consider example 3.9 on page 87. suppose that the dog runs at a speed of 7.0 m/s. how far does the dog travel horizontally from the edge of the dock before splashing down?

Answers

Answer 1

The dog travels 2.1 meters horizontally from the edge of the dock before splashing down.

When dog runs at speed 7.0m/s,how far he reached the edge of the dock before splashing down?

We know that the distance the dog travels horizontally before splashing down is equal to the product of the time in the air and the horizontal velocity of the dog.

Using the equation: distance = velocity x time

We can first solve for the time in the air.

The initial vertical velocity of the dog is zero, and we can use the equation:

distance = 1/2 x acceleration x time⁻²

to find the time it takes for the dog to fall from the edge of the dock to the water.

Assuming a gravitational acceleration of 9.8 m/s⁻², we get:

distance = 1/2 x 9.8 m/s⁻² x time⁻²

0.91 meters = 4.9 x time⁻²

time = sqrt(0.91 / 4.9) = 0.3 seconds

Now that we know the time in the air, we can find the horizontal distance traveled by the dog before splashing down.

Using the equation:

distance = velocity x time

where velocity is the horizontal velocity of the dog, which we know is 7.0 m/s, we get:

distance = 7.0 m/s x 0.3 s = 2.1 meters

The dog travels 2.1 meters horizontally from the edge of the dock before splashing down.

Learn more about Speed and splashing down

brainly.com/question/14575052

#SPJ11


Related Questions

a particular wire has a resistivity of 3.0 108 m and a cross-sectional area of 4.0 106 m2. a length of this wire is to be used as a resistor that will develop 48 w of power when connected across a 20-v battery. what length of wire is required?

Answers

When linked across a 20-volt battery, a length of 5.56 metres of wire is required to provide 48 watts of electricity.

We may utilise the power in a resistor formula, which is:

[tex]P = V^2 / R[/tex]

where P denotes power, V denotes voltage, and R denotes resistance.

This formula can be rearranged to account for resistance:

[tex]R = V^2 / P[/tex]

We also know that the resistance of a wire may be computed using the formula: resistivity (), length (L), and cross-sectional area (A).

R = ρL / A

We may calculate the needed length of wire by combining these two equations:

ρL / A = [tex]V^2 / P[/tex]

L = A[tex]V^2[/tex] / (P ρ)

Plugging in the given values, we get:

L = (4.0 x [tex]10^-6 m^2[/tex]) ([tex]20 V)^2[/tex]/ (48 W) (3.0 x [tex]10^8[/tex] Ω·m)

L = 5.56 m

As a result, a wire length of 5.56 metres is required to generate 48 watts of electricity when linked across a 20-volt battery.

Therefore, the length of wire required is 1.11 km.

Learn more about length

https://brainly.com/question/30100801

#SPJ4

a parallel plate capacitor has a capacitance c0. a second parallel plate capacitor has plates with twice the cross sectional area and twice the separation. the capacitance of the second capacitor is:

Answers

The capacitance of the second parallel plate capacitor is 2c0 which is twice that of the first capacitor.

The capacitance of a parallel plate capacitor is given by the formula C = εA/d, where C is the capacitance, ε is the permittivity of the material between the plates, A is the area of each plate, and d is the separation between the plates.

If the second capacitor has plates with twice the cross sectional area, this means that A is multiplied by 2. Similarly, if the separation is twice as much, then d is also multiplied by 2.

Therefore, the capacitance of the second capacitor is:

C = ε(2A)/(2d)

C = (εA/d) x 2

C = 2c0

So the capacitance of the second parallel plate capacitor is twice that of the first capacitor.

More on capacitance: https://brainly.com/question/17176550

#SPJ11

the geocentric model of the universe that was widely accepted in scientific and religious circles until the 16th century was that of

Answers

The geocentric model of the universe that was widely accepted in scientific and religious circles until the 16th century was that of Ptolemy, also known as the Ptolemaic system.

The geocentric model of the universe, widely accepted in scientific and religious circles until the 16th century, was based on the idea that Earth was at the center of the cosmos.

This model, also known as the Ptolemaic system, was developed by the ancient Greek astronomer Claudius Ptolemy in the 2nd century AD. According to this model, all celestial objects, including the Sun, Moon, and stars, revolved around the Earth in circular or epicyclical paths.

The geocentric model was dominant for over a thousand years due to its alignment with religious beliefs and its ability to explain astronomical observations.

However, the 16th-century work of Nicolaus Copernicus and later astronomers led to the acceptance of the heliocentric model, which placed the Sun at the center of the solar system and was a more accurate representation of the cosmos.

To learn more about : geocentric

https://brainly.com/question/1507151

#SPJ11

how far apart are the object and image produced by a converging lens with 35.5- cm focal length when the object is 45 cm from the lens?

Answers

To find the distance between the object and image produced by a converging lens with a 35.5 cm focal length when the object is 45 cm from the lens, you can use the lens formula:

1/f = 1/do + 1/di

Where:
f = focal length (35.5 cm)
do = object distance (45 cm)
di = image distance

Step 1: Plug in the values for f and do:
1/35.5 = 1/45 + 1/di

Step 2: Subtract 1/45 from both sides:
1/35.5 - 1/45 = 1/di

Step 3: Find a common denominator and subtract:
(45 - 35.5)/(35.5 * 45) = 1/di
9.5/(35.5 * 45) = 1/di

Step 4: Take the reciprocal of both sides:
di = (35.5 * 45)/9.5

Step 5: Calculate di:
di ≈ 168.42 cm

So, the object and image produced by the converging lens with a 35.5 cm focal length when the object is 45 cm from the lens are approximately 168.42 cm apart.

To know more about lens formula:

https://brainly.com/question/30241648

#SPJ11

question 4 a photon with a longer wavelength is more energetic than a photon with a short wavelength. travels slower than a photon with a short wavelength. is more blue than a photon with a short wavelength. has a lower frequency than a photon with a short wavelength.

Answers

A photon with a longer wavelength has a lower frequency than a photon with a short wavelength, the correct option is (d)

The wavelength and frequency of a photon are related to its energy and color. Photons with shorter wavelengths have higher frequencies and higher energy, while photons with longer wavelengths have lower frequencies and lower energy.

This is described by the equation E = hf, where E is energy, h is Planck's constant, and f is frequency. Therefore, a photon with a longer wavelength has a lower frequency than a photon with a shorter wavelength, the correct option is (d)

To learn more about wavelength follow the link:

https://brainly.com/question/4112024

#SPJ4

The complete question is:

A photon with a longer wavelength

a) is more energetic than a photon with a short wavelength.

b) travels slower than a photon with a short wavelength.

c) is more blue than a photon with a short wavelength.

d) has a lower frequency than a photon with a short wavelength.

e) All of the above

suppose the horns of all cars emitted sound at the same pitch or frequency. what would be the change in the frequency of the horn of a car moving toward ou? away from you?

Answers

The frequency of the horn of a car moving towards you would increase, while the frequency of a car moving away from you would decrease due to the Doppler effect.

The frequency of the sound waves an automobile makes will rise as it approaches you. This is due to the sound waves compression as the automobile draws closer to you, which causes them to have a shorter wavelength and a higher frequency. The Doppler effect is the name for this rise in frequency.

On the other hand, when an automobile pulls away from you, the sound waves' frequency will drop because they stretch, leading to a longer wavelength and a lower frequency. As a result, if all vehicles produce sound at the same frequency, you would hear a frequency rise for a vehicle travelling in your direction and a frequency drop for a vehicle driving away from you.

Learn more about the Doppler effect:

https://brainly.com/question/12764207

#SPJ4

If the car is moving towards you, the frequency of the horn will increase,moving away from you, the frequency will decrease

If the horns of all cars emitted sound at the same pitch or frequency, the frequency of the horn of a car moving toward you would appear to increase, as the sound waves are compressed and the wavelength is shortened due to the Doppler effect. Conversely, the frequency of the horn of a car moving away from you would appear to decrease, as the sound waves are stretched and the wavelength is lengthened due to the Doppler effect. This is because the observer perceives a higher frequency when the source is approaching and a lower frequency when the source is moving away.

To learn more about the doppler effect, click on this -

brainly.com/question/15318474

#SPJ11

Calculating Average Speed
If you know the total distance an object travels over a certain period of time, you can
calculate the average speed of the object.
To do so, you use the formula ____________________________________________.

Answers

The formula for speed is S=d/t

Explanation: Speed equals distance divided by time.

dust-ignitionproof equipment must be designed and built in a manner that excludes dusts and prevents arcs, sparks, or heat that may be generated inside of the enclosure from causing ignition of ? of a specified dust on or in the vicinity of the enclosure.

Answers

Equipment that is designed to be dust-ignitionproof must be constructed in a way that prevents dust from getting inside and removes the possibility that heat, sparks, or arcs generated inside the apparatus would result in explosions or fires.

This is due to the fact that dust can be extremely hazardous in some working situations and can result in mishaps that could harm personnel or harm equipment.

In order to work safely in dusty environments, it is crucial to design and construct dust-ignitionproof equipment that can do so by avoiding the ignition of any dust that may be present inside or around the equipment. The ability to operate the machinery safely without endangering their health or safety is thus guaranteed.

Learn more about explosions:

https://brainly.com/question/30682364

#SPJ4

question 34 pts how do ambient sounds differ from sound effects?how are foley sounds different from sound effects?

Answers

The differences between ambient sounds, sound effects, and Foley sounds.

Ambient sounds, also known as background sounds or atmospheric sounds, are the continuous, subtle noises that help create a sense of atmosphere or location in a scene. They differ from sound effects in that sound effects are distinct, purposeful sounds added to emphasize specific actions or events in a scene.

Foley sounds, on the other hand, are a type of sound effect created manually by a Foley artist to match and enhance the actions happening on-screen. They are different from regular sound effects because they are typically recorded live in a studio using various objects and materials to create realistic, synchronized sounds for actions such as footsteps, clothing rustles, and object handling.

In summary:

1. Ambient sounds create a sense of atmosphere or location and are continuous and subtle.
2. Sound effects are distinct, purposeful sounds added to emphasize specific actions or events.
3. Foley sounds are a type of sound effect created manually by a Foley artist to match on-screen actions.

To know more about ambient sounds, sound effects, and Foley sounds:

https://brainly.com/question/16519187

#SPJ11

on the centered zipper, what is the only part of the work that is done on the outside of the garment?

Answers

The only part of the work that is done on the outside of the garment is the basting or pinning of the zipper tape to the fabric.

The rest of the work is done on the inside of the garment. The zipper teeth are inserted between the layers of the fabric and the seam is sewn in place. The seam is then pressed open and the zipper is opened up to expose the teeth.

The zipper tape is then folded back and stitched in place, creating a clean finish on the inside of the garment. The final step is to topstitch the zipper on the outside of the garment, which reinforces the zipper and adds a decorative touch.

Overall, the centered zipper is a popular and versatile choice for many types of garments and can be easily customized to suit individual preferences.

To learn more about : garment

https://brainly.com/question/28264851

#SPJ11

consider the conditions in practice problem 5.2. how short would the driver reaction times of oncoming vehicles have to

Answers

The driver reaction times of oncoming vehicles would need to be shortened to an average of approximately 1.018 seconds for the probability of an accident to equal 0.20.

The reaction time

Practice Problem 5.2 refers to a situation where a driver needs to react within 1 second to avoid an accident, but the actual reaction time is normally distributed with a mean of 1.25 seconds and a standard deviation of 0.2 seconds.

To calculate the required shortening of driver reaction times for the probability of an accident to equal 0.20, we can use the inverse normal distribution function.

First, we need to find the z-score corresponding to a probability of 0.20. Using a standard normal distribution table or calculator, we find that the z-score is approximately -0.84.

Next, we can use the formula for converting a normally distributed variable to a standard normal variable:

z = (x - μ) / σ

where z is the z-score, x is the value of the variable we want to convert, μ is the mean, and σ is the standard deviation.

We want to find the new mean reaction time (x) that corresponds to a z-score of -0.84 and keeps the probability of an accident at 0.20:

-0.84 = (x - 1.25) / 0.2

Solving for x, we get:

x = -0.84 * 0.2 + 1.25 = 1.018 seconds

Therefore, the driver reaction times of oncoming vehicles would need to be shortened to an average of approximately 1.018 seconds for the probability of an accident to equal 0.20.

Learn more on reaction time here https://brainly.com/question/6167212

#SPJ1

Consider the conditions in Practice Problem 5.2. How short would the driver reaction times of oncoming vehicles have to be for the probability of an accident to equal 0.20?

duc 1. Define the term 'element. 2. If you break down each of the following, how many different atoms would you be able to recover? a) Mercury b) Sodium chloride c) Water d) Carbon dioxide e) Oxygen​

Answers

part a.

An element is described as a pure substance that is composed of only one type of atom. Each element is characterized by a unique atomic number, which corresponds to the number of protons in the nucleus of its atoms.

part b.

a) Mercury -  breaking down mercury would yield only mercury atoms.

b) Sodium chloride -  Breaking down sodium chloride would yield sodium and chlorine atoms in their respective ratios.

c) Water -Breaking down water would yield hydrogen and oxygen atoms in their respective ratios.

d) Carbon dioxide : Breaking down carbon dioxide would yield carbon and oxygen atoms in their respective ratios.

e) Oxygen - breaking oxygen down would yield only oxygen atoms.

More about Elements?

Some facts about elements includes;

Elements found on Earth and Mars are exactly the same.Hydrogen is the most common element found in the universe. Isotopes are atoms of the same element, with different numbers of neutrons.In ancient times the elements referred to fire, earth, water, and air.

Learn more about elements at: https://brainly.com/question/20096027

#SPJ1

if interstellar dust makes an rr lyrae variable star look 5 magnitudes fainter than the star should, by how much will you over- or underestimate its distance?

Answers

The distance to the RR Lyrae variable star will be underestimated by a factor of 10 due to the effect of interstellar dust.

The distance to an astronomical object can be determined using the inverse square law, which states that the apparent brightness of an object decreases as the square of the distance increases.

The apparent magnitude of an object is a measure of its brightness as seen from Earth. The lower the magnitude, the brighter the object.

If interstellar dust makes an RR Lyrae variable star look 5 magnitudes fainter than it should, then the apparent magnitude of the star as observed from Earth is 5 magnitudes greater than its true apparent magnitude.

Using the inverse square law, we can write:

Apparent brightness ~ 1 / (distance[tex])^2[/tex]

If the apparent brightness is 5 magnitudes fainter than it should be, we can express the distance to the star as:

distance = sqrt(100^(0.4 * 5)) x true distance

where 0.4 is the conversion factor from magnitudes to brightness ratios, and 100 is the ratio of the brightness of the star as observed from Earth to its true brightness.

Simplifying this expression, we get:

distance = 100^(0.5) x true distance

distance = 10 x true distance

Therefore, the distance to the RR Lyrae variable star will be underestimated by a factor of 10 due to the effect of interstellar dust.

Learn more about  interstellar dust.

https://brainly.com/question/13034266

#SPJ4

Describe what happens as the hair dryer takes in cool air from one end and blows out warm air from other end TYYYY

Answers

When the hair dryer is turned on, it draws in cool air from its back end and passes it over a heating element, which increases the temperature of the air.

What happens when a hair dryer intakes cool air from one end and expels warm air from the other?

Cool air is taken in and is heated using a heating element as described. The heated air is then forced out through the front end of the dryer by a fan. As the warm air blows over the hair, it causes the water molecules in the hair to evaporate, thus drying the hair. The hair dryer also helps to style hair by blowing it in different directions, causing it to move and create volume.

Learn more about hair dryers here:

https://brainly.com/question/29086609

#SPJ1

if a red giant appears the same brightness as a red main sequence star, which one is further away

Answers

If a red giant appears the same brightness as a red main sequence star, it is most likely that the red giant is further away.

Here's a step-by-step explanation:

1) Red giants and red main sequence stars are both types of stars that are similar in color, but they have different sizes and luminosities.

2) Red giants are much larger and more luminous than red main sequence stars. They are formed when a star like the sun runs out of fuel and begins to expand and cool.

3)Red main sequence stars, on the other hand, are smaller and less luminous than red giants. They are stars that are still burning hydrogen fuel in their cores.

4) The apparent brightness of a star depends on both its intrinsic luminosity and its distance from Earth. The farther away a star is, the dimmer it appears to us on Earth.

5) If a red giant appears the same brightness as a red main sequence star, this means that the red giant must be much farther away from Earth than the red main sequence star.

6) This is because the red giant is intrinsically much more luminous than the red main sequence star. If both stars were at the same distance from Earth, the red giant would appear much brighter than the red main sequence star.

7) However, since the red giant appears the same brightness as the red main sequence star, this means that the red giant must be much farther away from Earth and therefore appears dimmer.

Overall, by comparing the apparent brightness of a red giant and a red main sequence star, we can determine which star is farther away.

If the red giant appears the same brightness as the red main sequence star, then the red giant is likely to be much farther away.

To know more about fusion reactions :

https://brainly.com/question/4837991

#SPJ11

a hollow cylindrical copper (density 8.96 g/cm3) pipe is 0.71 m long and has an outside diameter of 3.50 cm and an inside diameter of 2.50 cm. the mass of this pipe is closest to

Answers

Having an exterior diameter of 3.50 cm and an inside diameter of 2.50 cm, a hollow cylindrical copper pipe measures 0.71 m in length. The mass of the copper pipe is closest to 6.72 kg.

To find the mass of the copper pipe, we need to first calculate its volume, which can be obtained by subtracting the volume of the hollow center from the volume of the outer cylinder.

The outer cylinder's volume can be calculated as:

[tex]$V_{outer} = \pi r_{outer}^2h$[/tex]

where r_outer is the outer radius, h is the height, and π is the mathematical constant pi.

Similarly, the inner cylinder's volume can be calculated as:

[tex]$V_{inner} = \pi r_{inner}^2h$[/tex]

where r_inner is the inner radius.

Therefore, the volume of the hollow center can be found by subtracting V_inner from V_outer:

V_hollow = V_outer - V_inner

[tex]$V_{outer} = \pi(r_{outer}^2 - r_{inner}^2)h$[/tex]

Substituting the given values, we get:

[tex]$V_{hollow} = \pi(0.0175^2 - 0.0125^2) \times 0.71$[/tex]

= 0.00074962 m^3

The mass of the copper pipe can be found by multiplying its volume by its density:

mass = density × volume

[tex]$V = 8.96 \text{ g/cm}^3 \times 749.62 \text{ cm}^3$[/tex]

= 6716.23 g

≈ 6.72 kg (rounded to two decimal places)

To learn more about copper pipe

https://brainly.com/question/27813166

#SPJ4

a wheel of radius 15 cm has sa rotational inertia of 2.3 kg m^2. the wheel is spinning at a rate of 6.5 revolutions per second. a frictional force is applied tangentially to the wheel to bring it to a stop. the work done by the torque to stop the wheel is most nearly:

Answers

The work done by the torque to stop the wheel is -1918 J.

The given parameters are:
- Wheel radius (r): 15 cm = 0.15 m
- Rotational inertia (I): 2.3 kg·[tex]m^{2}[/tex]
- Angular velocity (ω): 6.5 revolutions per second = 6.5 * 2π rad/s ≈ 40.84 rad/s

To find the work done by the torque to stop the wheel, we can use the rotational work-energy theorem: W = 0.5 * I * (ω_[tex]f^{2}[/tex] - ω_[tex]i^{2}[/tex]), where W is the work done, ω_f is the final angular velocity (0 rad/s), and ω_i is the initial angular velocity.

Plugging in the given values:
W = 0.5 * 2.3 kg·[tex]m^{2}[/tex] * (0^2 - 40.84 rad/s^2)
W = 0.5 * 2.3 kg·[tex]m^{2}[/tex] * (-1667.86 rad^2/s^2)
W ≈ -1918.24 J

Since work is done against the frictional force to bring the wheel to a stop, the work done is negative. Therefore, the work done by the torque to stop the wheel is most nearly -1918 J.

Know more about torque here:

https://brainly.com/question/17512177

#SPJ11

after the train passed, the pitch of the train whistle became lower. this change in sound would be represented by what change in the diagram below?

Answers

The change in sound of the train whistle from a higher pitch to a lower pitch after the train passes can be explained by the Doppler Effect.

Here is a step-by-step explanation:

1) The Doppler Effect is the change in frequency or pitch of a sound wave due to the relative motion of the sound source and the observer.

2) When the train is approaching the observer, the sound waves from the train are compressed and the frequency or pitch of the sound wave appears higher.

3) As the train passes the observer, the sound waves from the train are stretched and the frequency or pitch of the sound wave appears lower.

4) This change in frequency or pitch can be explained by the relative motion of the train and the observer.

When the train is approaching the observer, the sound waves from the train are "bunched up" and appear closer together, resulting in a higher frequency or pitch.

When the train is moving away from the observer, the sound waves are "stretched out" and appear further apart, resulting in a lower frequency or pitch.

5) The change in frequency or pitch of the train whistle can be represented by a graph showing the frequency of the sound wave over time.

Before the train passes, the frequency of the sound wave gradually increases as the train approaches the observer.

After the train passes, the frequency of the sound wave gradually decreases as the train moves away from the observer.

6) The change in frequency or pitch of the train whistle can also be calculated using the Doppler Effect equation, which relates the frequency of the sound wave, the speed of the sound wave, and the relative velocity of the train and the observer.

In summary, the change in sound of the train whistle from a higher pitch to a lower pitch after the train passes is due to the Doppler Effect, which is caused by the relative motion of the train and the observer.

The change in frequency or pitch can be represented by a graph or calculated using the Doppler Effect equation.

To know more about Doppler Effect :

https://brainly.com/question/15318474

#SPJ11

A rock thrown horizontally from the roof edge of a 12.4 m-high building hits the ground below, a horizontal distance of 17.8 m from the building. What is the overall speed of the rock when it hits the ground?

Answers

The overall speed of the rock when it hits the ground is 24.4 m/s.

We can solve this problem using kinematic equations of motion. Since the rock is thrown horizontally, its initial vertical velocity is zero.

Let's use the following kinematic equation to find the final velocity of the rock (v):

v² = u² + 2as

where u is the initial velocity (in this case, u = 0), a is the acceleration due to gravity (-9.81 m/s²), and s is the vertical distance the rock falls (12.4 m). Solving for v, we get:

v = sqrt(2as) = sqrt(2 x (-9.81 m/s²) x 12.4 m) = 17.26 m/s

Now that we have found the final vertical velocity, we can use it to find the time it takes for the rock to fall to the ground.

The time (t) can be found using the following kinematic equation:

s = ut + (1/2)at²

where s is the horizontal distance the rock travels (17.8 m), u is the horizontal velocity of the rock (which is constant), and a is the horizontal acceleration (which is zero). Since the initial horizontal velocity is equal to the final horizontal velocity, we can use the following equation to find u:

v = u

u = v = 17.26 m/s

Now we can plug in the known values to find t:

17.8 m = 17.26 m/s x t

t = 1.03 s

Finally, we can use the horizontal distance and time to find the horizontal velocity (v_h) using the equation:

v_h = s/t = 17.8 m / 1.03 s = 17.28 m/s

Therefore, the overall speed of the rock when it hits the ground is the vector sum of the horizontal and vertical velocities:

v_overall = sqrt(v_h² + v²) = sqrt((17.28 m/s)² + (17.26 m/s)²) = 24.4 m/s

So the overall speed of the rock when it hits the ground is 24.4 m/s.

To know more about vertical velocity, visit:

https://brainly.com/question/11679227

#SPJ1

at what speed, in m/s , would a moving clock lose 2.7 ns in 1.0 day according to experimenters on the ground? hint: use the binomial approximation.

Answers

The clock must be moving at a velocity of approximately 4.53 m/s relative to the observers on the ground in order to experience a time dilation of 2.7 ns over the course of one day.

According to Einstein's theory of relativity, time dilation occurs when an object moves at a constant velocity relative to an observer. This means that time appears to pass more slowly for an object in motion than for an observer at rest. The amount of time dilation depends on the relative velocity between the two objects.

In this problem, we are given that a clock moving at some velocity loses 2.7 nanoseconds (ns) over the course of one day, as measured by observers on the ground. We want to determine the velocity of the clock.

We can use the formula for time dilation, which states that the observed time interval (Δt') is related to the proper time interval (Δt) by:

[tex]$\Delta t' = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}}$[/tex]

where v is the velocity of the clock, c is the speed of light, and the square root is taken using the binomial approximation (since v << c).

We know that Δt' = Δt - 2.7 ns and Δt = 1 day = 86400 seconds. Substituting these values and simplifying, we get:

[tex]$86400 - 2.7 = \frac{86400}{\sqrt{1 - \frac{v^2}{c^2}}}$[/tex]

Squaring both sides and rearranging, we can solve for v:

[tex]$v = c \sqrt{1 - \left(\frac{2.7}{86400}\right)^2} \approx 4.53 \text{ m/s}$[/tex]

To learn more about Einstein's theory

https://brainly.com/question/1098431

#SPJ4

A substance is boiled repeatedly and stirred, but the solute never mixes with the solvent. Which best describes why?

Answers

Answer:

The solute and solvent have distinct chemical characteristics.

Explanation:

The solute and solvent could not have been mixed at the current temperature. The solute and solvent have distinct chemical characteristics. There was more pressure. The mixture was fully saturated.

Hope this helped :)

Answer: The fact that the solute does not mix with the solvent even after boiling and stirring repeatedly could be due to various reasons:

Insolubility: The solute may be insoluble in the solvent, meaning it cannot dissolve in it.  This could be because the solute particles are too large or have a different molecular structure compared to the solvent. For example, oil and water do not mix because oil is non-polar while water is polar.

Immiscibility: The solute and solvent may be immiscible, which means they cannot form a homogeneous mixture.  Immiscibility occurs when there is a significant difference in polarity or density between the solute and solvent.  An example of immiscible substances is oil and water, where they form separate layers instead of mixing.

Saturation: The solvent may already be saturated with the solute. Saturation occurs when the solvent can no longer dissolve any more of the solute at a given temperature. Further boiling and stirring would not result in any additional mixing.

Chemical reaction: There might be a chemical reaction occurring between the solute and solvent, leading to the formation of a new substance or a precipitate.  This can prevent the solute from dissolving completely in the solvent.

To determine the specific reason why the solute is not mixing with the solvent, it would be helpful to know the nature of the solute and solvent, as well as any other conditions or factors involved in the process.

Learn more about solutions here: https://brainly.com/question/11985826.

. a horizontal force of 200 n is applied to a 55 kg cart across a 10-m level surface. if the cart accelerates at 2.0 m/s2 , then what is the work done by the force of friction as it acts to impede the motion of the cart?

Answers

The first step to solving this problem is to calculate the net force acting on the cart. To do this, we need to use Newton's second law, which states that the net force is equal to the mass of the object multiplied by its acceleration. So, in this case, the net force on the cart is:

Net force = (55 kg)(2.0 m/s^2) = 110 N

Next, we need to determine the force of friction acting on the cart. We know that it is acting in the opposite direction to the applied force, so it is equal in magnitude to the net force but in the opposite direction. Therefore, the force of friction is:

Force of friction = -110 N

Finally, we can use the formula for work, which is:

Work = force x distance x cos(theta)

where theta is the angle between the force and the direction of motion. In this case, the force of friction is acting opposite to the direction of motion, so theta is 180 degrees and cos(theta) is -1.

The distance traveled by the cart is 10 m, so we can plug in the values and get:

Work = (-110 N)(10 m)(-1) = 1100 J

Therefore, the work done by the force of friction as it acts to impede the motion of the cart is 1100 J.

To know more about Newton's second law :

https://brainly.com/question/13447525

#SPJ11

the speed of sound in air is 332 m/s. humans have sensitivity to sound frequencies from 20 hz to 20,000 hz. a. what is the longest sound wavelength we can hear? (5 pts) b. what is the shortest sound wavelength we can hear? (5 pts)

Answers

The longest sound wavelength we can hear is 16.6 m while  the shortest sound wavelength we can hear is 0.0166 m.

We can use the formula for the speed of sound to find the longest and shortest sound wavelengths humans can hear:

speed of sound = frequency × wavelength

Let's first solve for the longest wavelength (a):

a. Longest wavelength = speed of sound / lowest frequency
Longest wavelength = 332 m/s / 20 Hz
Longest wavelength = 16.6 m

Now, let's solve for the shortest wavelength (b):

b. Shortest wavelength = speed of sound / highest frequency
Shortest wavelength = 332 m/s / 20,000 Hz
Shortest wavelength = 0.0166 m (or 1.66 cm)

So, the longest sound wavelength humans can hear is 16.6 meters and the shortest sound wavelength we can hear is 0.0166 meters (1.66 centimeters).

More on wavelength: https://brainly.com/question/9668457

#SPJ11

what is an expression for x1(t) , the position of mass i as a function of time? assume that the position is measured in meters and time is measured in seconds.

Answers

The expression for x1(t) , the position of mass i as a function of time, is x1(t) = x1_0 + v1_0 * t + 0.5 * a1 * t²

To find an expression for x1(t), the position of mass 1 as a function of time, we need to consider the following terms:

1. Initial position (x1_0): The position of mass 1 at time t=0.
2. Initial velocity (v1_0): The velocity of mass 1 at time t=0.
3. Acceleration (a1): The constant acceleration acting on mass 1, if applicable.

Now, we can use the general equation for the position of an object as a function of time:

x1(t) = x1_0 + v1_0 * t + 0.5 * a1 * t²

Where x1(t) is the position of mass 1 at time t, x1_0 is the initial position, v1_0 is the initial velocity, a1 is the acceleration, and t is the time in seconds.

More on position/time: https://brainly.com/question/29154471

#SPJ11

type 1 cable consists of ? twisted pairs, each individually shielded with foil, with a braided outer shield surrounding the entire cable core and covered with a jacket.

Answers

Type 1 cable consists of a braided outer shield surrounding the entire cable core and covered with a jacket, the correct answer is c.

Type 1 cable is commonly used in high-frequency applications where signal interference is a concern. The braided shield provides excellent protection against electromagnetic interference (EMI) and radio frequency interference (RFI). It also helps to reduce signal loss and attenuation by keeping the signal within the cable and preventing it from escaping.

The jacket provides an additional layer of protection against environmental factors such as moisture, abrasion, and temperature extremes. Type 1 cable is a reliable and effective option for applications where signal integrity and protection against interference are critical factors, the correct answer is c.

To learn more about cable follow the link:

https://brainly.com/question/30424450

#SPJ4

The complete question is:

Type 1 cable consists of ?

a. twisted pairs

b. each individually shielded with foil

c. with a braided outer shield surrounding the entire cable core and covered with a jacket.

What happens when thermal energy is applied to a substance q

Answers

When thermal energy is applied to a substance, the particles in the substance start to vibrate more rapidly, and the average kinetic energy of the particles increases.

What happens when thermal energy is applies to a substance

As a result, the temperature of the substance increases. The amount of thermal energy required to increase the temperature of the substance by a certain amount is called the specific heat capacity of the substance.

The way the substance responds to the applied thermal energy also depends on its physical properties, such as its mass, density, and thermal conductivity. For example, a substance with a high thermal conductivity will transfer heat more rapidly to its surroundings, while a substance with a low thermal conductivity will retain heat more effectively.

If the applied thermal energy is sufficient, the substance may undergo a phase change, such as melting or boiling, as the increased kinetic energy overcomes the intermolecular forces holding the particles together.  

Learn more about thermal energy  at

https://brainly.com/question/19666326

#SPJ1

how much time will pass when it goes from one-half initial voltage to one-fourth its initial voltage

Answers

The time taken is twice the time taken to decrease from the initial voltage to one-half initial voltage.

How much time will pass when it goes from one-half initial voltage to one-fourth its initial voltage?

The amount of time it takes for a voltage to decrease from one level to another depends on the characteristics of the system generating the voltage.

Assuming that the voltage is decreasing exponentially over time, the time it takes for a voltage to decrease from one level to another can be calculated using the formula:

[tex]t = -(ln(Vf/Vi))/λ[/tex]

where t is the time taken, Vi is the initial voltage, Vf is the final voltage, and λ is the decay constant of the system generating the voltage.

If the voltage decreases from one-half its initial voltage to one-fourth its initial voltage, then [tex]Vi = 1, Vf = 1/4[/tex], and the voltage has decreased by a factor of 2.

Assuming that the decay is exponential, the time it takes to decrease by a factor of 2 is:

[tex]t = -(ln(1/2))/λ[/tex]

We can simplify this expression using the fact that [tex]ln(1/2) = -ln(2)[/tex], which gives:

[tex]t = ln(2)/λ[/tex]

Similarly, the time it takes to decrease by a factor of 4 is:

[tex]t = -(ln(1/4))/λ = ln(4)/λ = 2ln(2)/λ[/tex]

So, the ratio of the time taken to decrease from one-half initial voltage to one-fourth initial voltage is:

[tex]t(1/4) / t(1/2) = (2ln(2)/λ) / (ln(2)/λ) = 2[/tex]

Therefore, the time taken to decrease from one-half initial voltage to one-fourth initial voltage is twice the time taken to decrease from the initial voltage to one-half initial voltage.

Learn more about voltage

brainly.com/question/29445057

#SPJ11

Show that the form of Newton’s second law is invariant under the Galilean transformation. According to Newton’s second law, the net force acting on an object is equal to the product of its mass and acceleration. Newton’s second law of motion is given by following expression:

Answers

Newton’s second law of motion states that the force F acting on an object of mass m produces an acceleration a in the object, and is given by, F = ma. The law s invariant under Galilean transformation.

The Galilean transformation is a set of equations that describe the relationship between two reference frames that are in relative motion with constant velocity. It has no effect on the form of Newton’s second law because it only involves a change of coordinates and time, which do not affect the physical laws.

To see this, consider two reference frames S and S', where S' moves with constant velocity v with respect to S. Let an object of mass m be at rest in S, and let F be the net force acting on it in S. According to Newton’s second law in S, we have:

F = ma

Now, let us apply the Galilean transformation to the equation. The position of the object in S' is given by:

x' = x - vt

where x is the position of the object in S, and t is time. Taking the derivative of x' with respect to t, we get:

v' = dx'/dt

= dx/dt - v

= v - v

= 0

This means that the velocity of the object is the same in both reference frames. Similarly, the acceleration is also the same in both reference frames, since it is the derivative of velocity,

a' = dv'/dt = da/dt = a

Therefore, we can write Newton’s second law in S' as,

F' = ma'

where F' is the net force acting on the object in S'. Substituting a' = a, we get:

F' = ma

which is the same form as in S. Thus, we see that the form of Newton’s second law is invariant under the Galilean transformation.

To know more about Galilean transformation, here

brainly.com/question/29655824

#SPJ4

at a given instant in time, an 8-kg rock that has been dropped from a high cliff, experiences an upward force of air resistance of 12 n.note: this is a multi-part question. once an answer is submitted, you will be unable to return to this part.what is the gravitational force on the rock? use g

Answers

The gravitational force on the rock is 78.4 Newtons.


At the given instant, the 8-kg rock experiences a gravitational force which can be calculated using the formula:

F_gravity = m * g

where m is the mass of the rock (8 kg) and g is the acceleration due to gravity (approximately 9.8 m/s²).

F_gravity = 8 kg * 9.8 m/s² = 78.4 N

So, the gravitational force on the rock is 78.4 Newtons.his net force causes the rock to accelerate downwards.

The concept of gravitational force is an important one in physics, as it plays a significant role in many natural phenomena. The force of gravity is responsible for the motion of celestial bodies, and it is also a key factor in determining the weight of objects on earth.

Understanding the principles of gravitational force can help us understand the behavior of objects in motion and can also help us develop technologies that are based on these principles.

Know more about   gravitational force  here:

https://brainly.com/question/72250

#SPJ11

An astronaut of mass 75 kg is floating in space holding a 20 kg fire extinguisher. If she throws the extinguisher forward at a velocity of 3.5 m/s, what will be her resulting velocity?

Answers

Momentum is defined as mass multiplied by velocity, so the total momentum before the extinguisher is thrown is 70 kg*m/s.

What is Velocity?

Velocity is a vector quantity that measures the rate of change of an object's position. It is determined by the displacement of an object over a given period of time, and is usually expressed in terms of distance over time.

The astronaut's resulting velocity will be the same as the fire extinguisher's velocity, 3.5 m/s.
This is because the astronaut and extinguisher have the same mass and momentum must be conserved.
Momentum is defined as mass multiplied by velocity, so the total momentum before the extinguisher is thrown is 75 kg * 0 m/s + 20 kg * 3.5 m/s
= 70 kg*m/s.

To learn more about Velocity

https://brainly.com/question/626479

#SPJ1

Other Questions
Does this growth rate of GDP stay high indefinitely or only fora period of time? If a reaction is performed in 155 g of water with a heat capacity of 4.184 J/g C andthe initial temperature of a reaction is 19.2C, what is the final temperature (in unitsof C) if the chemical reaction releases 1420 J of heat?Answer choices: 21.4 29.2 27.4 34.5 members of the religious group commonly known as ______ were scorned because they refused to participate in war or doff their hats to social superiors. please help me in this exercise Find the critical value t what invention will stop people from overdosing from drugs Expansion During the Early Republic a random sample of n equal to 64 scores is selected from a normally distributed population with mu equal to 77 and sigma equal to 21. what is the probability that the sample mean will be less than 79? hint: this is a z-score for a sample. how does an individual with a competitive advantage lead to the evolution of an entire species?(1 point) responses those who have traits that help them survive are able to reproduce, and their offspring have those traits, leading to a change in the species over time. those who have traits that help them survive are able to reproduce, and their offspring have those traits, leading to a change in the species over time. some individuals are better at competing for resources, and that allows them to survive droughts or other major ecological events, leading to the extinction of certain species and the survival of others. some individuals are better at competing for resources, and that allows them to survive droughts or other major ecological events, leading to the extinction of certain species and the survival of others. traits that are advantageous help certain individuals reproduce at higher rates, so those traits are more common within the population. traits that are advantageous help certain individuals reproduce at higher rates, so those traits are more common within the population. individuals that survive due to their competitive advantage are able to expand their range, similar to how the finches radiated out from one common ancestor on the mainland. A container built for transatlantic shipping is constructed in the shape of a rightrectangular prism. Its dimensions are 4 ft by 9.5 ft by 13 ft. If the container is entirelyfull and, on average, its contents weigh 0.05 pounds per cubic foot, find the totalweight of the contents. Round your answer to the nearest pound if necessary "Determine the swap rate of a 3-year interest rate swap withannual interest payments, indexed at the Euribor. The 1-year,2-year, and 3-year zero Euribor rates are equal to 1.2%, 1.8%, and3%, respectively. Use discrete compounding. Ascension has a $1,000 face value bond with a 6 percentcoupon paid semiannually. The semiannual interest payment on thisbond is ___.a. $3b. $6c. $10d. $30e. $60f. $100g. $300 Your classmate Josephine went to the museum to explore the cultures of the Great Plains in the modern United States and their beautiful beadwork. She shares with you the facts she learns about their beadwork. Which of her facts is CORRECT? A. Beaded artwork was often created by men. B. Most beadwork featured bright colors and sparkly gems. C. Patterns using flowers and leaves were sometimes used. D. Beaded artwork was never created for practical items. which of the following is true of a team? a. individual work products b. pre-determined work structure c. individual accountability d. shared leadership roles An investment project has annual cash inflows of $4,058, $3,351, $4,979, and $3,767 for the next four years, respectively, and a discount rate of 15%.What is the discounted payback if the initial investment is $8,000? (Round answer to 2 decimal places. Do not round intermediate calculations) ________ occurs when someone moves to a new place and gradually picks up the culture of the new location. Every logical statement can be turned into Horn clauses. Select one: True False. Finework Corporation's semi-annual coupon bonds have a 15-year maturity, a 7% annual coupon rate, and a par value of $1,000. The current annual YTM is 6.5%. What is the bond price today? $1,008.65 $1,047.45 $1,098.00 $1,024.67 $1,105.78 Fiona turned and stared at the red brick building. All last year, she had waited excitedly to pass fifth grade and start middle school. Now that day was here, and it took all her strength not to cry. This was not the school she planned to attend. Her family had moved from Florida to California over the summer, and she did not know a single person in her new town. Last night, her mother had given her some advice: "Honey, people will want to be your friend if they think you like them." "How am I supposed to show that?" Fiona asked. "I don't even know them." "A simple way to show interest is to give them a compliment. Try saying something like, 'Those are pretty earrings. Where did you get them?' You will be surprised how quickly a conversation starts," her mother replied. Fiona was doubtful. Fiona took a deep breath, slung her backpack over her shoulder, and walked up the steps. A tall boy skidded his mountain bike into the bike rack and called out, "Hey Todd! How was your summer?" "My parents took us camping. It was great!" Todd yelled back. "Julie, wait up! Who do you have for homeroom?" shouted a perky blond girl as she shoved past Fiona on the steps. Great, Fiona thought, it is worse than I thought. No one even notices me. Anxiety about having to sit alone in the cafeteria made her stomach do flips. Fiona hesitated at the doorway of her homeroom and warily eyed the scene. Kids acted like they all knew each other. She sighed and sat in her assigned desk. She took out a book and began to read. "Hey", a voice whispered from across the aisle. "I love that book! I read the whole series this summer in Indiana. I didn't think anybody here would read them. Which one is your favorite?" "I've only read the first two. So far, the second one is the best," Fiona whispered back. "I think so, too! I'll lend you the next one if you want. My name is Nicki," said the girl. Fiona replied, "I'm Fiona. I just moved here this summer." "Me, too!" Nicki said. "I was really worried about not knowing anybody. I lived in Indiana my whole life. My mom told me to make new friends by talking about books because I love to read. Hey, do you want to sit together at lunch?" Fiona laughed and felt relief wash over her. "Sure," she said. "And I like your earrings, Nicki. Where did you get them?"Which statement is the best summary of the passage? A. Nicki makes Fiona feel welcome in the new school. She offers to share her favorite series of books. B. Nicki moves to California from Indiana. She is excited to meet another girl who likes to read books in a series. C. Fiona moves to California from Florida over the summer. She does not like her new middle school class. D. Fiona is worried about making friends in a new school. She is relieved when another new girl starts a conversation with her. In their quest to have direct trade with Europeans on the coast, Akyem and Akwamu often clashed. Akwamu Kingdom was successful in materializing this ambition by her conquest of Accra in 1677. However, by 1730, Akyem had conquered Akwamu kingdom to possess not only Akwamu itself but its large provinces like Accra and Ladoku.Based on the above,1. Discuss the initial challenges that Akyem faced with regards to raising people to administer those large territories.2. What is the history behind the inability of Akyem to raise people to rule those territories?3. What temporal solution did Akyem offer to solve the situation?