Answer/Step-by-step explanation:
*The six raw data values in the second row are for teens are: 14, 15, 15, 15, 16, and 16
*There are 6 raw data values in the 20's represented in the 3rd row. They are: 25, 25, 27, 28, 28, and 28
*There are 3 raw data values in the 30's that are represented in the 4th row. They are: 35, 36, and 36.
*There are 0 raw data values in the 40's represented in the 5th row.
*There are 21 raw data values in the entire data set. They are:
1, 2, 3, 7, 9, 14, 15, 15, 15, 16, 16, 25, 25, 27, 28, 28, 28, 35, 36, 36, and 50.
What is the value of a?
Answer:
[tex]\huge\boxed{a=\dfrac{16}{3}=5\dfrac{1}{3}}[/tex]
Step-by-step explanation:
[tex]\triangle ZYW\sim\triangle WYX\ (AAA)\\\\\text{Therefore corresponding sides are in proportion}\\\\\dfrac{YX}{YW}=\dfrac{YW}{ZY}\\\\\text{substitute}\\\\YX=a;\ YW=4;\ ZY=3\\\\\dfrac{a}{4}=\dfrac{4}{3}\qquad\text{multiply both sides by 4}\\\\4\cdot\dfrac{a}{4}=4\cdot\dfrac{4}{3}\qquad\text{cancel 4}\\\\a=\dfrac{16}{3}[/tex]
At noon, ship A is 120 km west of ship B. Ship A is sailing east at 20 km/h and ship B is sailing north at 15 km/h. How fast is the distance between the ships changing at 4:00 PM?
Answer:
1.39 km/h
Step-by-step explanation:
Let the initial position of ship B represent the origin of our coordinate system. Then the position of ship A as a function of time t is ...
A = -120 +20t . . . (east of the origin)
and the position of B is ...
B = 15t . . . (north of the origin)
Then the distance between them is ...
d = √(A² +B²) = √((-120 +20t)² +(15t)²) = √(625t² -4800t +1440)
And the rate of change is ...
d' = (625t -2400)/√(625t² -4800t +14400)
At t = 4, the rate of change is ...
d' = (625·4 -2400)/√(625·16 -4800·4 +14400) = 100/√5200 = 1.39 . . . km/h
The distance between the ships is increasing at about 1.39 km/h.
volume of a cube size 7cm
Answer:
343 cm3
Step-by-step explanation:
Answer:
side(s) =7cm
volume (v)=l^3
or, v = 7^3
therefore the volume is 343cm^3.
hope its what you are searching for..
Which equation represents the statement below?
Thirteen less than a number is forty-two.
Select one:
a. n – 13 = 42
b. 42 – 13 = n
c. 13 – n = 42
d. 13 – 42 = n
The answer is option A
Step-by-step explanation:
Thirteen less than a number is written as
n - 13
Equate it to 42
We have
n - 13 = 42
Hope this helps you
Pls help with this area question
Answer:
1
Step-by-step explanation:
The lateral area of a cylinder is ...
LA = 2πrh
The total area is that added to the areas of the two circular bases:
A = 2πr² +2πrh
We want the ratio of these to be 1/2:
LA/A = (2πrh)/(2πr² +2πrh) = h/(r+h) = 1/2 . . . . cancel factors of 2πr
Multiplying by 2(r+h) gives ...
2h = r+h
h = r . . . . . subtract h
So, the desired ratio is ...
h/r = h/h = 1
The ratio between height and radius is 1.
Describe the transformations.
Solve the algebraic expressio (0.4)(8)−2
Answer: -6.4
Step-by-step explanation:
(0.4)(8)(-2)
3.2*-2
-6.4
Express it in slope-intercept form.
Express it in slope-intercept form.
Answer:y=3/2x-3
Step-by-step explanation: the slope of the graph is (y2-y1)/(x2-x1)
If we take points (0,-3) (2,0) the slope would be (0--3)/(2-0) = 3/2
And the y-intercept of the slope is -3
I NEED HELP PLEASE, THANKS! :)
Answer:
Option D
Step-by-step explanation:
x is given to be 4 in this case, so all we would have to is plug it into the following function -
[tex]f ( x ) = \left \{ {{x - 2, x < 4 } \atop {x + 2, x \geq 4 }} \right[/tex]
Through substitution, you would receive the following function -
[tex]f ( x ) = \left \{ {{2, 4 < 4 } \atop 6, 4 \geq 4 }} \right[/tex]
Now the graph proves that this function is closer to 4, and thus proves that the y - coordinate is about 2 at the same time. However, the graph is cut off, so the limit doesn't exists.
There are 7 students in a class: 5 boys and 2 girls.
If the teacher picks a group of 4 at random, what is the probability that everyone in the group is a boy?
Answer:
4/7
Step-by-step explanation:
5+2=7
7 children
4 boys Out of 7 children
Answer:1/7
Step-by-step explanation:
Khan academy
Estimate the area under the graph of f(x)=2x^2-12x+22 over the interval [0,2] using four approximating rectangles and right endpoints.
Answer:
The right Riemann sum is 21.5.
The left Riemann sum is 29.5.
Step-by-step explanation:
The right Riemann sum (also known as the right endpoint approximation) uses the right endpoints of a sub-interval:
[tex]\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_1)+f(x_2)+f(x_3)+...+f(x_{n-1})+f(x_{n})\right)[/tex], where [tex]\Delta{x}=\frac{b-a}{n}[/tex].
To find the Riemann sum for [tex]\int_{0}^{2}\left(2 x^{2} - 12 x + 22\right)\ dx[/tex] with 4 rectangles, using right endpoints you must:
We have that a = 0, b = 2, n = 4. Therefore, [tex]\Delta{x}=\frac{2-0}{4}=\frac{1}{2}[/tex].
Divide the interval [0,2] into n = 4 sub-intervals of length [tex]\Delta{x}=\frac{1}{2}[/tex]:
[tex]\left[0, \frac{1}{2}\right], \left[\frac{1}{2}, 1\right], \left[1, \frac{3}{2}\right], \left[\frac{3}{2}, 2\right][/tex]
Now, we just evaluate the function at the right endpoints:
[tex]f\left(x_{1}\right)=f\left(\frac{1}{2}\right)=\frac{33}{2}=16.5\\\\f\left(x_{2}\right)=f\left(1\right)=12\\\\f\left(x_{3}\right)=f\left(\frac{3}{2}\right)=\frac{17}{2}=8.5\\\\f\left(x_{4}\right)=f(b)=f\left(2\right)=6[/tex]
Finally, just sum up the above values and multiply by [tex]\Delta{x}=\frac{1}{2}[/tex]:
[tex]\frac{1}{2}(16.5+12+8.5+6)=21.5[/tex]
The left Riemann sum (also known as the left endpoint approximation) uses the left endpoints of a sub-interval:
[tex]\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_0)+f(x_1)+2f(x_2)+...+f(x_{n-2})+f(x_{n-1})\right)[/tex], where [tex]\Delta{x}=\frac{b-a}{n}[/tex].
To find the Riemann sum for [tex]\int_{0}^{2}\left(2 x^{2} - 12 x + 22\right)\ dx[/tex] with 4 rectangles, using left endpoints you must:
We have that a = 0, b = 2, n = 4. Therefore, [tex]\Delta{x}=\frac{2-0}{4}=\frac{1}{2}[/tex].
Divide the interval [0,2] into n = 4 sub-intervals of length [tex]\Delta{x}=\frac{1}{2}[/tex]:
[tex]\left[0, \frac{1}{2}\right], \left[\frac{1}{2}, 1\right], \left[1, \frac{3}{2}\right], \left[\frac{3}{2}, 2\right][/tex]
Now, we just evaluate the function at the left endpoints:
[tex]f\left(x_{0}\right)=f(a)=f\left(0\right)=22\\\\f\left(x_{1}\right)=f\left(\frac{1}{2}\right)=\frac{33}{2}=16.5\\\\f\left(x_{2}\right)=f\left(1\\\right)=12\\\\f\left(x_{3}\right)=f\left(\frac{3}{2}\right)=\frac{17}{2}=8.5[/tex]
Finally, just sum up the above values and multiply by [tex]\Delta{x}=\frac{1}{2}[/tex]:
[tex]\frac{1}{2}(22+16.5+12+8.5)=29.5[/tex]
Select the correct answer from each drop down menu. AB is dilated by a scale factor of 3 to form A 1 B1. Point O, which lies on AB, is the center of dilation. The slope of AB is 3. The slope of A1 B1 is___. A1 B1 _____ through point O.
Answer:
the slope of A'B' = 3
A'B' passes through point O
Step-by-step explanation:
A dilation with scale factor 3 gives the effect of stretching the line AB three times longer. As dilation does not change the direction of the line, the slope will stay the same. If point O lies on AB and is the center of dilation, then the point O must also lie on A'B'
The required black space in the statement "The slope of AB is 3. The slope of A1 B1 is___. A1 B1 _____ through point O". is filled by 3 and passes.
Given that,
To Select the correct answer from each drop-down menu. AB is dilated by a scale factor of 3 to form A 1 B1. Point O, which lies on AB, is the center of dilation. The slope of AB is 3. The slope of A1 B1 is___. A1 B1 _____ through point O.
The scale factor is defined as the ratio of modified change in length to the original length.
Here, is o is the center of the line AB and slope of line AB is 3 than the line dilated with scale factor 3 A1B1 has also a scale factor of 3 because Position of dilation is center 0 thus dilation did not get any orientation.
And the center of dilation is O so line A1B1 passes through O.
Thus, the required black space in the statement "The slope of AB is 3. The slope of A1 B1 is___. A1 B1 _____ through point O". is filled by 3 and passes.
Learn more about line Scale factors here:
https://brainly.com/question/22312172
#SPJ2
Is the area of this shape approximately 24 cm* ? If not give the correct area.
311
101
True
False
Answer:
19.2 feet square
Step-by-step explanation:
We khow that the area of an octagon is :
A= 1/2 * h * P where h is the apothem and p the perimeter
A= (1/2)*1.6*(3*8) = 19.2 feet squareSome friends tell you they paid 25,404 down on a new house and are to pay $843 per month for 30 years. If interest is 4.5% compounded monthly, what was the selling price of the house?
How much interest will they pay in 30 years?
Answer:
Selling price = $190003.206 and total interest paid is $135640.794
Step-by-step explanation:
The down payment of house = $25404
Monthly payment = $834 per month.
Total number of years = 30 years = 30*12 = 360 months.
Interest rate compounded monthly = 4.5 % * 1/12 = 0.375% per month or 0.00375.
Now we have to calculate the selling price of house and total interest paid.
Loan amount = Present value of monthly payments.
[tex]\text{Loan amount} = \frac{ Monthly \ payment \times [1- (1+r)^{-n}]}{r} \\= \frac{ 834 \times [1- (1+ 0.00375)^{-360}]}{0.00375} \\= 164599.206[/tex]
Selling price of house = 25404 + 164599.206 = 190003.206
Interest amount = total amount of installment – loan amount
Interest amount = 834*360 – 164599.206 = 135640.794 dollars.
A graph is given to the right. a. Explain why the graph has at least one Euler path. b. Use trial and error or Fleury's Algorithm to find one such path starting at Upper A, with Upper D as the fourth and seventh vertex, and with Upper B as the fifth vertex. A C B D E A graph has 5 vertices labeled A through E and 7 edges. The edges are as follows: Upper A Upper C, Upper A Upper B, Upper A Upper D, Upper C Upper D, Upper C Upper E, Upper B Upper D, Upper D Upper E. a. Choose the correct explanation below. A. It has exactly two odd vertices. Your answer is correct.B. It has exactly two even vertices. C. It has more than two odd vertices. D. All graphs have at least one Euler path. b. Drag the letters representing the vertices given above to form the Euler path.
Answer:
a. It has exactly two odd vertices
b. A C E D B A D C
Step-by-step explanation:
(a) There will not be an Euler path if the number of odd vertices is not 0 or 2. Here, the graph has exactly two odd vertices: A and C.
__
(b) We are required to produce a path of the form {A, _, _, D, B, _, D, _}.
Starting at A, there is only one way to get to node D as the 4th node on the path: via C and E. Node B must follow. From B, there is exactly one way to cover the remaining three edges that have not been traversed so far.
The Euler path meeting the requirements is ...
A C E D B A D C
It is shown by the arrows on the edges in the graph of the attachment.
The completion times for a job task range from 11.1 minutes to 19.2 minutes and are thought to be uniformly distributed. What is the probability that it will require between 14.8 and 16.5 minutes to perform the task?
Answer:
[tex] P(14.8< X<16.5)= \frac{16.5-11.1}{19.2-11.1} -\frac{14.8-11.1}{19.2-11.1}= 0.667-0.457= 0.210[/tex]
The probability that it will require between 14.8 and 16.5 minutes to perform the task is 0.210
Step-by-step explanation:
Let X the random variable "completion times for a job task" , and we know that the distribution for X is given by:
[tex] X \sim Unif (a= 11.1, b= 19.2)[/tex]
And for this case we wantto find the following probability:
[tex] P(14.8< X<16.5)[/tex]
And for this case we can use the cumulative distribution given by:
[tex] F(x) =\frac{x-a}{b-a} , a\leq X \leq b[/tex]
And using this formula we got:
[tex] P(14.8< X<16.5)= \frac{16.5-11.1}{19.2-11.1} -\frac{14.8-11.1}{19.2-11.1}= 0.667-0.457= 0.210[/tex]
The probability that it will require between 14.8 and 16.5 minutes to perform the task is 0.210
Please answer this correctly
Answer:
Question 1
Step-by-step explanation:
1) Let the outside temperature = x ° F
Now, the inside temperature = (x + 3)° F
Outside temperature has increased by 3,
So, outside temperature at lunch time = (x + 3)°F
So, at lunch time the outside & inside temperature are same.
So, the difference in temperature at lunch time is 0
. The monthly worldwide average number of airplane crashes of commercial airlines is 2.2. What is the probability that there will be a. more than 2 such accidents in the next month?
Answer:
Probability (N more than 2) = 0.3773
Step-by-step explanation:
Given:
Average number of crashes (N) = 2.2
Find:
Probability (N more than 2)
Computation:
Probability (N more than 2) = [1-P(N=0)-P(N=1)-P(N=2)]
Probability (N more than 2) = [1 - e⁻²°² - 2.2e⁻²°² - (2.2²e⁻²°²)/2]
Probability (N more than 2) = 0.3773
Help me please! I need an answer!
Answer: [tex]\bold{\dfrac{b_1}{b_2}=\dfrac{3}{2}}[/tex]
Step-by-step explanation:
Inversely proportional means a x b = k --> b = k/a
Given that a₁ = 2 --> b₁ = k/2
Given that a₂ = 3 --> b₂ = k/3
[tex]\dfrac{b_1}{b_2}=\dfrac{\frac{k}{2}}{\frac{k}{3}}=\large\boxed{\dfrac{3}{2}}[/tex]
If a 1/5 of a gallon of paint is needed to cover 1/4 of a wall, how much paint is needed to cover the entire wall
Answer:
4/5 gallon per wall
Step-by-step explanation:
We can find the unit rate
1/5 gallon
------------------
1/4 wall
1/5 ÷ 1/4
Copy dot flip
1/5 * 4/1
4/5 gallon per wall
Answer:
4/5 gallon of paint
Step-by-step explanation:
1/5 gallon of paint is needed to cover 1/4 of the wall.
To cover the whole wall:
1/4 × 4 = 1 (whole)
1/5 × 4 = 4/5
given that f(x) = x² + 6x and g(x) = x + 9 calculate
a) f•g (4) =
B) g•f (4) =
Answer:
247
49
Step-by-step explanation:
a) f•g (4) =
f•g (x) = f(g(x)) = (x + 9)^2 + 6(x + 9)
f•g (4) = (4 + 9)^2 + 6(4 + 9)
= 13^2 + 6(13)
= 247
B) g•f (4) =
g•f (x) = g(f(x)) = x^2 + 6x + 9
g•f (4) = 4^2 + 6(4) + 9
= 16 + 24 + 9
= 49
Find the area of a triangle whose two sides are 12 inches and 14 inches long, and has a perimeter of 34 inches.
Answer:
[tex]\huge\boxed{A=3\sqrt{255}\ in^2\approx47.91\ in^2}[/tex]
Step-by-step explanation:
We have two sides
[tex]a=12in;\ b=14in[/tex]
and the preimeter
[tex]P=34in[/tex]
We can calculate the length of the third side:
[tex]c=P-a-b[/tex]
substitute
[tex]c=34-12-14=8\ (in)[/tex]
Use the Heron's formula:
[tex]A=\sqrt{p(p-a)(p-b)(p-c)[/tex]
where
[tex]p=\dfrac{P}{2}[/tex]
substitute:
[tex]p=\dfrac{34}{2}=17\ (in)\\\\A=\sqrt{17(17-12)(17-14)(17-8)}=\sqrt{(17)(5)(3)(9)}\\\\=\sqrt{9}\cdot\sqrt{(17)(5)(3)}=3\sqrt{255}\ (in^2)\approx47.91\ (in^2)[/tex]
It was reported that 23% of U.S. adult cellphone owners called a friend for advice about a purchase while in a store. If a sample of 15 U.S adult cellphone owners is selected, what is the probability that 7 called a friend for advice about a purchase while in a store
Answer:
[tex] P(X=7)[/tex]
And using the probability mass function we got:
[tex]P(X=7)=(15C7)(0.23)^7 (1-0.23)^{15-7}=0.0271[/tex]
Step-by-step explanation:
Let X the random variable of interest, on this case we now that:
[tex]X \sim Binom(n=15, p=0.23)[/tex]
The probability mass function for the Binomial distribution is given as:
[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]
Where (nCx) means combinatory and it's given by this formula:
[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]
And we want to find the following probability:
[tex] P(X=7)[/tex]
And using the probability mass function we got:
[tex]P(X=7)=(15C7)(0.23)^7 (1-0.23)^{15-7}=0.0271[/tex]
Suppose that g(x) = f(x) - 2. Which statement best compares the graph of
g(x) with the graph of f(x)?
A. The graph of g(x) is shifted 2 units to the left.
B. The graph of g(x) is vertically stretched by a factor of 2.
C. The graph of g(x) is shifted 2 units up.
D. The graph of g(x) is shifted 2 units down.
Answer:
D. The graph of g(x) is shifted 2 units down
Step-by-step explanation:
Since we are modifying b in f(x) = mx + b, we are dealing with vertical movement up and down. Since it is -2, we are moving down 2.
A small combination lock on a suitcase has 3 wheels, each labeled with the 10 digits from 0 to 9. If an opening combination is a particular sequence of 3 digits with no repeats, what is the probability of a person guessing the right combination?
Answer:
0.14% probability of a person guessing the right combination
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
The order in which the numbers are selected is important. For example, 1,3,2 is a different combination than 3,1,2. So we use the permutations formula to solve this question.
Permutations formula:
The number of possible permutations of x elements from a set of n elements is given by the following formula:
[tex]P_{(n,x)} = \frac{n!}{(n-x)!}[/tex]
Desired outcomes:
One right combination, so [tex]P = 1[/tex]
Total outcomes:
10 numbers from a set of 3. So
[tex]P_{(10,3)} = \frac{10!}{(10-3)!} = 720[/tex]
What is the probability of a person guessing the right combination?
[tex]p = \frac{D}{T} = \frac{1}{720} = 0.0014[/tex]
0.14% probability of a person guessing the right combination
A math teacher asks Nico and Katya to solve the following word problem. A car travels 98 miles in 1.7 hours on a freeway where the speed limit is 55 mph. Was the car speeding? Nico and Katya both agree that they should use their calculators to divide the miles by the hours to find the speed of the car, and then compare the answer to 55 mph. However, Nico says it's okay to round what his calculator says to the nearest whole number. Katya says that because the calculator displays eight numbers after the decimal point, they shouldn't round. She says they should write down exactly what the calculator shows. Do you agree with Nico or with Katya? In a short paragraph, explain who you agree with and provide the reasons why.
Answer:
- Was the car speeding?
Yes, the car was speeding as its current speed of 57.65 mph was more than the speed limit of that freeway.
- Do you agree with Nico or with Katya?
I agree somewhat with both Nico and Katya, but, I agree more with Nico.
- Explain your reasoning.
Like I said, I agree more with Nico's method of rounding the speed to the nearest whole number. This is because in this question, the standard speed we want to compare the calculated speed with is given as a whole number. Hence, it is more proper to estimate the calculated speed to its nearest whole number too.
Step-by-step explanation:
Speed during a travel is given as distance travelled divided by time taken
Speed = (Distance/time)
Distance = 98 miles
Time = 1.7 hours
Speed = (98/1.7) = 57.6470588235 = 57.65 mph = 58 mph
- Was the car speeding?
The speed limit for the road is 55 mph and the current speed of the car = 57.65 mph
Since 57.65 > 55
The car was overspeeding.
- Nico says it's okay to round what his calculator says to the nearest whole number. Katya says that because the calculator displays eight numbers after the decimal point, they shouldn't round. She says they should write down exactly what the calculator shows. Do you agree with Nico or with Katya?
I agree somewhat with both Nico and Katya as the both methods of recording the speed ate right, depending on what the speed is required for.
Although, I agree more with Nico's method as it seems like a better fit for the situation described in the question.
- explain who you agree with and provide the reasons why.
Like I said earlier, I agree more with Nico's method of rounding the speed to the nearest whole number. This is because in this question, the standard speed we want to compare the calculated speed with is given as a whole number. Hence, it is more proper to estimate the calculated speed to its nearest whole number too.
Katya's method of writing the calculated speed as is will be correct in cases where extreme accuracy is required, not an estimate. For this question, the estimate will do.
Hope this Helps!!!
Answer:
Yes, the car was speeding as its current speed of 57.65 mph was more than the speed limit of that freeway.
Step-by-step explanation:
Nico and Katya i agree with.
A map's scale is 1 inch : 3.5 miles.
If the distance on the map is
8 inches, then the actual distance
in real life is __miles.
Answer:
28 miles
Step-by-step explanation:
to fin the actual distance you must multiply the didtance on the map by the map scale
3.5*8=28
The three-dimensional figure below is a cylinder with a hole in the shape of a rectangular prism going through the center of it.
The radius is 10 yards. Find the volume of the solid in cubic yards, rounded to the nearest ten. Use 3.14 for pie.
A. 1,980
B. 1,788
C. 1,034
D. 1,884
Answer:
B. 1788
Step-by-step explanation:
The volume of solid shaped is expressed in cubic yards. The sides of the shape are multiplied or powered as 3 for the volume determination. Volume is the total space covered by the object. It includes height, length, width. The three dimensional objects volume is found by
length * height * width
The volume for current object is :
12 * 28 * 5
= 1788 cubic yards.
Answer: 1778
Step-by-step explanation:
because Ik I had the question
Which number is a solution of the inequality: B > 2.1
A: -8
B: -12
C:5
D: 1
Answer:
C. 5 is solution of the inequality: B>2.1