Answer:
wavelength, λ = 486.6 nm
frequency, f = 6.16 * 10¹⁴ Hz
Explanation:
a. Wavelength
Using the wavelength equation; 1/λ = (1/hc) * 2.18 * 10⁻¹⁸ J * (1/nf² - 1/ni²)
Where nf is the final energy level; ni is the initial energy level; h is Planck's constant = 6.63 * 10⁻³⁴ J.s; c is velocity of light = 3 * 10⁸ m/s
1/λ = 1/(6.63 * 10⁻³⁴ J.s * 3 * 10⁸ m/s) * 2.18 * 10⁻¹⁸ J * (1/2² - 1/4²)
1/λ = 2.055 * 10⁶ m
λ = 4.866 * 10⁻⁷ m
wavelength, λ = 486.6 nm
b. Frequency
Using f = c/λ
f = (3 * 10⁸ m/s) / 4.866 * 10⁻⁷ m
frequency, f = 6.16 * 10¹⁴ Hz
Convert the following measurement
Answer:
6.9 Kg/mol•dL
Explanation:
To convert 6.9×10⁴ g/mol•L to kg/mol•dL,
First, we shall convert to kg/mol•L.
This can be achieved by doing the following:
Recall: 1 g = 1×10¯³ Kg
1 g/mol•L = 1×10¯³ Kg/mol•L.
Therefore,
6.9×10⁴ g/mol•L = 6.9×10⁴× 1×10¯³
6.9×10⁴ g/mol•L = 69 Kg/mol•L
Finally, we shall convert 69 Kg/mol•L to Kg/mol•dL.
This is illustrated below:
Recall: 1 L = 10 dL
1 Kg/mol•L = 1×10¯¹ Kg/mol•dL
Therefore,
69 Kg/mol•L = 69 × 1×10¯¹
69 Kg/mol•L = 6.9 Kg/mol•dL
Therefore, 6.9×10⁴ g/mol•L is equivalent to 6.9 Kg/mol•dL.
1. In this experiment, the procedure instructs you to dissolve solid potassium hydrogen tartrate (KHT) in two different solvents. What are these two solvents? (2 pts)
Answer:
Water
Explanation:
Solid potassium hydrogen tartrates (KHT) is soluble in water. This is especially at room temperature.
The solvent for KHT is water.
Compare strontium with rubidium in terms of the following properties:
a. Atomic radius, number of valence electrons, ionization energy.
b. Strontium is smaller than rubidium.
c. Rubidium is smaller than strontium.
d. Strontium has more valence electrons.
e. Rubidium has more valence electrons.
f. Strontium has a larger ionization energy.
g. Rubidium has a larger ionization energy.
Answer:
Strontium is smaller
Strontium has the higher ionization energy
Strontium has more valence electrons
Explanation:
It must be understood that both elements belong to the same period i.e the same horizontal band of the periodic table
While Rubidium is an alkali metal(group 1) while Strontium is an alkali earth metal(group 2)
Since they are in the same period, periodic trends would be useful in evaluating their properties
In terms of atomic radius, rubidium is larger meaning it has a bigger atomic size
Generally, across the periodic table, atomic radius is expected to decrease and thus Rubidium which is leftmost is expected to have the higher atomic radius
Since strontium belongs to group 2 of the periodic table, it has 2 valence electrons which is more than the single valence electron that rubidium which is in group 1 has
In terms of ionization energy, the atom with the higher number of valence electrons will have the higher ionization energy which is strontium in this case
Zn + 2 HCl --> H2 + ZnCl2 If 1.70 g of Zn are reacted, how many grams of ZnCl2 can be created? Show work and process and I will give brainliest
Explanation:
first find the the number of moles of of zinc .
as the number of moles of zinc and ZnCl2 is same we can calculate the mass of ZnCl2.
Content attribution
QUESTION 2 • 1 POINT
Which anion would bond with K+ in a 1: 1 ratio to form a neutral ionic compound?
The given question is incomplete. The complete question is :
Which anion would bond with K+ in a 1: 1 ratio to form a neutral ionic compound?
a) [tex]O^{2-}[/tex]
b) [tex]F^{-}[/tex]
c) [tex]N^{3-}[/tex]
d) [tex]S^{2-}[/tex]
Answer: b) [tex]F^{-}[/tex]
Explanation:
For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here potassium is having an oxidation state of +1 called as cation and thus is an anion must have an oxidation state of -1 if they have to combine in 1: 1 ratio to give neutral ionic compound.
Thus the anion has to be [tex]F^-[/tex] which combines with [tex]K^+[/tex] in 1: 1 ratio to give [tex]KF[/tex]
Which functional group does the molecule below have?
A. Ether
B. Ester
C. Hydroxyl
D. Amino
Answer:
Hydroxyl
Explanation:
A hydroxyl group is a functional group that attaches to some molecules containing an oxygen and hydrogen atom, bonded together. Also spelled hydroxy, this functional group provides important functions to both alcohols and carboxylic acids.
The functional groups are the part of the organic chemistry that confers the characteristic feature of a molecule. The molecule has a hydroxyl group in its structure. Thus, option C is correct.
What are hydroxyl functional groups?Hydroxyl functional groups are the atoms or molecules that provide a distinctive property to a compound. It has a chemical formula of -OH that has oxygen covalently bonded to the hydrogen atom.
The hydroxyl group is called the alcohol group that is seen in methanol, ethanol, propanol, etc. The presence of hydrogen allows the compound to form a water bond with other molecules and makes them soluble and polar.
Therefore, option C. the molecule has a hydroxyl or alcoholic functional group attached to its carbon atom.
Learn more about the hydroxyl functional group here:
https://brainly.com/question/4682253
#SPJ5
A 45.0 mL sample of 0.020 M acetic acid (HC2H3O2) is titrated with 0.020 M NaOH.? Determine the pH of the solution after adding 35.0 mL of any NaOH. (Ka of acetic acid is 1.8 x 10-5) HC2H3O2 (aq) + NaOH (aq) D NaC2H3O2(aq) + H2O (l) (Hint: Calculate new concentration and ICE table)
Answer:
Explanation:
CH₃COOH + NaOH = CH₃COONa + H₂O .
.02M
CH₃COOH = CH₃COO⁻ + H⁺
C xC xC
Ka = xC . xC / C = x² C
1.8 x 10⁻⁵ = x² . .02
x² = 9 x 10⁻⁴
x = 3 x 10⁻²
= .03
concentration of H⁺ = xC = .03 . .02
= 6 x 10⁻⁴ M , volume = 45 x 10⁻³ L
moles of H⁺ = 6 X 10⁻⁴ x 45 x 10⁻³
= 270 x 10⁻⁷ moles
= 2.7 x 10⁻⁵ moles
concentration of NaOH = .0200 M , volume = 35 x 10⁻³ L
moles of Na OH = 2 X 10⁻² x 35 x 10⁻³
= 70 x 10⁻⁵ moles
=
NaOH is a strong base so it will dissociate fully .
there will be neutralisation reaction between the two .
Net NaOH remaining = (70 - 2.7 ) x 10⁻⁵ moles
= 67.3 x 10⁻⁵ moles of NaOH
Total volume = 45 + 35 = 80 x 10⁻³
concentration of NaOH after neutralisation.= 67.3 x 10⁻⁵ / 80 x 10⁻³ moles / L
= 8.4125 x 10⁻³ moles / L
OH⁻ = 8.4125 x 10⁻³
H⁺ = 10⁻¹⁴ / 8.4125 x 10⁻³
= 1.1887 x 10⁻¹²
pH = - log ( 1.1887 x 10⁻¹² )
= 12 - log 1.1887
= 12 - .075
= 11.925 .
What is an example of a molecular compound
Answer:
Molecular compounds are inorganic compounds that take the form of discrete (covalent) molecules. Examples include such familiar substances as water (H2O) and carbon dioxide (CO2).
Calculate the maximum volume in mL of 0.18 M HCl that a tablet containing 340 mg Al(OH)3 and 516 mg Mg(OH)2 would be expected to neutralize. Assume complete neutralization.
Answer:
171 mL of HCl
Explanation:
The first thing we want to do is consider the reaction between Al(OH)3 and water - as that is the expected reaction that is taking place,
Al(OH)3 + 3HCl → AlCl3 + 3H2O
Knowing this, let's identify the mass of Al(OH)3. Aluminum = 27 g / mol, Oxygen( 3 ) = 16 [tex]*[/tex] 3 = 48, Hydrogen ( 3 ) = 1 [tex]*[/tex] 3 = 3 - 27 + 48 + 3 = 78 g / mol. This value is approximated however ( 78 g / mol ), as the molar mass of each substance is rounded as well. Another key thing we need to do here is to convert 340 mg → grams, considering that that unit is a necessity with respect to moles, as you might know - 340 mg = 0.340 g.
Now we can calculate how much moles of HCl will be present in solution, provided we have sufficient information for that,
(0.340 g Al(OH)3) / (78.0036 g / mol Al(OH)3) [tex]*[/tex] (3 mol HCl / 1 mol Al(OH)3)
⇒ (.004358773185 g^2 / mol Al(OH)3) [tex]*[/tex] (3 HCl / Al(OH)3 )
⇒ .01307632 mol HCl
We can apply this same concept on the reaction of Mg(OH)2 and water, receiving the number of moles of HCl when that takes place. Then we can add the two ( moles of HCl ) and divide by the value " 0.18 mol / L " given to us.
" Mg(OH)2 + 2HCl → MgCl2 + 2H2O "
Molar mass of Mg(OH)2 = 58.3197 g / mol,
516 mg = 0.516 g
(0.516 g Mg(OH)2) / (58.3197 g / mol Mg(OH)2) [tex]*[/tex] (2 mol HCl / 1 mol Mg(OH)2)
= .017695564 mol HCL
___________
( .01307632 + .017695564 ) / ( 0.18 M HCl )
= 0.170954911 L
= 171 mL of HCl
A compound containing only C, H, and O, was extracted from the bark of the sassafras tree. The combustion of 32.3 mg produced 87.7 mg of CO2 and 18.0 mg of H2O. The molar mass of the compound was 162 g/mol. Determine its empirical and molecular formulas.
Answer:
Empirical formula: C₅H₅O
Molecular formula: C₁₀H₁₀O₂
Explanation:
When a compound containing C, H and O elements is combusted, the general reaction is:
CₐHₓOₙ + O₂ → a CO₂ + X/2 H₂O
Thus, you can find moles of carbon and hydrogen knowing moles of CO₂ and H₂O that are produced.
Moles CO₂ = Moles C = 0.0877g × (1mol / 44g) =
2.0x10⁻³ moles of CO₂ = moles C
Moles H₂O = 1/2 Moles H = 0.018g × (1mol / 18g) =
1x10⁻³ moles of H₂O; 2.0x10⁻³ moles H
The mass of the moles of C and H are:
2x10⁻³ moles C ₓ (12g / mol) = 0.024g C
2x10⁻³ moles H ₓ (1g / mol) = 0.002g H
Thus, mass of Oxygen is 32.3mg - 24mg C - 2mg O = 6.3mg O
Moles are:
0.0063g O ₓ (1mol / 16g) = 4x10⁻⁴ moles O
Empirical formula is the simplest ratio of atoms in a compound. Dividing each amount of moles for each atom in the 4x10⁻⁴ moles of oxygen (The lower moles), you will obtain:
C: 2.0x10⁻³ / 4x10⁻⁴ = 5
H: 2.0x10⁻³ / 4x10⁻⁴ = 5
O: 4x10⁻⁴ / 4x10⁻⁴ = 1
Thus, empirical formula is:
C₅H₅OThe molar mass of the empirical formula is:
12×5 + 1×5 + 16×1 = 81g/mol
As molar mass of the compound is 162g/mol, molecular formula is twice empirical formula:
C₁₀H₁₀O₂A strontium hydroxide solution is prepared by dissolving 10.60 gg of Sr(OH)2Sr(OH)2 in water to make 47.00 mLmL of solution.What is the molarity of this solution? Express your answer to four significant figures and include the appropriate units.
Answer:
Approximately [tex]1.854\; \rm mol\cdot L^{-1}[/tex].
Explanation:
Note that both figures in the question come with four significant figures. Therefore, the answer should also be rounded to four significant figures. Intermediate results should have more significant figures than that.
Formula mass of strontium hydroxideLook up the relative atomic mass of [tex]\rm Sr[/tex], [tex]\rm O[/tex], and [tex]\rm H[/tex] on a modern periodic table. Keep at least four significant figures in each of these atomic mass data.
[tex]\rm Sr[/tex]: [tex]87.62[/tex].[tex]\rm O[/tex]: [tex]15.999[/tex].[tex]\rm H[/tex]: [tex]1.008[/tex].Calculate the formula mass of [tex]\rm Sr(OH)_2[/tex]:
[tex]M\left(\rm Sr(OH)_2\right) = 87.62 + 2\times (15.999 + 1.008) = 121.634\; \rm g \cdot mol^{-1}[/tex].
Number of moles of strontium hydroxide in the solution[tex]M\left(\rm Sr(OH)_2\right) =121.634\; \rm g \cdot mol^{-1}[/tex] means that each mole of [tex]\rm Sr(OH)_2[/tex] formula units have a mass of [tex]121.634\; \rm g[/tex].
The question states that there are [tex]10.60\; \rm g[/tex] of [tex]\rm Sr(OH)_2[/tex] in this solution.
How many moles of [tex]\rm Sr(OH)_2[/tex] formula units would that be?
[tex]\begin{aligned}n\left(\rm Sr(OH)_2\right) &= \frac{m\left(\rm Sr(OH)_2\right)}{M\left(\rm Sr(OH)_2\right)}\\ &= \frac{10.60\; \rm g}{121.634\; \rm g \cdot mol^{-1}} \approx 8.71467\times 10^{-2}\; \rm mol\end{aligned}[/tex].
Molarity of this strontium hydroxide solutionThere are [tex]8.71467\times 10^{-2}\; \rm mol[/tex] of [tex]\rm Sr(OH)_2[/tex] formula units in this [tex]47\; \rm mL[/tex] solution. Convert the unit of volume to liter:
[tex]V = 47\; \rm mL = 0.047\; \rm L[/tex].
The molarity of a solution measures its molar concentration. For this solution:
[tex]\begin{aligned}c\left(\rm Sr(OH)_2\right) &= \frac{n\left(\rm Sr(OH)_2\right)}{V}\\ &= \frac{8.71467\times 10^{-2}\; \rm mol}{0.047\; \rm L} \approx 1.854\; \rm mol \cdot L^{-1}\end{aligned}[/tex].
(Rounded to four significant figures.)
Write a balanced equation for: capture of an electron by cadmium-104
Answer:
104 48 Cd + 0 -1 e ---------> 104 47 Ag
Explanation:
In the process of electron capture, the nucleus captures an electron and thus converts a proton into a neutron with the emission of a neutrino. This process increases the Neutron/Proton ratio, the captured electron is usually from the K shell. An electron from a higher energy level now drops down to fill the vacancy in the K shell and characteristic X-ray is emitted. This process usually occurs where the Neutron/proton ratio is very low and the nucleus has insufficient energy to undergo positron emission.
For 104 48 Cd, the balanced equation for K electron capture is;
104 48 Cd + 0 -1 e ---------> 104 47 Ag
Which Group is in the second column of the periodic table?
A. Noble gases
B. Halogens
C. Alkali metals
D. Alkaline earth metals
Answer:
Hey there!
That would be the alkaline earth metals.
Hope this helps :)
Answer: alkaline earth metals
Explanation:
Modern atomic theory states that atoms are neutral. How is this neutrality achieved in atoms? (2 points)
Calculate the amount of HCl in grams required to react with 3.75 g of CaCO3 according to the following reaction: CaCO3(s) + 2 HCl(aq) → CaCl2(aq) + H2O(l) + CO2(g)
Answer:
The correct answer is 2.75 grams of HCl.
Explanation:
The given balanced equation is:
CaCO₃ (s) + 2HCl (aq) ⇒ CaCl₂ (aq) + H₂O (l) + CO₂ (g)
Based on the given information, one mole of calcium carbonate is reacting with two moles of HCl. The molecular mass of HCl is 36.5 grams, thus, the mass of 2 moles of HCl will be, 36.5 × 2 = 73 grams
The molecular mass of CaCO₃ is 100 gram per mole, that is, the mass of 1 mole of CaCO₃ is 100 grams, therefore, the mass of HCl required for reacting with 3.75 grams of CaCO₃ will be,
= 3.75 × 2 × 36.5 / 100 = 2.74 grams of HCl.
If the concentration of Mg2+ in the solution were 0.039 M, what minimum [OH−] triggers precipitation of the Mg2+ ion? (Ksp=2.06×10−13.) Express your answer to two significant figures and include the appropriate units. nothing nothing
Answer:
2.30 × 10⁻⁶ M
Explanation:
Step 1: Given data
Concentration of Mg²⁺ ([Mg²⁺]): 0.039 M
Solubility product constant of Mg(OH)₂ (Ksp): 2.06 × 10⁻¹³
Step 2: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 3: Calculate the minimum [OH⁻] required to trigger the precipitation of Mg²⁺ as Mg(OH)₂
We will use the following expression.
Ksp = 2.06 × 10⁻¹³ = [Mg²⁺] × [OH⁻]²
[OH⁻] = 2.30 × 10⁻⁶ M
Rank the compounds in each set in order of increasing acid strength.
(a) CH3CH2COOH CH3CHBrCOOH CH3CBr2COOH
(b) CH3CH2CH2CHBrCOOH CH3CH2CHBrCH2COOH CH3CHBrCH2CH2COOH
Answer:
See explanation
Explanation:
For this question, we have to remember the effect of an atom with high electronegativity as "Br". If the "Br" atom is closer to the carboxylic acid group (COOH) we will have an inductive effect. Due to the electronegativity of Br, the electrons of the C-H bond would be to the Br, then this bond would be weaker and the compound will be more acid (because is easier to produce the hydronium ion [tex]H^+[/tex]).
With this in mind, for A in the last compound, we have 2 Br atoms near to the acid carboxylic group, so, we will have a high inductive effect, then the C-H would be weaker and we will have more acidity. Then we will have the compound with only 1 Br atom and finally, the last compound would be the one without Br atoms.
In B, the difference between the molecules is the position of the "Br" atom in the molecule. If the Br atom is closer to the acid group we will have a higher inductive effect and more acidity.
See figure 1
I hope it helps!
Medical implants and high-quality jewelry items for body piercings are frequently made of a material known as G23Ti or surgical-grade titanium. The percent composition of the material is 64.39% titanium, 24.19% aluminum, and 11.42% vanadium. What is the empirical formula for surgical-grade titanium
Answer:
The Empirical Formular is given as; Ti₆Al₄V
Explanation:
The percent composition of the material is 64.39% titanium, 24.19% aluminum, and 11.42% vanadium.
Elements Titanium Aluminium Vanadium
Percentage 64.39 24.19 11.42
Divide all through by their molar mass
64.39 / 47.87 24.19 / 27 11.42 / 50.94
= 1.345 = 0.896 = 0.224
Divide all though by the smallest number (0.224)
1.345 / 0.224 0.896 / 0.224 0.224 / 0.224
= 6 = 4 = 1
The Empirical Formular is given as; Ti₆Al₄V
Using the stepwise procedure for obtaining the empirical formula of a compound, the empirical formula is [tex] T_{6}Al_{4}V[/tex]
Titanium :
Percentage composition = 64.39%Molar mass = 47.87Divide by Molar mass : = 64.39/47.87 = 1.345
Aluminum :
Percentage composition = 24.19%Molar mass = 27Divide by Molar mass : = 24.19/27 = 0.896
Vanadium :
Percentage composition = 11.42%Molar mass = 50.94%Divide by Molar mass : = 11.42/50.94 = 0.224
Divide by the smallest :
Titanium = 1.345 / 0.224 = 6.00
Aluminum = 0.896 / 0.224 = 4
Vanadium = 0.224 / 0.224 = 1
Hence, the empirical formula is [tex] T_{6}Al_{4}V[/tex]
Learn more : https://brainly.com/question/17091379
When silver nitrate is added to an aqueous solution of magnesium chloride, a precipitation reaction occurs that produces silver chloride and magnesium nitrate. When enough AgNO3 is added so that 34.3 g of MgCl2 react, what mass of the AgCl precipitate should form
Answer:
103.62 g of AgCl.
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
2AgNO3 + MgCl2 —> 2AgCl + Mg(NO3)2
Step 2:
Determination of the mass of MgCl2 that reacted and the mass of AgCl produced from the balanced equation.
This is illustrated below:
Molar mass of MgCl2 = 24 + (2x35.5) = 95 g/mol
Mass of MgCl2 from the balanced equation = 1 x 95 = 95 g
Molar mass of AgCl = 108 + 35.5 = 143.5 g/mol
Mass of AgCl from the balanced equation = 2 x 143.5 = 287 g
Thus, from the balanced equation above,
95 g of MgCl2 reacted to produce 287 g of AgCl.
Step 3:
Determination of the mass of AgCl produced from the reaction of 34.3 g of MgCl2.
The mass of AgCl produced from the reaction can be obtained as follow:
Form the balanced equation above,
95 g of MgCl2 reacted to produce 287 g of AgCl.
Therefore, 34.3 g of MgCl2 will react to produce = (34.3 x 287)/95 = 103.62 g of AgCl.
Therefore, 103.62 g of AgCl were produced from the reaction.
Using the periodic table provided, identify the atomic mass of sodium (Na) . Your answer should have 5 significant figures. Provide your answer below: __ amu
Answer:
Your answer will either be 22.9897 or 22.990 !!
Explanation:
Which phase change is an example of an exothermic process?
A.
solid to liquid
B.
solid to gas
C.
liquid to solid
D.
liquid to gas
E.
solid to plasma
Reset
Answer:
C
Explanation:
Turning liquid to a solid is like freezing water to ice and requires the water to LOSE (release) heat causing an exothermic reaction.
Use your periodic table and calculator as needed for the following question.
How much stock solution is needed to make 250 mL of a 6.0M solution. The molarity of the stock solution is 18M.
Selections may be rounded so choose the best answer.
56 mL
83 mL
2.3 mL
4.7 ml
Ag+(aq)+2NH3(aq)⇌Ag(NH3)2+(aq) : A g + ( a q ) + 2 N H 3 ( a q ) ⇌ A g ( N H 3 ) 2 + ( a q ) : blank is the Lewis acid and blank is the Lewis base. is the Lewis acid and A g + ( a q ) + 2 N H 3 ( a q ) ⇌ A g ( N H 3 ) 2 + ( a q ) : blank is the Lewis acid and blank is the Lewis base. is the Lewis base.
Answer:
Silver ion - Lewis acid, Ammonia - Lewis base
Explanation:
The reaction is given as;
Ag+(aq) + 2NH3(aq) ⇌ [Ag(NH3)]2+(aq)
A lewis acid is an electron pair acceptor. While a lewis base is any substance that that can donate a pair of nonbonding electrons.
This reaction however is a complexation reaction, where ammonia is reacting with the silver ion.
Silver ion accepts electrons in this reaction, hence it is the lewis acid. The ammonia on the other hand donates the electrons used in bonding so it is the lewis base.
Stote 4 ways in which excesine alcohol conscuption is
harmful to humans
Answer:
An addiction could occur, maybe an overdose?, this could lead to death and maybe you would do unreasonable things which could get you fined or arrested.
Explanation:
Answer:
Excessive alcohol is harmful because you could get addicted.Alcohol can affect your nervous system.Your sugar levels will not be good.Parts of your body and organs will become inflamed.You can get a larger amount of muscle cramps.Also you will not be able to get enough vitamins in your body.Accidents that lead to deaths could occur.You would do crazy actions with things such as theft or breaking into a house which could get you fined or arrested.Too much alcohol can lead to high blood pressure, disease and even strokes.You can have birth defectsWith excessive alcohol you can get osteoporosis.You can also get your immune system weakened.Finally, alcohol can lead to cancer.Hope this helped,
Kavitha
Which of the following metals has a low melting point?
2 A. Rubidium
B. Potassium
C. Calcium
D. Sodium
Answer:
Rubidium
Explanation:
Write a balanced equation for the single-replacement oxidation-reduction reaction described, using the smallest possible integer coefficients. The reaction that takes place when chlorine gas combines with aqueous potassium bromide. (Use the lowest possible coefficients. Omit states of matter.)
Answer:
[tex]\rm Cl_2 + 2\; KBr \to Br_2 + 2\; KCl[/tex].
One chlorine molecule reacts with two formula units of (aqueous) potassium bromide to produce one bromine molecule and two formula units of (aqueous) potassium chloride.
Explanation:
Formula for each of the speciesStart by finding the formula for each of the compound.
Both chlorine [tex]\rm Cl[/tex] and bromine [tex]\rm Br[/tex] are group 17 elements (halogens.) Each On the other hand, potassium [tex]\rm K[/tex] is a group 1 element (alkaline metal.) EachTherefore, the ratio between [tex]\rm K[/tex] atoms and [tex]\rm Br[/tex] atoms in potassium bromide is supposed to be one-to-one. That corresponds to the empirical formula [tex]\rm KBr[/tex]. Similarly, the ratio between
The formula for chlorine gas is [tex]\rm Cl_2[/tex], while the formula for bromine gas is [tex]\rm Br_2[/tex].
Balanced equation for the reactionWrite down the equation using these chemical formulas.
[tex]\rm ?\; Cl_2 + ?\; KBr \to ?\;Br_2 + ?\; KCl[/tex].
Start by assuming that the coefficient of compound with the largest number of elements is one. In this particular equation, both [tex]\rm KBr[/tex] and [tex]\rm KCl[/tex] features two elements each.
Assume that the coefficient of [tex]\rm KCl[/tex] is one. Hence:
[tex]\rm ?\; Cl_2 + 1 \; KBr \to ?\;Br_2 + ?\; KCl[/tex].
Note that [tex]\rm KBr[/tex] is the only source of [tex]\rm K[/tex] and [tex]\rm Br[/tex] atoms among the reactants of this reaction.
There would thus be one [tex]\rm K[/tex] atom and one [tex]\rm Br[/tex] atom on the reactant side of the equation.
Because atoms are conserved in a chemical equation, there should be the same number of [tex]\rm K[/tex] and [tex]\rm Br[/tex] atoms on the product side of the equation.
In this reaction, [tex]\rm Br_2[/tex] is the only product with [tex]\rm Br[/tex] atoms.
One [tex]\rm Br[/tex] atom would correspond to [tex]0.5[/tex] units of [tex]\rm Br_2[/tex].
Similarly, in this reaction, [tex]\rm KCl[/tex] is the only product with [tex]\rm K[/tex] atoms.
One [tex]\rm K[/tex] atom would correspond to one formula unit of [tex]\rm KCl[/tex].
Hence:
[tex]\displaystyle \rm ?\; Cl_2 + 1 \; KBr \to \frac{1}{2}\;Br_2 + 1\; KCl[/tex].
Similarly, there should be exactly one [tex]\rm Cl[/tex] atom on either side of this equation. The coefficient of [tex]\rm Cl_2[/tex] should thus be [tex]0.5[/tex]. Hence:
[tex]\displaystyle \rm \frac{1}{2}\; Cl_2 + 1 \; KBr \to \frac{1}{2}\;Br_2 + 1\; KCl[/tex].
That does not meet the requirements, because two of these coefficients are not integers. Multiply all these coefficients by two (the least common multiple- LCM- of these two denominators) to obtain:
[tex]\displaystyle \rm 1\; Cl_2 + 2 \; KBr \to 1\;Br_2 + 2\; KCl[/tex].
A base solution contains 0.400 mol of OH–. The base solution is neutralized by 43.4 mL of sulfuric acid. What is the molarity of the sulfuric acid solution?
Answer:
Molarity of the sulfuric acid solution is 4.61M
Explanation:
The neutralization of a base of OH⁻ with sulfuric acid, H₂SO₄, occurs as follows:
2 OH⁻ + H₂SO₄ → 2H₂O + SO₄²⁻
That means, 2 moles of base react with 1 mole of sulfuric acid.
If you add 0.400 moles of OH⁻, moles of sulfuric acid you need to neutralize this amount of OH⁻ are:
0.400 moles OH⁻ ₓ (1 mole H₂SO₄ / 2 moles OH⁻) = 0.200 moles of H₂SO₄
As you add 43.4mL = 0.0434L of sulfuric acid to neutralize this solution, molarity (Ratio between moles and liters) is:
0.200 moles H₂SO₄ / 0.0434L = 4.61M
Molarity of the sulfuric acid solution is 4.61MA diode has IS = 10−17 A and n = 1.05. (a) What is the diode voltage if the diode current is 70 μA? (b) What is the diode current for VD = 0.1 mV?
Answer:
(a) The diode voltage, [tex]V_D =[/tex] 0.776 V
(b) The diode current, [tex]I_D =[/tex] 3.81 x 10⁻²⁰ A
Explanation:
Given;
saturation current in diode, [tex]I_s[/tex] = 10⁻¹⁷ A
nonideality factor, n = 1.05
(a) the diode voltage
Given diode current, [tex]I_D[/tex] = 70 μA = 7 x 10⁻⁶ A
Diode voltage is calculated as;
[tex]V_D = nV_Tln(1+ \frac{I_D}{I_S} )[/tex]
Where;
[tex]V_T[/tex] is thermal voltage at 25°C = 0.025
[tex]V_D = 1.05 * 0.025 ln(1+ \frac{70*10^{-6}}{1*10^{-17}})\\\\V_D = 0.02625ln(1+ 7*10^{12})\\\\V_D = 0.776 \ V[/tex]
b) the diode current for VD = 0.1 mV
[tex]V_D = nV_Tln(1 +\frac{I_D}{I_S} )\\\\ln(1 +\frac{I_D}{I_S} ) = \frac{V_D}{nV_T} \\\\ln(1 +\frac{I_D}{I_S} ) = \frac{0.1*10^{-3}}{1.05*0.025} \\\\ln(1 +\frac{I_D}{I_S} ) = 0.00381\\\\1 +\frac{I_D}{I_S} = e^{0.00381}\\\\1+ \frac{I_D}{I_S}= 1.00381\\\\ \frac{I_D}{I_S}=1.00381 - 1\\\\ \frac{I_D}{I_S}= 0.00381\\\\I_D = 0.00381(I_S)\\\\I_D = 0.00381(10^{-17})\\\\I_D = 3.81*10^{-20} \ A[/tex]
A reaction mixture at 175 K initially contains 522 torr of NO and 421 torr of O2. At equilibrium, the total pressure in the reaction mixture is 748 torr. Calculate Kp at this temperature. Express your answer to three significant figures.
Answer:
[tex]Kp=0.0386[/tex]
Explanation:
Hello,
In this case, the undergoing chemical reaction is:
[tex]2NO+O_2\rightleftharpoons 2NO_2[/tex]
For which the equilibrium expression is:
[tex]Kp=\frac{p_{NO_2}^2}{p_{NO}^2p_{O_2}}[/tex]
Whereas, at equilibrium, each pressure is computed in terms of the initial pressure and the reaction extent via:
[tex]p_{NO_2}=2x\\p_{NO}=522-2x\\p_{O_2}=421-x[/tex]
And the total pressure:
[tex]p_{eq}=p_{NO_2}+p_{NO}+p_{O_2}\\\\p_{eq}=2x+522-2x+421-x\\\\p_{eq}=943-x[/tex]
Yet it is 748 torr, for which the extent is:
[tex]x=943-p_{eq}=943-748\\\\x=195torr[/tex]
Therefore, Kp turns out:
[tex]Kp=\frac{(2x)^2}{(522-2x)^2(421-x)}\\\\Kp=\frac{(2*195)^2}{(522-2*195)^2(421-195)}\\\\Kp=0.0386[/tex]
Best regards.
You are given 10.00 mL of a solution of an unknown acid. The pH of this solution is exactly 2.18. You determine that the concentration of the unknown acid was 0.2230 M. You also determined that the acid was monoprotic (HA). What is the pKa of your unknown acid
Answer:
[tex]pKa=3.70[/tex]
Explanation:
Hello,
In this case, given the information, we can compute the concentration of hydronium given the pH:
[tex]pH=-log([H^+])\\[/tex]
[tex][H^+]=10^{-pH}=10^{-2.18}=6.61x10^{-3}M[/tex]
Next, given the concentration of the acid and due to the fact it is monoprotic, its dissociation should be:
[tex]HA\rightleftharpoons H^++A^-[/tex]
We can write the law of mass action for equilibrium:
[tex]Ka=\frac{[H^+][A^-]}{[HA]}[/tex]
Thus, due to the stoichiometry, the concentration of hydronium and A⁻ are the same at equilibrium and the concentration of acid is:
[tex][HA]=0.2230M-6.61x10^{-3}M=0.2164M[/tex]
As the concentration of hydronium also equals the reaction extent ([tex]x[/tex]). Thereby, the acid dissociation constant turns out:
[tex]Ka=\frac{(6.61x10^{-3})^2}{0.2164}\\ \\Ka=2.02x10^{-4}[/tex]
And the pKa:
[tex]pKa=-log(Ka)=-log(2.02x10^{-4})\\\\pKa=3.70[/tex]
Regards.