Answer:
1. sleep well
2. drink water
3. eat healthy
4. less sugar and salt
5. exercise 30 minutes daily
6. eat whole grains
7. eat fruits and vegetables
8. practice mental health
9. stay motivated
10. eat a variety of foods
Infrared radiation from young stars can pass through the heavy dust clouds surrounding them, allowing astronomers here on Earth to study the earliest stages of star formation, before a star begins to emit visible light. Suppose an infrared telescope is tuned to detect infrared radiation with a frequency of 1.61THz. Calculate the wavelength of the infrared radiation. Round your answer to 3 significant digits.
Answer:
λ = 1.86 x 10⁻⁴ m = 186 μm
Explanation:
The relationship between the wavelength and the frequency of a wave is given by the following equation:
[tex]c = f\lambda\\\\\lambda = \frac{c}{f}[/tex]
where,
λ = wavelength of infrared radiation = ?
c = speed of infrared radiation = speed of light = 3 x 10⁸ m/s
f = frequency of infrared radiation = 1.61 THz = 1.61 x 10¹² Hz
Therefore,
[tex]\lambda = \frac{3\ x\ 10^8\ m/s}{1.61\ x\ 10^{12}\ Hz}[/tex]
λ = 1.86 x 10⁻⁴ m = 186 μm
Another word for kinetic energy
could be
energy.
A. Safe
B. Moving
C. Stored
D. Potential
Answer:
moving
Explanation:
hope it helped!!!
Answer:
B
Explanation:
In an NMR experiment, the RF source oscillates at 34 MHz and magnetic resonance of the hydrogen atoms in the sample being in- vestigated occurs when the external field Bext has magnitude 0.78 T. Assume that Bint and Bext are in the same direction and take the pro- ton magnetic moment component u, to be 1.41 X 10-26 J/T. What is the magnitude of Bint?
Answer:
[tex]B_{int}=-0.015T[/tex]
Explanation:
From the question we are told that:
RF source oscillation speed [tex]\sigma= 34 MHz[/tex]
The external field [tex]Bext =0.78 T[/tex].
Pro- ton magnetic moment component [tex]\mu=1.41 X 10-26 J/T[/tex]
Generally the equation for magnitude of [tex]B_{int}[/tex] is mathematically given by
[tex]B_{int}=B_{ext}-\frac{h\triangle \sigma}{2 \mu}[/tex]
[tex]B_{int}=0.78-\frac{6.6*10^{-34}*34*10^6}{2*1.41*10^{26}}[/tex]
[tex]B_{int}=0.78-0.7957[/tex]
[tex]B_{int}=-0.015T[/tex]
What would the current be for a circuit that has a voltage of 0.8 V and a resistance of 0.01 Q?
0 1 = 0.01 A
0 1 = 0.8 A
0 1 = 80 A
O I = 0.08 A
Answer:
80 A
Explanation:
Hi there!
Ohm's law states that [tex]V=IR[/tex] where V is the voltage, I is the current and R is the resistance.
Plug the given information into Ohm's law (V=0.8, R=0.01) and solve for I
[tex]V=IR\\0.8=I(0.01)[/tex]
Divide both sides by 0.01 to isolate I
[tex]0.8=I(0.01)\\\frac{0.8}{0.01}= \frac{I(0.01)}{0.01} \\80=I[/tex]
Therefore, the current for this circuit would be 80 A.
I hope this helps!
helpppppppppppppppppppppppppppp............
an object is moving with initial velocity of 5 m/s. After 10 seconds final velocity is 10 m/s. Calculate its acceleration.
Answer:
0.5 m/s 2 is the acceleration
Explanation:
hope it helped!!!
Two vectors have magnitudes 3 and 4 . how are the directions of the two vectors related if: a/the sum has magnitude 7.0
One method for determining the amount of corn in early Native American diets is the stable isotope ratio analysis (SIRA) technique. As corn photosynthesizes, it concentrates the isotope carbon-13, whereas most other plants concentrate carbon-12. Overreliance on corn consumption can then be correlated with certain diseases, because corn lacks the essential amino acid lysine. Archaeologists use a mass spectrometer to separate the 12 C and 13 C isotopes in samples of human remains. Suppose you use a velocity selector to obtain singly ionized (missing one electron) atoms of speed 8.50 km/s, and you want to bend them within a uniform magnetic field in a semicircle of diameter 25.0 cm for the 12 C. The measured masses of these isotopes are 1.99×10−26kg(12C) and 2.16×10−26kg(13C).
(a) What strength of magnetic field is required?
(b) What is the diameter of the 13 C semicircle?
(c) What is the separation of the 12 C and 13 C ions at the detector at the end of the semicircle? Is this distance large enough to be easily observed?
Answer:
[tex]0.0084575\ \text{T}[/tex]
[tex]0.272\ \text{m}[/tex]
2.2 cm easily observable
Explanation:
[tex]m_1[/tex] = Mass of 12 C = [tex]1.99\times 10^{-26}\ \text{kg}[/tex]
[tex]m_2[/tex] = Mass of 13 C = [tex]2.16\times 10^{-26}\ \text{kg}[/tex]
[tex]r_1[/tex] = Radius of 12 C = [tex]\dfrac{25}{2}=12.5\ \text{cm}[/tex]
B = Magnetic field
v = Velocity of atom = 8.5 km/s
[tex]r_2[/tex] = Radius of 13 C
The force balance of the system is
[tex]qvB=\dfrac{m_1v^2}{r}\\\Rightarrow B=\dfrac{m_1v}{rq}\\\Rightarrow B=\dfrac{1.99\times 10^{-26}\times 8500}{12.5\times 10^{-2}\times 1.6\times 10^{-19}}\\\Rightarrow B=0.0084575\ \text{T}[/tex]
The required magnetic field is [tex]0.0084575\ \text{T}[/tex]
Radius is given by
[tex]r=\dfrac{mv}{qB}[/tex]
[tex]r\propto m[/tex]
So
[tex]\dfrac{r_2}{r_1}=\dfrac{m_2}{m_1}\\\Rightarrow r_2=\dfrac{m_2}{m_1}r_1\\\Rightarrow r_2=\dfrac{2.16\times 10^{-26}}{1.99\times 10^{-26}}\times 12.5\times 10^{-2}\\\Rightarrow r_2=0.136\ \text{m}[/tex]
The required diameter is [tex]2\times 0.136=0.272\ \text{m}[/tex]
Separation is given by
[tex]2(r_2-r_1)=2(0.136-0.125)=0.022\ \text{m}[/tex]
The distance of separation is 2.2 cm which is easily observable.