Answer:
x_total = 0.17m
Explanation:
We can treat this exercise with the kinematics equations, where in the first part it is accelerated and in the second it is a uniform movement.
Let's analyze accelerated motion
The time that lasts is t = 20 10⁻³ s, the initial speed is zero (v₀ = 0), let's find the length that advances
x₁ = v₀ t + ½ a t²
x₁ = ½ a t²
x₁ = ½ 210 (20 10⁻³)²
x₁ = 4.2 10⁻² m
let's find the speed for the end of this movement
v = v₀ + a t
v = 0 + 210 20 10⁻³
v = 4.2 m / s
with this speed we can find the distance that the uniform movement
x₂ = v t2
x₂ = 4.2 30 10⁻³
x₂ = 1.26 10⁻¹ m
x₂ = 0.126m
the total distance traveled is
x_total = x₁ + x₂
x_total = 0.0420 +0.126
x_total = 0.168m
Let's reduce the significant figures to two
x_total = 0.17m
Two unknown resistors are connected together. When they are connected in series their equivalent resistance is 15 Ω. When they are connected in parallel, their equivalent resistance is 3.3 Ω. What are the resistances of these resistors?
Explanation:
Let x and y are two unknown resistors. When they are connected in series their equivalent resistance is 15 Ω. When they are connected in parallel, their equivalent resistance is 3.3 Ω.
For series combination,
[tex]x+y=15[/tex] ......(1)
For parallel combination,
[tex]\dfrac{1}{x}+\dfrac{1}{y}=3.3[/tex] ....(2)
We need to find the resistances of these resistors. Solving equation (1) and (2) we get :
x = 0.29 and y = 14.7
Hence, the resistances of these resistors are 0.29 ohms and 14.7 ohms.
Why would physics be used to study light emitted by a star?
O A. Stars form interesting shapes in the sky.
B. Light is very pretty.
O C. The positions of stars control our lives.
O D. Light is a form of energy.
Answer:
O D.
Explanation:
Physics has an aspect that deals with the study of energy
Answer:
D. Light is a form of energy
Explanation:
You are in the frozen food section of the grocery store and you notice that your hand gets cold when you place it on the glass windows of the display cases. Your friend says this is because coolness is transferred from the display case to your hand. What do you think?
Answer:
I think my friend got it all wrong, as coolness can not be transferred but heat was actually transferred between my hand and the glass windows
Explanation:
In thermodynamics, coolness can not be transferred, only heat can be transferred
Here is how the mechanism of why i felt cold works, my body gave out heat, hence there was heat transfer from a region of high to a low heat region, equilibrium was reached and I started feeling the coolness in my hands.
You are pushing a 60 kg block of ice across the ground. You exert a constant force of 9 N on the block of ice. You let go after pushing it across some distance d, and the block leaves your hand with a velocity of 0.85 m/s. While you are pushing, the work done by friction between the ice and the ground is 3 Nm (3 J). Assuming that the ice block was stationary before you push it, find d.
Answer: d = 33 cm or 0.33 m
Explanation: In physics, Work is the amount of energy transferred to an object to make it move. It can be expressed by:
W = F.d.cosθ
F is the force applied to the object, d is the displacement and θ is the angle formed between the force and the displacement.
For the ice block, the angle is 0, i.e., force and distance are at the same direction, so:
W = F.d.cos(0)
W = F.d
To determine d:
d = [tex]\frac{W}{F}[/tex]
d = [tex]\frac{3}{9}[/tex]
d = 0.33 m
The distance d the block ice moved is 33 cm.
A cylinder is closed by a piston connected to a spring of constant 2.20 10^3 N/m. With the spring relaxed, the cylinder is filled with 5.00 L of gas at a pressure of 1.00 atm and a temperature of 20.0°C. The piston has a cross sectional area of 0.0100 m^2 and negligible mass. What is the pressure of the gas at 250 °C?
Answer:
1.3515x10^5pa
Explanation:
Plss see attached file
A 46-ton monolith is transported on a causeway that is 3500 feet long and has a slope of about 3.7. How much force parallel to the incline would be required to hold the monolith on this causeway?
Answer:
2.9tons
Explanation:
Note that On an incline of angle a from horizontal, the parallel and perpendicular components of a downward force F are:
parallel ("tangential"): F_t = F sin a
perpendicular ("normal"): F_n = F cos a
At a=3.7 degrees, sin a is about 0.064 and with F = 46tons:
F sin a ~~ (46 tons)*0.064 ~~ 2.9tons
Also see attached file
The required force parallel to the incline to hold the monolith on this causeway will be "2.9 tons".
Angle and ForceAccording to the question,
Angle, a = 3.7 degrees or,
Sin a = 0.064
Force, F = 46 tons
We know the relation,
Parallel (tangential), [tex]F_t[/tex] = F Sin a
By substituting the values,
= 46 × 0.064
= 2.9 tons
Thus the response above is appropriate answer.
Find out more information about Force here:
https://brainly.com/question/25239010
what is transmission of heat?
Answer:
Heat transfer is the transmission of heat energy from a body at higher temperature to lower temperature. The three mechanisms of heat transfer are
Conduction ConvectionRadiation.Example of Conduction:
Heating a metal
Example of Convection:
Sea Breeze
Example of Radiation:
Sun
Hope this helps ;) ❤❤❤
Answer:
Transmission of heat is the movement of thermal energy from one thing to another thing of different temperature.
There are three(3) different ways heat can transfer and they are:
a) Conduction (through direct contact).
b) Convection (through fluid movement).
c) Radiation (through electromagnetic waves).
Examples: 1.Heating a saucepan of water using a coalpot.(conduction&convection).
2. Baking a pie in an oven(radiation).
Hope it helps!!Please mark me as the brainliest!!!Thanks!!!!❤❤❤
A communications satellite orbiting the earth has solar panels that completely absorb all sunlight incident upon them. The total area A of the panels is 10m2.
1) The intensity of the sun's radiation incident upon the earth is about I=1.4kW/m2. Suppose this is the value for the intensity of sunlight incident upon the satellite's solar panels. What is the total solar power P absorbed by the panels?
Express your answer numerically in kilowatts to two significant figures.
2) What is the total force F on the panels exerted by radiation pressure from the sunlight?
Express the total force numerically, to two significant figures, in units of newtons.
Answer:
1) 14 kW
2) 4.67 x 10^-5 N
Explanation:
Area of solar panel = 10 m^2
Intensity of sun's radiation incident on earth = 1.4 kW/m^2
Solar power absorbed = ?
We know that the intensity of radiation on a given area is
[tex]I[/tex] = [tex]\frac{P}{A}[/tex]
where I is the intensity of the radiation
P is the power absorbed due to this intensity on a given area
A is the area on which this radiation is incident
From the equation, we have
P = IA
P = 1.4 kW/m^2 x 10 m^2 = 14 kW
b) For a perfect absorbing surface, the radiation pressure is given as
p = I/c
where p is the radiation pressure
I is the incident light intensity = 1.4 kW/m^2 = 1.4 x 10^3 kW/m^2
c is the speed of light = 3 x 10^8 m/s
substituting values, we have
p = (1.4 x 10^3)/(3 x 10^8) = 4.67 x 10^-6 Pa
we know that Force = pressure x area
therefore force on the solar panels is
F = 4.67 x 10^-6 x 10 = 4.67 x 10^-5 N
change in entropy of universe during 900g of ice at 0 degree celcus to water at 10 degree celcius at room temp=30 degree celcius
Answer:
4519.60 J/KExplanation:
Change in entropy is expressed as ΔS = ΔQ/T where;
ΔQ is the total heat change during conversion of ice to water.
T is the room temperature
First we need to calculate the total change in heat using the conversion formulae;
ΔQ = mL + mcΔθ (total heat energy absorbed during phase change)
m is the mass of ice/water = 900g = 0.9kg
L is the latent heat of fusion of ice = 3.33 x 10⁵J/kg
c is the specific heat capacity of water = 4200J/kgK
Δθ is the change in temperature of water = 10°C - 0C = 10°C = 283K
Substituting the given values into ΔQ;
ΔQ = 0.9(333000)+0.9(4200)(283)
ΔQ = 299700 + 1069740
ΔQ = 1,369,440 Joules
Since Change in entropy ΔS = ΔQ/T
ΔS = 1,369,440/30+273
ΔS = 1,369,440/303
ΔS = 4519.60 J/K
Hence, the change in entropy of the universe is 4519.60 J/K
An astronomy student, for her PhD, really needs to estimate the age of a cluster of stars. Which of the following would be part of the process she would follow?
A. plot an H-R diagram for the stars in the cluster
B. count the number of M type stars in the cluster
C. measure the Doppler shift of a number of the stars in the cluster
D. search for planets like Jupiter around the stars in the center of the cluster
E. search for x-rays coming from the center of the cluster
Answer:
A. plot an H-R diagram for the stars in the cluster.
Explanation:
A star cluster can be defined as a constellation of stars, due to gravitational force, which has the same origin.
The astronomy student would have to plot an H-R diagram for the stars in the cluster and determine the age of the cluster by observing the turn-off point. The turn-off is majorly as a result of gradual depletion of the source of energy of the star. Thus, it projects off the constellation.
The index of refraction of a certain material is 1.5. If I send red light (700 nm) through the material, what will the frequency of the light be in the material
Answer: [tex]4.29\times10^{14}\text{ Hz}[/tex]
Explanation:
Given: Speed of red light = 700 nm
= [tex]700\times10^{-9}[/tex] m
[tex]= 7\times10^{-7}[/tex] m
Frequency of red light = [tex]\dfrac{\text{Speed of light}}{\text{Speed of red light}}[/tex]
Speed of light = [tex]3\times10^8[/tex] m
Then, Frequency of red light = [tex]\dfrac{3\times10^8}{7\times10^{-7}}[/tex]
[tex]=0.429\times10^{8-(-7)}=0.429\times10^{15}\\\\=4.29\times10^{14}\ Hz[/tex]
Hence, Frequency of red light = [tex]4.29\times10^{14}\text{ Hz}[/tex]
The frequency of the light be in the material is [tex]4.29\times10^{14}\text{ Hz}[/tex].
At a certain instant the current flowing through a 5.0-H inductor is 3.0 A. If the energy in the inductor at this instant is increasing at a rate of 3.0 J/s, how fast is the current changing
Answer:
The current is changing at the rate of 0.20 A/s
Explanation:
Given;
inductance of the inductor, L = 5.0-H
current in the inductor, I = 3.0 A
Energy stored in the inductor at the given instant, E = 3.0 J/s
The energy stored in inductor is given as;
E = ¹/₂LI²
E = ¹/₂(5)(3)²
E = 22.5 J/s
This energy is increased by 3.0 J/s
E = 22.5 J/s + 3.0 J/s = 25.5 J/s
Determine the new current at this given energy;
25.5 = ¹/₂LI²
25.5 = ¹/₂(5)(I²)
25.5 = 2.5I²
I² = 25.5 / 2.5
I² = 10.2
I = √10.2
I = 3.194 A/s
The rate at which the current is changing is the difference between the final current and the initial current in the inductor.
= 3.194 A/s - 3.0 A/s
= 0.194 A/s
≅0.20 A/s
Therefore, the current is changing at the rate of 0.20 A/s.
The rate at which the current is changing is;
di/dt = 0.2 A/s
We are given;
Inductance; L = 5 H
Current; I = 3 A
Rate of Increase of energy; dE/dt = 3 J/s
Now, the formula for energy stored in inductor is given as;
E = ¹/₂LI²
Since we are looking for rate at which current is changing, then we differentiate both sides of the energy equation to get;
dE/dt = LI (di/dt)
Plugging in the relevant values gives;
3 = (5 × 3)(di/dt)
di/dt = 3/(5 × 3)
di/dt = 0.2 A/s
Read more at; https://brainly.com/question/13112120
A light wave with an electric field amplitude of E0 and a phase constant of zero is to be combined with one of the following waves. Which of these combinations produces the greatest intensity?
a. Wave A has an amplitude of E0 and a phase constant of zero.
b. Wave B has an amplitude of E0 and a phase constant of π.
c. Wave C has an amplitude of 2E0 and a phase constant of zero.
d. Wave D has an amplitude of 2E0 and a phase constant of π.
e. Wave E has an amplitude of 3E0 and a phase constant of π.
Answer:
the greatest intensity is obtained from c
Explanation:
An electromagnetic wave stagnant by the expression
E = E₀ sin (kx -wt)
when two waves meet their electric fields add up
E_total = E₁ + E₂
the intensity is
I = E_total . E_total
I = E₁² + E₂² + 2E₁ E₂ cos θ
where θ is the phase angle between the two rays
Let's examine the two waves
in this case E₁ = E₂ = E₀
I = Eo2 + Eo2 + 2 E₀ E₀ coasts
I = E₀² (2 + 2 cos θ )
I = 2 I₀ (1 + cos θ )
let's apply this expression to different cases
a) In this case the angle is zero therefore the cosine is worth 1 and the intensity is I_total = 4 I₀
b) cos π = -1 this implies that I_total = 0
c) the cosine is 1,
I = E₀² + 4E₀² + 2 E₀ (2E₀) cos θ
I = E₀² (5 +4 cos θ)
I = E₀² 9
I = 9 Io
d) in this case the cos pi = -1
I = E₀² (5 -4)
I = I₀
e) we rewrite the equation
I = E₀² + 9 E₀² + 2 E₀ (3E₀) cos θ
I = Eo2 (10 + 6 cos θ)
cos π = -1
I = E₀² (10-6)
I = 4 I₀
the greatest intensity is obtained from c
The combination that has the greatest intensity is C. Wave C has an amplitude of 2E0 and a phase constant of zero.
What is an amplitude?An amplitude simply means the variable that meaures the change that occur in a single variable. It's the maximum diatance moved.
In this case, the combination that has the greatest intensity is Wave C since it has an amplitude of 2E0 and a phase constant of zero.
Learn more about amplitude on:
https://brainly.com/question/3613222
A 10-m-long glider with a mass of 680 kg (including the passengers) is gliding horizontally through the air at 26 m/s when a 60 kg skydiver drops out by releasing his grip on the glider.
What is the glider's speed just after the skydiver lets go?
Answer:
The glider’s speed after the skydiver lets go is 26 m/s
Explanation:
To calculate the glider’s speed just after the skydiver lets go, we will need to use the conservation of momentum
Mathematically;
mv = mv + mv
so 680 * 26 = (680-60)v + 60 * 26
17680 = 620v + 1560
17680-1560 = 620v
16120 = 620v
v = 16120/620
v = 26 m/s
In your own words, discuss how energy conservation applies to a pendulum. Where is the potential energy the most? Where is the potential energy the least? Where is kinetic energy the most? Where is kinetic energy the least?
Answer:
Explanation:
Energy conservation applies to the swinging of pendulum . When the bob is at one extreme , it is at some height from its lowest point . So it has some gravitational potential energy . At that time since it remains at rest its kinetic energy is zero or the least . As it goes down while swinging , its potential energy decreases and kinetic energy increases following conservation of mechanical energy . At the At the lowest point , its potential energy is least and kinetic energy is maximum .
In this way , there is conservation of mechanical energy .
A converging lens of focal length 7.40 cm is 18.0 cm to the left of a diverging lens of focal length -7.00 cm . A coin is placed 12.0 cm to the left of the converging lens.
A) Find the location of the coin's final image relative to the diverging lens.
B) Find the magnification of the coin's final image.
Answer:
Explanation:
The set up is a compound microscope. The converging lens is the objective lens while the diverging lens is the eyepiece lens.
In compound microscopes, the distance between the two lenses is expressed as L = v0+ue
v0 is the image distance of the objective lens and ue is the object distance of the eye piece lens.
Befre we can get the location of the coin's final image relative to the diverging lens (ve), we need to get ue first.
Given L = 18.0cm
Using the lens formula to get v0 where u0 = 12.0cm and f0 = 7.40cm
1/f0 = 1/u0+1/v0
f0 and u0 are the focal length and object distance of the converging lens (objective lens)respectively.
1/v0 = 1/7.4-1/12
1/v0 = 0.1351-0.0833
1/v0 = 0.0518
v0 = 1/0.2184
v0 = 19.31cm
Note that v0 = ue = 19.31cm
To get ve, we will use the lens formula 1/fe = 1/ue+1/ve
1/ve = 1/fe-1/ue
Given ue = 19.31cm and fe = -7.00cm
1/ve = -1/7.0-1/19.31
1/ve = -0.1429-0.0518
1/ve = -0.1947
ve = 1/-0.1947
ve = -5.14cm
Hence, the location of the coin's final image relative to the diverging lens is 5.14cm to the lens
b) Magnification of the final image M = ve/ue
M = 5.14/19.31
M = 0.27
Magnification of the final image is 0.27
In the circuit shown, the galvanometer shows zero current. The value of resistance R is :
A) 1 W
B) 2 W
C) 4 W
D) 9 W
Answer:
its supposed to be (a) 1W
If the voltage amplitude across an 8.50-nF capacitor is equal to 12.0 V when the current amplitude through it is 3.33 mA, the frequency is closest to:
5.19 x 10³Hz
Explanation:The capacitive reactance, [tex]X_{C}[/tex], which is the opposition given to the flow of current through the capacitor is given by;
[tex]X_C = \frac{1}{2\pi fC }[/tex]
Where;
f = frequency of the signal through the capacitor
C = capacitance of the capacitor.
Also, from Ohm's law, the voltage(V) across the capacitor is given by the product of current(I) and the capacitive reactance. i.e;
V = I x [tex]X_{C}[/tex] [Substitute the value of
=> V = I x [tex]\frac{1}{2\pi fC}[/tex] [Make f the subject of the formula]
=> f = [tex]\frac{I}{2\pi VC}[/tex] ---------------------(i)
From the question;
I = 3.33mA = 0.00333A
C = 8.50nF = 8.50 x 10⁻⁹F
V = 12.0V
Substitute these values into equation (i) as follows;
f = [tex]\frac{0.00333}{2 * 3.142 * 12.0 * 8.50 * 10^{-9}}[/tex] [Taking [tex]\pi[/tex] = 3.142]
f = 5.19 x 10³Hz
Therefore, the frequency is closest to f = 5.19 x 10³Hz
Recent technological developments like high-resolution satellite imagery and diagnostic positron emission tomography (PET scans) have refined and extended the camera’s capacity to provide information. Which passage assertion does this information support most strongly?
Answer:
D) Photography can be used to both control and benefit society.
Explanation:
High-resolution satellite imagery and diagnostic positron emission tomography (PET scans) have been used to both control and benefits the society in the sense that it has helped to take records of information of crime, traffic offenders such drunk drivers and over speeding drivers, e.t.c. it helps control by given their information and automatically penalizing them or ensuring the agency penalized them and also benefit the society by preventing people from committing crime thereby, protecting them from offenders.
To understand the meaning of the variables in Gauss's law, and the conditions under which the law is applicable. Gauss's law is usually written
ΦE=∫E.dA =qencl/ϵ0
, where ϵ0=8.85×10−12C2/(N⋅m2) is the permittivity of vacuum.
How should the integral in Gauss's law be evaluated?
a. around the perimeter of a closed loop
b. over the surface bounded by a closed loop
c. over a closed surface
Answer:
Explanation:
jjjjjjjjjjjjjjjj
The angle between the axes of two polarizing filters is 41.0°. By how much does the second filter reduce the intensity of the light coming through the first?
Answer:
The amount by which the second filter reduces the intensity of light emerging from the first filter is
z = 0.60
Explanation:
From the question we are told that
The angle between the axes is [tex]\theta = 41^o[/tex]
The intensity of polarized light that emerges from the second filter is mathematically represented as
[tex]I= I_o cos^2 \theta[/tex]
Where [tex]I_o[/tex] is the intensity of light emerging from the first filter
[tex]I = I_o [cos(41.0)]^2[/tex]
[tex]I =0.60 I_o[/tex]
This means that the second filter reduced the intensity by z = 0.60
Two long parallel wires are separated by 11 cm. One of the wires carries a current of 54 A and the other carries a current of 45 A. Determine the magnitude of the magnetic force on a 4.3 m length of the wire carrying the greater current.
Explanation:
It is given that,
The separation between two parallel wires, r = 11 cm = 0.11 m
Current in wire 1, [tex]q_1=54\ A[/tex]
Current in wire 2, [tex]q_2=45\ A[/tex]
Length of wires, l = 4.3 m
We need to find the magnitude of the magnetic force on a 4.3 m length of the wire carrying the greater current. The magnetic force per unit length is given by :
[tex]\dfrac{F}{l}=\dfrac{\mu_o I_1I_2}{2\pi r}\\\\F=\dfrac{\mu_o I_1I_2l}{2\pi r}\\\\F=\dfrac{4\pi \times 10^{-7}\times 54\times 45\times 4.3}{2\pi \times 0.11}\\\\F=0.0189\ N[/tex]
So, the magnetic force on a 4.3 m length of the wire on both of currents is F=0.0189 N.
Two stars of masses M and 6M are separated by a distance D. Determine the distance (measured from M) to a point at which the net gravitational force on a third mass would be zero.
Answer:
0.29D
Explanation:
Given that
F = G M m / r2
F = GM(6m) / (D-r)2
G Mm/r2 = GM(6m) / (D-r)2
1/r2 = 6 / (D-r)2
r = D / (Ö6 + 1)
r = 0.29 D
See diagram in attached file
You need to design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a 500 pF capacitor. What values do you need to specify for R1 and R2
Answer:
Hello your question has some missing parts and the required diagram attached below is the missing part and the diagram
Digital circuits require actions to take place at precise times, so they are controlled by a clock that generates a steady sequence of rectangular voltage pulses. One of the most widely
used integrated circuits for creating clock pulses is called a 555 timer. shows how the timer’s output pulses, oscillating between 0 V and 5 V, are controlled with two resistors and a capacitor. The circuit manufacturer tells users that TH, the time the clock output spends in the high (5V) state, is TH =(R1 + R2)*C*ln(2). Similarly, the time spent in the low (0 V) state is TL = R2*C*ln(2). Design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a 500 pF capacitor. What values do you need to specify for R1 and R2?
ANSWER : R1 = 144.3Ω, R2 = 72.2 Ω
Explanation:
Frequency = 10 MHz
Time period = 1 / F = 0.1 u s
Duty cycle = 75% = 0.75
Duty cycle can be represented as : Ton / T
Also: Ton = Th = 0.75 * 0.1 u s = 75 n s
TL = T - Th = 100 ns - 75 n s = 25 n s
To find the value of R2 we use the equation for time spent in the low (0 V) state
TL = R2*C*ln(2)
hence R2 = TL / ( C * In 2 )
c = 500 pF
Hence R2 = 25 / ( 500 pF * 0.693 ) = 72.2 Ω
To find the value of R1 we use the equation for the time the clock output spends in the high (5V) state,
Th = (R1 + R2)*C*ln(2)
from the equation make R1 the subject of the formula
R1 = (Th - ( R2 * C * In2 )) / (C * In 2)
R1 = ( 75 ns - ( 72.2 * 500 pF * 0.693)) / ( 500 pF * 0.693 )
R1 = ( 75 ns - ( 25 ns ) / 500 pf * 0.693
= 144.3Ω
An ideal air-filled parallel-plate capacitor has round plates and carries a fixed amount of equal butopposite charge on its plates. All the geometric parameters of the capacitor (plate diameter andplate separation) are now DOUBLED. If the original energy stored in the capacitor was U0, howmuch energy does it now store?
Answer:
U_f = (U_o)/2)
Explanation:
The capacitance of a given capacitor is given by the formula;
C = ε_o•A/d
While energy stored in plates capacitor is given as; U_o = Q²/2C
Now,we are told that that all the dimensions of the capacitor plate is doubled. Thus, we now have;
C' = ε_o•4A/2d
Hence, C' = 2C
so capacitance is now doubled
Thus, the final energy stored between the plates of capacitor is given as;
U_f = Q²/2C'
From earlier, we saw that C' = 2C.
Thus;
U_f = Q²/2(2C)
U_f = Q²/4C
Rearranging, we have;
U_f = (1/2)(Q²/2C)
From earlier, U_o = Q²/2C
Hence,
U_f = (1/2)(U_o)
Or
U_f = (U_o/2)
A car starts from Hither, goes 50 km in a straight line to Yon, immediately turns around, and returns to Hither. The time for this round trip is 2 hours. The magnitude of the average velocity of the car for this round trip is:
A. 0
B. 50 km/hr
C. 100 km/hr
D. 200 km/hr
E. cannot be calculated without knowing the acceleration
Answer:
The average velocity for this trip is 0 km/hr
Explanation:
We know that average velocity = total displacement/total time.
Now, its displacement is d = final position - initial position.
Since the car starts and ends at its initial position at Hither, if we assume its initial position is 0 km, then its final position is also 0 km.
So, its displacement is d = 0 km - 0 km = 0 km.
Since the total time for the round trip is 2 hours, the average velocity is
total displacement/ total time = 0 km/2 hr = 0 km/hr.
So the average velocity for this trip is 0 km/hr
A 25 kg box sliding to the left across a horizontal surface is brought to a halt in a distance of 15 cm by a horizontal rope pulling to the right with 15 N tension.
Required:
a. How much work is done by the tension?
b. How much work is done by gravity?
The work done by tensional force of the rope is 2.25 J and the work done by gravity is 36.75 J.
The given parameters;
mass of the box, m = 25 kgdistance traveled by the box, d = 15 cm = 0.15 mtension on the rope, T = 15 NThe work done by the tension is calculated as follows;
W = Fd
W = 15 x 0.15
W = 2.25 J
The work done by gravity is calculated as;
W = (25 x 9.8) x 0.15
W = 36.75 J
Thus, the work done by tensional force of the rope is 2.25 J and the work done by gravity is 36.75 J.
Learn more here: https://brainly.com/question/19498865
You throw a stone vertically upward with a speed of 26.0 m/s. (a) How fast is it moving when it reaches a height of 15.0 m? (b) How much time is required to reach this height when it's falling down? a. 19.5 m/s , b. 4.51 s a. 17.9 m/s , b. 0.620 s a. 19.5 m/s , b. 0.800 s a. 17.9 m/s , b. 4.28 s a. 380 m/s , b. 8 s
Answer:
ok well
Explanation:
teghe
Answer:
v = 19.5 m/s
t = 4.51 s
Explanation:
a)
given:
height is 15m from the ground
initial velocity Vi = 26 m/s
acceleration a or g = 9.81 m/s²
formula: Vf² = Vi² + 2aΔy
26² = Vi² + 2 (9.81) 15
Vi = 19.5 m/s
now you can calculate the time by using the equations below:
Δy = 1/2 (Vi + Vf) t
Vf = Vi + a t
Δy = Vi t + 1/2 a t
time must be 4.51 s
Two identical small charged spheres are a certain distance apart, and each one initially experiences an electrostatic force of magnitude F due to the other. With time, charge gradually leaks off of both spheres. Calculate the magnitude of the electrostatic force, when each of the spheres has lost half of its initial charge. (Your answer will be a function of F, since no values are giving)
Answer:
1/4F
Explanation:
We already know thatThe electrostatic force is directly proportional to the product of the charge, from Coulomb's law.
So F α Qq
But if it is now half the initial charges, then
F α (1/2)Q *(1/2)q
F α (1/4)Qq
Thus the resultant charges are each halved is (1/4) and the first initial force experienced at full charge.
Thus the answer will be 1/4F
In your words, describe how momentum is related to energy.
Answer:
you need momentum in order to release energy. For example, if you need to push something heavy and you get a running head start, then it will be easier.
Explanation: