck constant (6.626 x 10^-34 J*s), and p is the momentum of the bullet. To find the momentum of the bullet, we can use the formula:

p = m * v

where m is the mass of the bullet (8.37 g = 0.00837 kg) and v is the velocity of the bullet in meters per second. First, we need to convert the velocity of the bullet from miles per hour to meters per second:

1793 miles/hour * 1609.34 meters/mile / 3600 seconds/hour = 800.1 meters/second

Now we can calculate the momentum of the bullet:

p = 0.00837 kg * 800.1 m/s = 6.703 k g m / s

Finally, we can use the momentum to calculate the de Broglie wavelength:

λ = 6.626 x 10^-34 J*s / 6.703 kg m/s = 9.90 x 10^-37 meters

Therefore, the de Broglie wavelength is approximately 9.90 x 10^-37 meters.

For more such questions on De Broglie wavelength.

https://brainly.com/question/11552854#

#SPJ11

3. what are the heat transfer mechanisms involved during heat transfer in a liquid-to-liquid heat exchanger from the hot to the cold fluid?

Answers

The heat transfer mechanisms in a liquid-to-liquid heat exchanger from the hot to the cold fluid include conduction, convection, and radiation. Conduction and convection are the primary mechanisms, while radiation plays a minor role.

The heat transfer mechanisms involved during heat transfer in a liquid-to-liquid heat exchanger from the hot to the cold fluid are conduction, convection, and in some cases, radiation.

1. Conduction: This is the process of heat transfer through direct contact between the hot and cold fluids. The heat moves from the hot fluid to the cold fluid through the solid walls of the heat exchanger.

2. Convection: This mechanism occurs due to the movement of fluids in the heat exchanger. The hot fluid transfers heat to the solid walls of the heat exchanger, and the cold fluid receives the heat from the walls as it flows. The movement of fluids enhances the heat transfer rate.

3. Radiation: Although less significant in liquid-to-liquid heat exchangers, radiation is the transfer of heat through electromagnetic waves. The heat is emitted from the hot fluid and absorbed by the cold fluid without the need for direct contact or fluid movement.

Learn more about heat:

https://brainly.com/question/934320

#SPJ11

particles of various masses, charges, and speeds are injected into a region in which a uniform field and a uniform field are perpendicular to each other. all the particles are initially moving in the same direction. which two conditions must be simultaneously fulfilled for the particles to continue moving in a straight line after entering the region?

Answers

The two conditions that must be simultaneously fulfilled for the particles to continue moving in a straight line after entering the region are:

1. The direction of the initial velocity of the particles must be perpendicular to both the magnetic and electric fields.
2. The Lorentz force experienced by the particles due to the magnetic and electric fields must be equal and opposite to the initial force that caused the particles to move in the first place.

The Lorentz force is given by the equation F = q(E + v x B), where F is the force, q is the charge of the particle, E is the electric field, v is the velocity of the particle, and B is the magnetic field. If the Lorentz force is equal and opposite to the initial force, then the particles will continue to move in a straight line.

which force pairs must be equal because they are action/reaction pairs?multiple select question.the upward normal force on a car and the downward push of the car on the ground.the rightward force of a pull on a box traveling at constant velocity and the leftward friction force.the upward normal force on a book at rest on the table and its downward weight.the rightward force of you pushing on a wall and the leftward force of the wall pushing on you.

Answers

Force pairs that must be equal because they are action/reaction pairs. According to Newton's Third Law of Motion, for every action, there is an equal and opposite reaction. This means that action and reaction forces are always equal in magnitude but opposite in direction.

Some examples of action/reaction force pairs include:
1. When you push a book across a table (action), the book pushes back with an equal force (reaction).
2. When a person jumps off a diving board (action), the diving board exerts an equal and opposite force on the person (reaction).
3. A person walking on the ground pushes against the ground (action), and the ground pushes back with an equal force (reaction).

In all these cases, the action/reaction force pairs are equal and opposite, illustrating Newton's Third Law of Motion.

To know more about Newton's Third Law of Motion:

https://brainly.com/question/29768600

#SPJ11

a hair drier uses 8 a at 114 v. it is used with a transformer in england, where the line voltage is 237 v. what should be the ratio of the turns of the transformer (primary to secondary)?

Answers

To determine the ratio of turns of the transformer, we can use the principle of conservation of power, which states that power in equals power out in an ideal transformer.

The power input to the hair dryer is:

P = VI = (8 A)(114 V) = 912 W

The power output of the transformer should be the same as the input power, so we can use this equation to find the current in the secondary circuit:

P = VI = (I_s)(237 V)

where I_s is the current in the secondary circuit. Solving for I_s, we get:

I_s = P/V_s = (912 W)/(237 V) = 3.85 A

Now we can use the turns ratio equation to find the ratio of the turns in the transformer:

N_p/N_s = V_p/V_s = (114 V)/(237 V)

where N_p and N_s are the number of turns in the primary and secondary coils, respectively. Solving for N_p/N_s, we get:

N_p/N_s = 0.481

Therefore, the ratio of turns in the transformer should be approximately 0.481.

To know more about conservation of power :

https://brainly.com/question/9013890

#SPJ11

a bicycle travels from a to b. half the time it travels with speed 20 km/h, and half the time with the speed 30 km/h. what is the average speed?

Answers

The bicycle travels from a to b. half the time it travels with speed 20 km/h, and half the time with the speed 30 km/h, therefore the average speed of the bicycle is 25 km/h.

To find the average speed of the bicycle, we need to use the formula:

Average Speed = Total Distance / Total Time

Since we don't know the distance between points A and B, we can assume it to be 'd' kilometers.

Let's say the time taken by the bicycle to travel from A to B is 't' hours.

According to the problem statement, the bicycle travels at 20 km/h for half the time and 30 km/h for the other half. This means that it covers the first half of the distance at 20 km/h and the second half at 30 km/h.

Hence, the time taken to cover the first half of the distance is (t/2) hours, and the time taken to cover the second half is also (t/2) hours.

Now, we can calculate the total time taken by the bicycle as follows:

Total Time = (t/2) + (t/2) = t hours

Next, we can calculate the total distance traveled by the bicycle as follows:

Total Distance = Distance Covered in First Half + Distance Covered in Second Half
                = (20 km/h) x (t/2) + (30 km/h) x (t/2)
                = 25t km

Substituting these values in the formula for average speed, we get:

Average Speed = Total Distance / Total Time
                   = 25t km / t hours
                   = 25 km/h

Therefore, the average speed of the bicycle is 25 km/h.

More on speed: https://brainly.com/question/15586792

#SPJ11

given the temperature readings in the topmost tube (in the system diagrammed), which would be reasonable temperatures for points 1 to 5 in the lower tube?

Answers

To help you determine the reasonable temperatures for points 1 to 5 in the lower tube, we'll need to consider the given temperature readings in the topmost tube and the temperature changes in the system.

Let's go through the steps to find the temperatures for each point.
Analyze the temperature readings in the topmost tube.
- Observe and record the temperatures at different points in the topmost tube.

Understand the heat transfer process in the system.
- Consider the direction of heat flow, such as from hot to cold regions.

Determine the temperature differences between the tubes.
- Based on the heat transfer process, estimate the temperature differences between the corresponding points in the topmost and lower tubes.

Calculate the temperatures for points 1 to 5 in the lower tube.
- Subtract the estimated temperature differences from the temperatures of the corresponding points in the topmost tube.

By following these steps, you will be able to find the reasonable temperatures for points 1 to 5 in the lower tube based on the given temperature readings in the topmost tube.

*complete question: Given the temperature readings in a topmost tube, which would be reasonable temperatures for points 1 to 5 in the lower tube?

More on temperature: https://brainly.com/question/26228909

#SPJ11

how fast is moving light that has traveled through transparent glass and exited on the opposite side with respect to the incoming speed?

Answers

The light that has traveled through transparent glass and exited on the opposite side will move at the same speed as it was moving before entering the glass, but it would have traveled slower while inside the glass.

The speed of light changes when it travels through a transparent medium like glass. The speed of light in vacuum or air is approximately 299,792,458 meters per second (often rounded to 3.00 x 10⁸ m/s), but it slows down when it passes through a medium like glass. The amount of slowing down depends on the refractive index of the material, which is a measure of how much the speed of light is reduced as it passes through the material.

For typical glasses, the refractive index is around 1.5, which means that the speed of light is reduced by a factor of about 1.5 when it passes through the glass. So, if the speed of light in vacuum or air is taken as 1, the speed of light in glass would be approximately 2/3 (or 0.67) of its original speed.

When the light exits the glass on the opposite side, it returns to its original speed in air or vacuum. Therefore, the light exits the glass with the same speed it had before it entered the glass, as long as it is not absorbed or scattered by the glass.

Learn more about the refractive index:

https://brainly.com/question/83184

#SPJ11

A wire, of length L = 3. 8 mm, on a circuit board carries a current of I = 2. 54 μA in the j direction. A nearby circuit element generates a magnetic field in the vicinity of the wire of B = Bxi + Byj + Bzk, where Bx = 6. 9 G, By = 2. 6 G, and Bz = 1. 1 G. A) Calculate the i component of the magnetic force Fx, in newtons, exerted on the wire by the magnetic field due to the circuit element.

B) Calculate the k component of the magnetic force Fz, in newtons, exerted on the wire by the magnetic field due to the circuit element.

C) Calculate the magnitude of the magnetic force F, in newtons, exerted on the wire by the magnetic field due to the circuit element

Answers

The i component of the magnetic force on the wire is 1.06 × 10^-13 N. The k component of the magnetic force on the wire is 6.69 × 10^-14 N. The magnitude of the magnetic force on the wire is 1.26 × 10^-13 N.

To calculate the i component of the magnetic force, we use the formula:

F = I * L x B

where I is the current, L is the length of the wire, B is the magnetic field, and x represents the cross product.

The cross product of L and B gives a vector perpendicular to both L and B, which is in the i direction. So we only need to find the magnitude of the cross product and multiply it by I to get Fx.

|L x B| = |L| |B| sinθ

where θ is the angle between L and B. Since L is in the j direction and B has i and k components, we have:

|L x B| = L * Bz = (3.8 × 10^-3 m) * (1.1 × 10^-4 T) = 4.18 × 10^-8 N

Then, Fx = I * |L x B| = (2.54 × 10^-6 A) * (4.18 × 10^-8 N) = 1.06 × 10^-13 N

To calculate the k component of the magnetic force, we use the same formula and take the k component of the cross product:

|L x B|k = |L| |B| sin(π/2) = |L| |B| = (3.8 × 10^-3 m) * (6.9 × 10^-5 T) = 2.63 × 10^-7 N

Then, Fz = I * |L x B|k = (2.54 × 10^-6 A) * (2.63 × 10^-7 N) = 6.69 × 10^-14 N

The magnitude of the magnetic force is given by,

F = sqrt(Fx^2 + Fz^2) = sqrt((1.06 × 10^-13 N)^2 + (6.69 × 10^-14 N)^2) = 1.26 × 10^-13 N

To know more about magnetic force, here

brainly.com/question/3160109

#SPJ4

consider example 3.9 on page 87. suppose that the dog runs at a speed of 7.0 m/s. how far does the dog travel horizontally from the edge of the dock before splashing down?

Answers

The dog travels 2.1 meters horizontally from the edge of the dock before splashing down.

When dog runs at speed 7.0m/s,how far he reached the edge of the dock before splashing down?

We know that the distance the dog travels horizontally before splashing down is equal to the product of the time in the air and the horizontal velocity of the dog.

Using the equation: distance = velocity x time

We can first solve for the time in the air.

The initial vertical velocity of the dog is zero, and we can use the equation:

distance = 1/2 x acceleration x time⁻²

to find the time it takes for the dog to fall from the edge of the dock to the water.

Assuming a gravitational acceleration of 9.8 m/s⁻², we get:

distance = 1/2 x 9.8 m/s⁻² x time⁻²

0.91 meters = 4.9 x time⁻²

time = sqrt(0.91 / 4.9) = 0.3 seconds

Now that we know the time in the air, we can find the horizontal distance traveled by the dog before splashing down.

Using the equation:

distance = velocity x time

where velocity is the horizontal velocity of the dog, which we know is 7.0 m/s, we get:

distance = 7.0 m/s x 0.3 s = 2.1 meters

The dog travels 2.1 meters horizontally from the edge of the dock before splashing down.

Learn more about Speed and splashing down

brainly.com/question/14575052

#SPJ11

5 of 225 of 22 Items
12:41







Question
The basic concept of how a simple motor works is explained by which statement?

Answers

Answer:

The basic concept of how a simple motor works is that you put electricity into it at one end and an axle (metal rod) rotates at the other end giving you the power to drive a machine of some kind. The simple motors you see explained in science books are based on a piece of wire bent into a rectangular loop, which is suspended between the poles of a magnet. In order for a motor to run on AC, it requires two winding magnets that don’t touch. They move the motor through a phenomenon known as induction.

I hope this helps! Let me know if I'm wrong!

Explanation:

earth's strong magnetic field indicates that the core is made of iron because the material in the core would have to be

Answers

Earth's strong magnetic field indicates that its core is made of iron due to several factors.

Firstly, iron is a highly magnetic material that can generate a significant magnetic field when it's in motion. In the Earth's core, the liquid outer core, which consists primarily of molten iron, flows around the solid inner core, also largely composed of iron.

This motion creates a self-sustaining dynamo effect, resulting in the generation of the Earth's magnetic field.

Secondly, the Earth's density distribution supports the presence of iron in the core.

The high density of the core, measured through seismic data, can only be explained if it's composed of heavy elements such as iron, combined with some lighter elements like nickel and sulfur.

In conclusion, the presence of iron in the Earth's core is supported by the strong magnetic field and the density distribution of our planet.

The molten iron in the outer core and the solid iron in the inner core plays a crucial role in generating and maintaining the Earth's magnetic field.

For more such answers on Magnetic Field

https://brainly.com/question/2950693

#SPJ11

if your go-cart has a mass of 500 kg, what force would you have to apply to accelerate the go-cart at 1.5 m/s²?

Answers

You would have to apply a force of 750 Newtons to accelerate the go-cart at 1.5 m/s².

Newton's second law of motion, which says that force is equal to mass times acceleration (F = ma), may be used to determine the amount of force needed to accelerate a go-kart with a mass of 500 kg at 1.5 m/s2.

Calculating the necessary force yields a force of 750 N by multiplying the go-kart's mass (500 kg) by its acceleration (1.5 m/s2).

Therefore, the force required is:

F = m x a

F = 500 kg x 1.5 m/s²

F = 750 N

Therefore, in order to accelerate the go-kart to 1.5 m/s2, you would need to exert a force of 750 Newtons.

Learn more about Newton's second law of motion

https://brainly.com/question/13447525

#SPJ4

A nurse is caring for a client who is in labor and has an epidural anesthesia block. The client's blood pressure is 80/40 mmHg and the fetal heart rate is 140/min. Which of the followign is the priority nursing action?
A. Elevate the client's legs.
B. Monitor vital signs every 5 min.
C. Notify the provider.
D. Place the client in a lateral position.

Answers

The priority nursing action in this scenario would be to notify the provider.

An epidural anesthesia block can cause a drop in blood pressure in the mother, which can in turn affect the fetal heart rate.

A blood pressure reading of 80/40 mmHg is considered low, and can indicate hypotension.

Hypotension can lead to decreased blood flow to the placenta and fetus, which can result in fetal distress.

Therefore, it is important for the provider to be notified of the low blood pressure reading and fetal heart rate, so that appropriate interventions can be implemented to address the situation.

The provider may choose to adjust the dosage of the epidural anesthesia, administer IV fluids, or consider other measures to stabilize the mother's blood pressure and fetal well-being.

While monitoring vital signs and positioning the client can also be important interventions, they are not the priority in this scenario.

Elevating the client's legs may help to increase blood flow to the heart and improve blood pressure, and placing the client in a lateral position may also help to improve blood flow and prevent supine hypotensive syndrome.

These actions should be taken after the provider has been notified and appropriate interventions have been implemented.

To know more about  epidural anesthesia visit link :

https://brainly.com/question/14205576

#SPJ11

GUYS SOMEONE PLEASE HELP. i will give brainliest!!


You and your friends are driving home from the cottage and you want to bring back a camping trailer your parents left there. Before leaving, you have a troubling thought. What if the hitch on your car is not strong enough to pull this trailer? Your car has a Class I hitch which is rated with a pulling strength of 2000 lbs. On the side of the trailer a sticker gives the trailer's weight as 3600 lbs. You know from your driver's manual that your car has a weight of 1800 lbs. The real challenge will be getting on to the highway. The ramp to the highway begins with a stop sign and is about 140 m long on level ground. The highway traffic travels at 100 km/h. Can you safely merge into the flow of traffic? You may assume friction effects are very small.

Answers

You should not attempt to tow the camping trailer with your current car and hitch setup, as the hitch is not strong enough to handle the weight of the trailer.

How to solve

A Class I hitch is rated for a pulling strength of 2000 lbs, while the trailer's weight is 3600 lbs.

This means that the hitch is not strong enough to safely pull the trailer, which poses a significant safety risk.

However, let's assume for a moment that the hitch was strong enough and evaluate if you could safely merge into the flow of traffic.

To assess whether you can safely merge, we need to determine if your car can accelerate to the highway speed of 100 km/h (27.8 m/s) within the 140 m long ramp.

We can use the following kinematic equation to solve for acceleration:

v^2 = u^2 + 2as

Where:

v is the final velocity (100 km/h or 27.8 m/s)

u is the initial velocity (0 m/s, as you start from a stop sign)

a is the acceleration

s is the distance (140 m)

Rearranging the equation to solve for acceleration:

a = (v^2 - u^2) / (2s)

a = (27.8^2 - 0^2) / (2 * 140)

a ≈ 2.77 m/s²

Now, we need to calculate the force required to achieve this acceleration. We'll use Newton's second law:

F = m * a

The total mass of the car and the trailer is 1800 lbs (car) + 3600 lbs (trailer) = 5400 lbs. To convert this to kilograms, we multiply by 0.453592 (1 lb = 0.453592 kg):

5400 lbs * 0.453592 kg/lb ≈ 2449 kg

Now we can calculate the force required:

F = 2449 kg * 2.77 m/s² ≈ 6781 N

Now let's compare this force to the pulling strength of the hitch. The hitch can handle 2000 lbs, which is equivalent to:

2000 lbs * 4.44822 N/lb ≈ 8896 N

In this scenario, the required force to achieve the necessary acceleration (6781 N) is less than the pulling strength of the hitch (8896 N).

However, as mentioned earlier, the hitch is not strong enough to safely pull the trailer due to the trailer's weight exceeding the hitch's rated capacity.

In conclusion, you should not attempt to tow the camping trailer with your current car and hitch setup, as the hitch is not strong enough to handle the weight of the trailer.

Even if the hitch was strong enough, towing a heavy trailer would still pose other challenges and safety risks, such as stopping distance, stability, and maneuverability.

Read more about acceleration here:

https://brainly.com/question/460763

#SPJ1

A 500 N force is applied to a 25m/s2 object. The mass of the object is ____.

A. ) 20kg
B. ) 20 m/s
C. ) 12,500 m/s
D. ) 12,500 kg​

Answers

A 500 N force is applied to a 25m/s2 object. The mass of the object is 20kg. The correct answer is option: A.

The force applied to an object is related to its mass and acceleration through the equation:

F = ma,

where F is the force, m is the mass, and a is the acceleration. Rearranging this equation, we get:

m = F/a.

In the given problem, a force of 500 N is applied to the object, and its acceleration is 25 m/s^2.

Substituting these values in the formula, we get :

m = 500 N / 25 m/s^2 = 20 kg.

Therefore, the mass of the object is 20 kg, which is option A.

To know more about acceleration, here

brainly.com/question/12550364

#SPJ4

Students set up an experiment to test the effect of gravity on different objects. They fill balloons with different amounts of water and drop them from the third-floor window of their school. They time how long each balloon takes to reach the ground. They repeat the process three times. What is the experiment’s variable?
answers
number of times the drops were repeated


times that the balloons take to drop

mass of the balloons


height of the window

Answers

The number of times the drops were repeated and the mass of the balloons may be controlled variables that are kept constant during the experiment to isolate the effect of the height of the window on the time it takes for the balloons to reach the ground.

What is Isolated System?

An isolated system is a concept in thermodynamics and physics that refers to a system that does not exchange energy or matter with its surroundings. It is a closed system with respect to both energy and matter, meaning that no energy or matter is transferred across its boundaries. In an isolated system, the total energy, including both kinetic and potential energy, remains constant over time. This is known as the principle of conservation of energy.

The experiment's variable in this case is the height of the window from which the balloons are dropped. The students are specifically testing the effect of gravity, which is influenced by the height from which an object falls. By varying the height of the window, the students are manipulating the independent variable (height of the window) to observe the effect on the dependent variable (time it takes for the balloons to reach the ground).

Learn more about Isolated System from the given link

https://brainly.com/question/2846657

#SPJ1

a student designed a pump cycle, in which 200 kj of heat removed from a reservoir at a temperature of 240 kelvin is rejected into another reservoir at a temperature of 400 k. the heat pump requires 100 kj of work. is the designated heat pump cycle reversible?

Answers

No, the heat pump cycle is not reversible.

The reversible process is an ideal process in which no energy is lost to the surroundings, and the system returns to its initial state when the process is reversed. In the given pump cycle, heat is transferred from a low-temperature reservoir to a high-temperature reservoir with the help of work input.

This process violates the second law of thermodynamics, which states that heat cannot flow spontaneously from a cold body to a hot body without any external work input. Therefore, the given pump cycle cannot be reversible.

Additionally, the efficiency of a reversible cycle is always greater than the efficiency of an irreversible cycle. In this case, the efficiency of the heat pump cycle can be calculated using the equation:

efficiency = (heat transferred - work input) / heat transferred

Substituting the given values, we get:

efficiency = (200 - 100) / 200 = 0.5 or 50%

This efficiency is less than the maximum theoretical efficiency that a reversible cycle could achieve. Therefore, the pump cycle is irreversible.

To learn more about heat pump cycle, here

https://brainly.com/question/12937347

#SPJ4

-The diagram above represents two identical pulses approaching each other in a uniform medium.
As the pulses meet and are superposed, the maximum displacement of the medium is?
- 6 cm
0 cm
6 cm
3 cm

Answers

On the basis of constructive interference, when two identical pulses go together in a homogeneous medium and the pulses meet and overlap, the maximum displacement of the medium is equal to 6 cm. So, option (c) is right.

Wave interference is the phenomenon where two waves meet while propagating in the same medium. Constructive interference is a form of interference. It takes place when two pulses meet each other and form a larger pulse. The amplitude of the resulting larger pulse is the sum of the amplitudes of the first two pulses.

This could be done at meetings of two crests or troughs. It can appear anywhere between the two interfering waves are displaced upward. But the two negative effects are also seen when they move downwards.This is shown in the image above. Since we have two identical wave pluses, they are close together in a uniform medium.

Now, Amplitude of pluse A = 3 cm

Amplitude of pluse B = 3 cm

So, the pulses meet and are superposed, the amplitude or maximum displacement of the medium is sum of amplitudes of pluses, that is 3cm + 3 cm = 6 cm. Therefore, the displacement value should be 6 cm.

For more information about Constructive interference, visit :

https://brainly.com/question/11808546

#SPJ4

Complete question:

-The diagram above represents two identical pulses approaching each other in a uniform medium.

As the pulses meet and are superposed, the maximum displacement of the medium is?

a) - 6 cm

b) 0 cm

c)6 cm

d) 3 cm

According to constructive interference, the maximum displacement of the medium when two identical pulses collide and overlap in a homogeneous medium is equal to 6 cm. Option (c) is correct, therefore.

When two waves collide while moving across the same medium, the result is known as wave interference. Interference includes constructive interference. It happens when two pulses collide and create a bigger pulse. The initial two pulses' amplitudes are added to create the larger, resultant pulse.

This could be carried out when two crests or troughs meet. It could show up anywhere where the two competing waves are displaced upward. But when they descend, the two adverse impacts are also evident.In the picture up top, this is evident. In a homogeneous medium, they are close together since we have two identical wave pluses.

The current amplitude of pluse A is 3 cm.

The pluse B's amplitude is 3 cm.

The sum of the plus amplitudes of the pulses, or 3 cm + 3 cm = 6 cm, is the amplitude or maximum displacement of the medium as the pulses collide and superimpose. So, 6 cm should be the displacement value.

learn more about Constructive interference here:

https://brainly.com/question/16098226

#SPJ11

what is the amount of work done, in joules, to lift a basket weighing 88 newtons a total of 3 meters?

Answers

The amount of work done to lift a basket weighing 88 newtons a total of 3 meters can be calculated using the formula:

Work = Force x Distance x Cos(theta)

where Force is the weight of the basket, Distance is the height it is lifted, and theta is the angle between the force and the direction of motion (in this case, theta is 0 since the force is acting vertically upwards and the basket is also moving vertically upwards).

So, the amount of work done is:

Work = 88 N x 3 m x Cos(0)

Since Cos(0) = 1, the equation simplifies to:

Work = 88 N x 3 m x 1

Work = 264 Joules

Therefore, the amount of work done to lift the basket weighing 88 newtons a total of 3 meters is 264 Joules.

To know more about  work done :

https://brainly.com/question/31428590

#SPJ11

a ball is thrown across the street. During its flight, the ball's speed is lowest at?
A. The beginning of its flight.
B. The end of its flight.
C. The highest point of its flight.
D. The speed is constant throughout the flight.

Answers

A ball is thrown across the street. During its flight, the ball's speed is lowest at the highest point of its flight. The correct answer is C.

The speed of the ball is lowest at the highest point of its flight. This is because at the highest point, the ball has reached its maximum height, and therefore, its potential energy is at its highest. As the ball continues to move, it begins to fall due to gravity, and its potential energy is converted to kinetic energy. However, since the ball is moving upwards at this point, its kinetic energy is decreasing, causing its speed to decrease until it reaches zero at the highest point.

As the ball falls back down to the ground, its potential energy is converted back to kinetic energy, causing its speed to increase again until it reaches its maximum at the end of its flight. Therefore, the correct option is C, the highest point of its flight.

To know more about speed, here

brainly.com/question/28224010

#SPJ4

at what rate is energy being dissipated as joule heat in the resistor after an elapsed time equal to the time constant of the circuit? answer in units of w.

Answers

The rate at which energy is being dissipated as Joule heat in a resistor can be calculated using the formula [tex]P=I^2R[/tex], and after an elapsed time equal to the time constant of the circuit, the power dissipated by the resistor can be given by [tex]P=0.4I^2 \times R[/tex].

The rate at which energy is being dissipated as Joule heat in a resistor is equal to the power dissipated by the resistor, which can be calculated using the formula [tex]P=0.4I^2\times R[/tex], where P is the power dissipated in watts, I is the current flowing through the resistor in amperes, and R is the resistance of the resistor in ohms.

After an elapsed time equal to the time constant of the circuit, the current flowing through the circuit will have reached approximately 63.2% of its maximum value. This is because the time constant of a circuit is equal to the product of the resistance and the capacitance, and it represents the amount of time it takes for the current in the circuit to reach 63.2% of its maximum value.

At this point, the power dissipated by the resistor can be calculated using the formula [tex]P=0.4I^2 \times R[/tex]. Since the current is 63.2% of its maximum value, we can substitute 0.632I for I in the formula. Therefore, the power dissipated by the resistor at this point is:

P = (0.632*I)^2 * R

= [tex]P=0.4I^2 \times R[/tex]

where I is the maximum current that will flow through the circuit, and R is the resistance of the resistor in ohms.

The rate at which energy is being dissipated as Joule heat in the resistor is equal to the power dissipated by the resistor, which is given by the above equation. Therefore, the answer to the question is:

Rate of energy dissipation = [tex]P=0.4I^2 \times R[/tex] watts

where I is the maximum current that will flow through the circuit, and R is the resistance of the resistor in ohms.

To learn more about resistors

https://brainly.com/question/24297401

#SPJ4

Please help fast I don’t understand

Answers

The pickup truck with changing velocity can accelerate faster than the other pickup trucks.

option A.

What causes a change in velocity of a pickup truck?

A change in velocity of a pickup truck can be caused by several factors, including:

Acceleration:  Acceleration is the rate of change of velocity over time, and it can result in an increase in velocity.

External forces: Other external forces, such as air resistance or friction from the road surface, can also cause a change in velocity of a pickup truck.

It's important to note that according to Newton's first law of motion, an object will maintain its velocity unless acted upon by an external force.

Therefore, any change in velocity of a pickup truck must be caused by the application of an external force.

Learn more about acceleration here: https://brainly.com/question/14344386

#SPJ1

In Young's experiment, light from a red laser (wavelength 700 nm) is sent through two

slit. At the same time, monochromatic visible light with another wavelength passes through the same

apparatus. As a result, most of the pattern that appears on the screen is a mixture of two colors; however, the

center of the third bright fringe of the red light appears pure red. What are the possible wavelengths of the

second type of visible light?

Answers

In Young's experiment, the pattern that appears on the screen is a result of interference between two sets of waves that are diffracted through two slits.

The location of the bright fringes in the pattern depends on the wavelength of the light used. This means that the path difference between the waves that interfere to produce this fringe is an integer multiple of the red light's wavelength (700 nm).

ΔL = mλ_red = nλ_other

where ΔL is the path difference between the waves, m and n are integers, λ_red is the wavelength of the red light, and λ_other is the wavelength of the second type of visible light.

Solving for λ_other, we get:

λ_other = (m/n) λ_red.

To know more about Young's experiment, here

brainly.com/question/30452257

#SPJ4

what are the differences between the hubble space telescope and the james webb telescope?

Answers

Answer:

Their missions are different - Hubble Telescope's goal is to capture distant stars and galaxies while the James Webb telescope was always meant for long-term exposure and deep space capturingThe Hubble telescope specializes in ultraviolet wavelength - its infrared technology enables it to capture more images from older galaxies.The james webb telescope has a more profound infrared vision - James Webb has been significantly front-loaded with infrared technology to capture more light and a better span of deep space.

calculate the current flowing through the heater and determine how much power the heater will provide

Answers

In the below given conditions the current flowing through the heater would be 12 amps and power provided by the heater would be 1440 watts.

To calculate the current flowing through the heater and determine the power it will provide, we need to know the voltage and resistance of the heater.

Let's assume that the voltage is 120V and the resistance is 10 ohms.

Using Ohm's law, we can calculate the current as I = V/R, which gives us 12 amps.

To determine the power provided by the heater, we can use the formula P = VI, where P is the power, V is the voltage and I is the current.

Substituting the values, we get

P = 120V x 12A = 1440 watts.

Therefore, the heater will provide 1440 watts of power and the current flowing through it will be 12 amps.

It is important to note that these calculations are based on the assumptions made about the voltage and resistance of the heater. Actual measurements may vary and should be taken for accurate results.

For more such answers on Current and power

https://brainly.com/question/19266852

#SPJ11

a 3.0 m long rigid beam with a mass of 100 kg is supported at each end. an 80 kg student stands 2.0 m from support 1. how much upward force does each support exert on the beam?

Answers

Answer:

[tex]752.1\; {\rm N}[/tex] from support [tex]\texttt{1}[/tex] ([tex]2.0\; {\rm m}[/tex] from the student.)

[tex]1013.7\; {\rm N}[/tex] from support [tex]\texttt{2}[/tex] ([tex]1.0\; {\rm m}[/tex] from the student.)

(Assuming that [tex]g = 9.81\; {\rm N\cdot kg^{-1}}[/tex], the beam is level with negligible height, and that the density of the beam is uniform.)

Explanation:

Weight of the beam: [tex](100\; {\rm kg})\, (9.81\; {\rm N\cdot kg^{-1}}) = 981\; {\rm N}[/tex].

Weight of the student: [tex](80\; {\rm kg})\, (9.81\; {\rm N\cdot kg^{-1}}) = 784.8\; {\rm N}[/tex].

Assuming that the beam is uniform. The center of mass of the beam will be [tex](1/2)\, (3.0\; {\rm m}) = 1.5\; {\rm m}[/tex] away from each support.

Consider support [tex]\texttt{1}[/tex] as the fulcrum:

For support [tex]\texttt{2}[/tex] (with an upward force of [tex]N_{\texttt{2}}[/tex]), the lever arm is [tex]3.0\; {\rm m}[/tex].For the center of mass of the beam ([tex]981\; {\rm N}[/tex]), the lever arm is [tex]1.5\; {\rm m}[/tex].For the weight of the student ([tex]784.8\; {\rm N}[/tex]), the lever arm is [tex]2.0\; {\rm m}[/tex].

Hence:

[tex]\begin{aligned}N_{\texttt{2}}\, (3.0) = (981)\, (1.5) + (784.8) \, (2.0) \end{aligned}[/tex].

[tex]\begin{aligned}N_{\texttt{2}} &= \frac{(981)\, (1.5) + (784.8) \, (2.0)}{3.0} \; {\rm N} = 1013.7\; {\rm N}\end{aligned}[/tex].

In other words, support [tex]\texttt{2}[/tex] would exert an upward force of [tex]1013.7\; {\rm N}[/tex] on the beam.

Similarly, consider support [tex]\texttt{2}[/tex] as the fulcrum:

For support [tex]\texttt{1}[/tex] (with an upward force of [tex]N_{\texttt{1}}[/tex]), the lever arm is [tex]3.0\; {\rm m}[/tex].For the center of mass of the beam ([tex]981\; {\rm N}[/tex]), the lever arm is [tex]1.5\; {\rm m}[/tex].For the weight of the student ([tex]784.8\; {\rm N}[/tex]), the lever arm is [tex](3.0 - 2.0)\; {\rm m} = 1.0\; {\rm m}[/tex].

Hence:

[tex]\begin{aligned}N_{\texttt{1}}\, (3.0) = (981)\, (1.5) + (784.8) \, (1.0) \end{aligned}[/tex].

[tex]\begin{aligned}N_{\texttt{1}} &= \frac{(981)\, (1.5) + (784.8) \, (1.0)}{3.0} \; {\rm N} =752.1\; {\rm N}\end{aligned}[/tex].

In other words, support [tex]\texttt{1}[/tex] would exert an upward force of [tex]752.1\; {\rm N}[/tex] on the beam.

Other Questions
Find a healthcare organizations description of how it utilizes big data. Review their description of this usage: For what purpose? Who performs the actual analysis? Can you tell whether the analysis is done internally or externally? Are the results current? Are the results useful in some way, and is that usefulness described? amnesia can provide insight into the role of memory in our everyday life. for example, if h. m. was having a conversation with a friend and noticed the friend looking off in the distance and smiling, he was most likely to Alarmed at heightened European presence in Africa and exploitation of labor, some Africans began to call for what means to defend further encroachment?A. Resistance through armed struggleB. Diplomatic negotiations with European powersC. Integration with European societiesD. Emigration to other continentsE. Cultural assimilation to European norms and values what is a possible set of quantum numbers m, l, ml, ms for the electron configuration of cobalt g an example of management by exception occurs when a manager investigates a large variance in a performance report to assign responsibility. question content area bottom part 1 true false Tu ______en la cafeteria de la universidad (comer) carly donated inventory (ordinary income property) to a church. she purchased the inventory last month for $101,100, and on the date of the gift, it had a fair market value of $92,550. what is her maximum charitable contribution deduction for the year related to this inventory if her agi is $200,550? 12. Summarize Occupational Safety and Health Administration (OSHA) guidelines for parenteral administration of medications. 50 POINTS!!! Re write the equation by completing the square x^2- 6x - 16 = 0 the data sheet for the transistor reports that , , and . we bias the transistor such that , and . suppose what is the value of the voltage ? plssss helppppppppppppppp What type of depreciation is considered incurable? A. Economic B. Functional C. PhysicalD. Market The contents of soft drink bottles are normally distributed with a mean of 15 ounces and a standard deviation of 2 ounce. The contents of soft drink bottles are normally distributed with a mean of 15 ounces and a standard deviation of 2 ounce. A) Find the probability that a randomly selected bottle will contain less than 20 ounces of soft drink? b) Find the probability that a randomly selected bottle will contain between 12 and 18 ounces? If an airport decides to expand by building an additional passenger terminal, and in doing so it lowers its average cost per airplane landing, it was previously operating at A. more than minimum efficient scale. B. less than minimum efficient scale. C. minimum capacity. D. minimum efficient scale. In the early twentieth century, proponents of the Second Viennese School of musical composition (including Arnold Schnberg, Anton Webern and Alban Berg) devised the twelve-tone technique, which utilized a tone row consisting of all 12 pitches from the chromatic scale in any order, but with not pitches repeated in the row. Disregarding rhythm and octave changes, how many tone rows are possible? he integrity of this muscle is critical for support of the pelvic viscera. the above figure represents a plastic dish containing a semisolid nutrient medium (blue) and several bacterial colonies growing on the surface (yellow). the plate was inoculated with exactly 0.1 ml of sample from a pond that is suspected to be contaminated with high levels of fecal coliform bacteria from a nearby hog farm. based on this information, what can you conclude about the number of coliform bacteria per millileter of pond water, assuming the medium facilitates coliform bacteria growth? The previous questions states and asks: "A stock price (which pays no dividends) is $50 and the strike price of a two year European put option is $55. The risk-free rate is 3% (continuously compounded). What is the lower bound for the option such that there are arbitrage opportunities if the price is below the lower bound and no arbitrage opportunities if it is above the lower bound? Please enter your answer rounded to two decimal places with no dollar sign."If this were an American option instead of a European one, what would be the option's lower price bound? (i.e., the minimum price to eliminate arbitrage opportunities). a characteristic of much byzantine architecture is a clear preference for best practices in outsourcing project work include all the following except question 14 options: well-defined requirements and procedures. training and team-building activities. well-established conflict management processes. frequent reviews and status updates. short-term, no-pressure outsourcing relationships.