D Question 1 Find the derivative of f(x)=√x - 3 Of(x) = -10x + +1³1 Of(x)= 1 10, 31x| + 2√x x³ X 10 + + X o f(x)=√x F(x)=2+10+ 31x1 X O f(x)= 31x1 X Question 2 What is the derivative of the function g(x)= derivatives. Og'(x) = g'(x)= Og'(x)= og'(x)= m|lx 4 (5x-2)² -8 (5x-2)² 8 (5x-2)² 5 - 2 +311 4x 5x-2 ? Hint: Use the Quotient Rule for 5 pts 5 pts

Answers

Answer 1

The power rule states that if we have a function of the form f(x) = x^n, then its derivative is given by f'(x) = nx^(n-1).

In this case, we have f(x) = √x - 3, which can be written as f(x) = x^(1/2) - 3.

Applying the power rule, we get:

f'(x) = (1/2)x^(-1/2) = 1/(2√x)

So, the derivative of f(x) is f'(x) = 1/(2√x).

Question 2:

To find the derivative of the function g(x) = (5x-2)² / (4x + 3), we can use the quotient rule.

The quotient rule states that if we have a function of the form f(x) = g(x) / h(x), then its derivative is given by f'(x) = (g'(x)h(x) - g(x)h'(x)) / (h(x))^2.

In this case, we have g(x) = (5x-2)² and h(x) = 4x + 3.

Taking the derivatives, we have:

g'(x) = 2(5x-2)(5) = 10(5x-2)

h'(x) = 4

Learn more about  nx^(n-1) here;

https://brainly.com/question/1553719

#SPJ11


Related Questions

if we know that the assumption is true in a conditional statement, in order to determine the truth value of the entire conditional statement, we need to know the truth value of the conclusion.
True or False

Answers

True. The truth value of B to determine the truth value of the entire conditional statement.

In a conditional statement of the form "if A, then B", if we know that A is true (which is the assumption), then the only way for the whole statement to be false is if B is false as well. Therefore, we need to know the truth value of B to determine the truth value of the entire conditional statement.

Let's break down the logic of a conditional statement. When we say "if A, then B", we are making a claim that A is a sufficient condition for B. This means that if A is true, then B must also be true. However, the conditional statement does not say anything about what happens when A is false. B could be true or false in that case.
To determine the truth value of the entire conditional statement, we need to consider all possible combinations of truth values for A and B. There are four possible cases:
1. A is true and B is true: In this case, the conditional statement is true. If A is a sufficient condition for B, and A is true, then we can conclude that B is also true.
2. A is true and B is false: In this case, the conditional statement is false. If A is a sufficient condition for B, and A is true, then B must also be true. But since B is false, the entire statement is false.
3. A is false and B is true: In this case, the conditional statement is true. Since the conditional statement only makes a claim about what happens when A is true, the fact that A is false is irrelevant.
4. A is false and B is false: In this case, the conditional statement is true. Again, the fact that A is false means that the statement does not make any claim about the truth value of B.
So, if we know that A is true (which is the assumption), we can eliminate cases 3 and 4 and focus on cases 1 and 2. In order for the entire statement to be false, we need case 2 to be true. That is, if B is false, then the entire statement is false.

To know more about conditional statement visit :-

https://brainly.com/question/14457027

#SPJ11

difficult to type, refer me to your scratch work. S zd: (7z+3) a) Identify your u-substitution, u = b) du = c) S zda (7:23)

Answers

Identifying the u-substitution: In this case, let's choose u = 7z + 3 as the substitution. Evaluating du: To determine du, we differentiate u with respect to z. Since u = 7z + 3, du/dz = 7. Evaluating the integral: Now we can rewrite the integral using the u-substitution. The integral becomes ∫ u da. Since du = 7 dz

Let's say the original limits of integration were a1 and a2. Then, the new limits of integration will be u(a1) and u(a2), obtained by substituting a1 and a2 into the equation u = 7z + 3.

The final answer will be ∫ u da = (1/7) ∫ du. Integrating du gives us (1/7)u + C, where C is the constant of integration.

Thus, the final answer is (1/7)(7z + 3) + C, or z + 3/7 + C, where C is the constant of integration.

In summary, the u-substitution is u = 7z + 3, du = 7 dz, and the result of the integral ∫ z da becomes z + 3/7 + C, where C is the constant of integration.

Learn more about  substituting here

brainly.com/question/14619835

#SPJ11

Find the area of the surface generated when the given curve is rotated about the x-axis. y = 4√√x on [77,96] The area of the surface generated by revolving the curve about the x-axis is (Type an e

Answers

The area of the surface generated when the curve y = 4√√x on the interval [77, 96] is rotated about the x-axis can be found using the formula for surface area of revolution.

To find the surface area of the generated surface, we can use the formula for surface area of revolution:

A = 2π * ∫[a, b] y * √(1 + (dy/dx)²) dx

In this case, the curve is given by y = 4√√x and we want to rotate it about the x-axis on the interval [77, 96].

First, we need to find the derivative dy/dx of the curve:

dy/dx = d/dx (4√√x) = 4 * (1/2) * (√x)^(-1/2) * (1/2) * x^(-1/2) = 2 * (√x)^(-1) * x^(-1/2) = 2 / (√x * √x^3) = 2 / (x^2√x)

Next, we substitute the values into the surface area formula and evaluate the integral:

A = 2π * ∫[77, 96] (4√√x) * √(1 + (2 / (x^2√x))²) dx

This integral can be evaluated using numerical methods or symbolic integration software to obtain the exact value of the surface area.

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

South Pole Expedition ← →
Your Outdoor Adventures class is providing
guidance to two scientists that are on an expedition
to the South Pole.
30 M
D
Due to the extreme climate and conditions, each
scientist needs to consume 6000 calories per day.
The table shows the three foods that will make up
their total daily calories, along with the number of
calories per unit and the daily needs by percentage.
Food for South Pole Expedition
Food
Biscuits
Permican
(dried meat)
Butter and
Cocoa
Calories per
Unit
75 per biscuit
135 per package
225 per package
Percent of
Total
Daily Calories
40
45
15
1

Suppose Jonathan eats 6 packages of pemmican. He also eats some biscuits.
Create an equation that models the total number of calories Jonathan
consumes, y, based on the number of biscuits he eats, x, and the 6 packages
of pemmican.

Answers

The equation that models the total number of calories Jonathan consumes y, based on the number of biscuits he eats x, and the 6 packages of Pemmican is y = 75x + 810.

How to determine the equation that models the total number of calories Jonathan consumes?

We shall add the number of biscuits and total calories with the number of Pemmican and total calories.

Biscuits:

Number of biscuits Jonathan eats = x.

Number of calories in each biscuit = 75.

So, the total number of calories from biscuits = 75 * x.

Pemmican:

Number of packages of pemmican eaten by Jonathan = 6

Calories per package of pemmican = 135

Next, we multiply the number of packages by the calories per package to get the total number of calories from Pemmican:

Total number of calories from pemmican = 6 * 135 = 810

Thus, the equation that models the total number of calories Jonathan consumes, y, based on the number of biscuits he eats, x, and the 6 packages of Pemmican is y = 75x + 810.

Learn more about equations at brainly.com/question/29174899

#SPJ1

10. [-/4 Points] DETAILS SCALCET9 12.5.010. Find parametric equations for the line. (Use the parameter t.) (x(t), y(t), 2(t)) =([ Find the symmetric equations. O x + 4 = -(y + 3), z = 0 O x-4 =-(y - 3) = z O-(x-4)=y-3 = z Ox+4= -(y + 3) = z Ox-4=y-3 = -Z the line through (4, 3, 0) and perpendicular to both i + j and j+k

Answers

The symmetric equations for the line through (4, 3, 0) and perpendicular to both i + j and j+k are :

x - 4 = -(y - 3) = z.

The parametric equations and symmetric equations for the line through (4, 3, 0) and perpendicular to both i + j and j+k are given below:

Parametric equations:

(x(t), y(t), z(t)) = (4, 3, 0) + t(i + j) + t(j + k)

Symmetric equations:

x - 4 = -(y - 3) = z

Here, i, j, and k are the standard unit vectors in the x, y, and z directions, respectively.

The parametric equations for the given line are (x(t), y(t), z(t)) = (4, 3, 0) + t(i + j) + t(j + k).

This is equivalent to the following set of equations:

x(t) = 4 + t, y(t) = 3 + t, and z(t) = t.

Note that the parameter t can take any value.

The symmetric equations for the given line are x - 4 = -(y - 3) = z.

To learn more about symmetric equations visit : https://brainly.com/question/12945220

#SPJ11




Find the domain of the function 1 3 1. : 8 f(x, y) V x2 + 3y2 – 8. 1 1 . + gy 19 < 1 1 + 3 {(x, y): 52 + živa 2 1} 2 {(x, y): 3x2 + šv? < 1} 3. {(x, y): 5x2 + guna > 1} 4. {(x, y): 2 + iva > 1} 5.

Answers

The domain of the function f(x, y) is the set {(x, y): 5x^2 + y^2 < 1 and 3x^2 + y^2 < 1}.

The domain of the function f(x, y) can be determined by analyzing the conditions that restrict the values of x and y.

The function f(x, y) is defined as 1/(x^2 + 3y^2 - 8).

To find the domain, we need to identify the values of x and y that make the denominator of the fraction nonzero, as division by zero is undefined.

Analyzing the options given:

1. {(x, y): 5x^2 + y^2 < 1}: This represents an ellipse centered at the origin with a major axis parallel to the x-axis. The domain lies within this ellipse.

2. {(x, y): 3x^2 + y^2 < 1}: This represents an ellipse centered at the origin with a major axis parallel to the y-axis. The domain lies within this ellipse.

3. {(x, y): 5x^2 + y^2 > 1}: This represents the region outside of the ellipse defined by the inequality.

4. {(x, y): 2 + y^2 > 1}: This represents the region outside of the circle defined by the inequality.

5. There is no given condition for option 5.

From the given options, the domain of f(x, y) is the intersection of the regions defined by options 1 and 2, which is the area inside both ellipses.

To learn more about function  click here

brainly.com/question/31062578

#SPJ11

Find the solution of the given initial value problem.
ty′+4y=t2−t+7, y(1)=6, t>0
Enclose numerators and denominators in parentheses. For example, (a−b)/(1+n).
y=

Answers

The solution to the initial value problem:

[tex]\[y = \frac{1}{7}t^3 - \frac{1}{6}t^2 + \frac{7}{4} + \frac{6 - \frac{1}{7} + \frac{1}{6} - \frac{7}{4}}{t^4}\][/tex]

What is the first-order linear differential equation?

A first-order linear differential equation is a type of ordinary differential equation (ODE) that can be expressed in the form:

[tex]\[\frac{dy}{dt} + P(t)y = Q(t),\][/tex]

where y is the dependent variable,t is the independent variable, and [tex]$P(t)$[/tex] and [tex]$Q(t)$[/tex] are given functions of t.

To solve the given initial value problem:

[tex]\[ty' + 4y = t^2 - t + 7, \quad y(1) = 6, \quad t > 0\][/tex]

We can use the method of integrating factors to solve this linear first-order differential equation.

First, we rewrite the equation in standard form:

[tex]\[y' + \frac{4}{t}y = \frac{t}{t}^2 - \frac{t}{t} + \frac{7}{t}\][/tex]

The integrating factor is given by [tex]\(\mu(t) = e^{\int \frac{4}{t} \, dt} = e^{4\ln t} = t^4\).[/tex] Multiplying both sides of the equation by the integrating factor, we have:

[tex]\[t^4y' + 4t^3y = t^6 - t^5 + 7t^3\][/tex]

Now, we can rewrite the left side of the equation as the derivative of the product

[tex]\(t^4y\):\[\frac{d}{dt}(t^4y) = t^6 - t^5 + 7t^3\][/tex]

Integrating both sides with respect to t, we get:

[tex]\[t^4y = \int (t^6 - t^5 + 7t^3) \, dt\][/tex]

Simplifying and integrating each term separately:

[tex]\[t^4y = \frac{1}{7}t^7 - \frac{1}{6}t^6 + \frac{7}{4}t^4 + C\][/tex]

Where [tex]\(C\)[/tex]is the constant of integration.

Now, we can solve for y by dividing both sides by[tex]\(t^4\):\[y = \frac{1}{7}t^3 - \frac{1}{6}t^2 + \frac{7}{4} + \frac{C}{t^4}\][/tex]

Using the initial condition[tex]\(y(1) = 6\),[/tex] we can substitute [tex]\(t = 1\) and \(y = 6\)[/tex] into the equation to find the value of[tex]\(C\):\[6 = \frac{1}{7} - \frac{1}{6} + \frac{7}{4} + \frac{C}{1^4}\][/tex]

Simplifying and solving for

[tex]\(C\):\[C = 6 - \frac{1}{7} + \frac{1}{6} - \frac{7}{4}\][/tex]

Finally, substituting the value of C back into the equation for y we get the solution to the initial value problem:

[tex]\[y = \frac{1}{7}t^3 - \frac{1}{6}t^2 + \frac{7}{4} + \frac{6 - \frac{1}{7} + \frac{1}{6} - \frac{7}{4}}{t^4}\][/tex]

Learn more about first-order linear differential equations:

https://brainly.com/question/30645878

#SPJ4

Assume that a company gets a tons of steel from one provider, and y tons from another one. Assume that the profit made is then given by the function
P(x, y) = 9x+8y — 6(x + y)².
The first provider can provide at most 5 tons, and the second one at most 3 tons. Finally, in order not to antagonize the first provider, it was felt it should not provide too small a fraction, so that x ≥ 2(y-1).
1. Does P have critical points?
2. Draw the domain of P in the xy-plane.
3. Describe each boundary in terms of only one variable, and give the corresponding range of that variable, for instance "(x, x²) for x = [1, 2]". There can be different choices.

Answers

the boundaries in terms of one variable with their corresponding ranges are as follows:

- (0, 0 ≤ y ≤ 3) for x = 0

- (5, 0 ≤ y ≤ 3) for x = 5

- (0 ≤ x ≤ 5, 0) for y = 0

- (0 ≤ x ≤ 5, 3) for y = 3

- (2y - 2, 0 ≤ y ≤ 3) for x = 2y - 2

1. To determine if the function P(x, y) has critical points, we need to find its partial derivatives with respect to x and y and set them equal to zero.

Partial derivative with respect to x:

∂P/∂x = 9 - 12(x + y)

Partial derivative with respect to y:

∂P/∂y = 8 - 12(x + y)

Setting both partial derivatives equal to zero and solving the equations simultaneously, we have:

9 - 12(x + y) = 0    ...(1)

8 - 12(x + y) = 0    ...(2)

Subtracting equation (2) from equation (1):

9 - 8 = 0 - 0

1 = 0

This implies that the system of equations is inconsistent, which means there are no solutions. Therefore, P(x, y) does not have critical points.

2. To draw the domain of P in the xy-plane, we need to consider the given constraints:

- x can be at most 5 tons: 0 ≤ x ≤ 5

- y can be at most 3 tons: 0 ≤ y ≤ 3

- x ≥ 2(y-1): x ≥ 2y - 2

Combining these constraints, the domain of P in the xy-plane is:

0 ≤ x ≤ 5 and 0 ≤ y ≤ 3 and x ≥ 2y - 2

3. Let's describe each boundary in terms of only one variable along with the corresponding range:

Boundary 1: x = 0

This corresponds to the y-axis. The range for y is 0 ≤ y ≤ 3.

Boundary 2: x = 5

This corresponds to the line parallel to the y-axis passing through the point (5, 0). The range for y is 0 ≤ y ≤ 3

Boundary 3: y = 0

This corresponds to the x-axis. The range for x is 0 ≤ x ≤ 5.

Boundary 4: y = 3

This corresponds to the line parallel to the x-axis passing through the point (0, 3). The range for x is 0 ≤ x ≤ 5.

Boundary 5: x = 2y - 2

This corresponds to a line with a slope of 2 passing through the point (2, 0). The range for y is 0 ≤ y ≤ 3.

To know more about function visit:

brainly.com/question/30721594

#SPJ11

Let D be the region bounded by the two paraboloids z = 2x² + 2y² - 4 and z = 5-x²-y² where x 20 and y 20. Which of the following triple integral in cylindrical coordinates allows us to evaluate the value of D

Answers

The triple integral in cylindrical coordinates that allows us to evaluate the volume of D is ∫∫∫_D r dz dr dθ.

To explain the integral setup, we use cylindrical coordinates where a point in three-dimensional space is defined by its distance r from the z-axis, the angle θ it makes with the positive x-axis in the xy-plane, and the height z.

In cylindrical coordinates, the region D is defined by the inequalities 2x² + 2y² - 4 ≤ z ≤ 5 - x² - y², and the limits of integration are -20 ≤ x ≤ 20, -20 ≤ y ≤ 20. To express these limits in cylindrical coordinates, we need to consider the equations of the paraboloids in cylindrical form.

In cylindrical coordinates, the paraboloid z = 2x² + 2y² - 4 can be written as z = 2r² - 4, and the paraboloid z = 5 - x² - y² becomes z = 5 - r². The region D is bounded between these two surfaces.

Therefore, the triple integral in cylindrical coordinates to evaluate the volume of D is ∫∫∫_D r dz dr dθ. The limits of integration for r are 0 to ∞, for θ are 0 to 2π, and for z are given by the inequalities 2r² - 4 ≤ z ≤ 5 - r².

Learn more about paraboloid here:

https://brainly.com/question/30634603

#SPJ11

9. Use formula to find Laplace Transform and Its Inverse a. Find L {3t2 + 5e4t + sin 2t } b. Find 8 L-1{ } X4 – 16

Answers

a. The  Laplace Transform of the given function is  L{3t^2 + 5e^(4t) + sin(2t)} = 6 / s^3 + 5 / (s - 4) + 2 / (s^2 + 4)

b. The Inverse Laplace of the given function is L^-1{8 / (s^4 - 16)} = 2sin(2t) + e^(2t) + 5e^(-2t)

a. To find the Laplace transform of the function 3t^2 + 5e^(4t) + sin(2t), we can use the linearity property and the standard Laplace transform formulas.

Using the linearity property, we can take the Laplace transform of each term separately:

L{3t^2} = 3 * L{t^2} = 3 * (2! / s^3) = 6 / s^3

L{5e^(4t)} = 5 * L{e^(4t)} = 5 / (s - 4)

L{sin(2t)} = 2 / (s^2 + 4)

Putting it all together:

L{3t^2 + 5e^(4t) + sin(2t)} = 6 / s^3 + 5 / (s - 4) + 2 / (s^2 + 4)

b. To find the inverse Laplace transform of the function 8 / (s^4 - 16), we can use partial fraction decomposition and the standard inverse Laplace transform formulas.

First, we factor the denominator:

s^4 - 16 = (s^2 + 4)(s^2 - 4) = (s^2 + 4)(s - 2)(s + 2)

Now, we can decompose the fraction:

8 / (s^4 - 16) = A / (s^2 + 4) + B / (s - 2) + C / (s + 2)

To find the values of A, B, and C, we can multiply both sides by the denominator and equate the coefficients of like powers of s. After solving for A, B, and C, let's say we find:

A = 2, B = 1, C = 5

Now, we can rewrite the fraction:

8 / (s^4 - 16) = 2 / (s^2 + 4) + 1 / (s - 2) + 5 / (s + 2)

Using the standard inverse Laplace transform formulas, the inverse Laplace transform of each term can be found:

L^-1{2 / (s^2 + 4)} = 2sin(2t)

L^-1{1 / (s - 2)} = e^(2t)

L^-1{5 / (s + 2)} = 5e^(-2t)

Putting it all together:

L^-1{8 / (s^4 - 16)} = 2sin(2t) + e^(2t) + 5e^(-2t)

To know more about inverse Laplace transform refer here:

brainly.com/question/1675085

#SPJ11

Why does Francisco think that Katie is making the growling noise at first?

Answers

The Noise is actually coming from a real beast, and the situation is much more serious than Francisco initially thought.

In the short story "Katie's Beast," Francisco assumes that Katie is making the growling noise at first because he believes it to be coming from her direction and she is the only person around. Katie and Francisco are walking through the woods together to get to the school bus. Francisco believes Katie is making the growling noise to scare him because she has been known to play practical jokes on him before. He becomes angry and frustrated with her, insisting that she stop making the noise and that he isn't scared.

However, after a while, Francisco realizes that the growling noise is coming from an actual beast, and he becomes frightened. He and Katie take cover behind a tree as they try to figure out how to get away from the beast.

They eventually realize that the beast is injured and in pain, and they come up with a plan to help it by getting the school bus driver to take them to the vet with the beast.

Katie and Francisco's assumptions about the growling noise at the beginning of the story highlight the theme of appearances can be deceiving.

Francisco assumes that the noise is coming from Katie, who he believes to be playing a practical joke.

However, the noise is actually coming from a real beast, and the situation is much more serious than Francisco initially thought.

For more questions on Noise.

https://brainly.com/question/31367534

#SPJ8

find the interval of convergence for the power series.
state the test used, conditions needed for test and the
work

Answers

R = lim (n->∞) |a_(n+1) / a_n| < 1. To find the interval of convergence for a power series, we can use the ratio test. The ratio test helps determine the values of x for which the series converges.

We will apply the ratio test and determine the conditions required for the test. Then, we will perform the necessary calculations to find the interval of convergence.

To find the interval of convergence, we will use the ratio test. The ratio test states that if the limit of the absolute value of the ratio of consecutive terms in a series is less than 1, then the series converges.

Let's consider a power series with terms represented by a_n * x^n. Applying the ratio test:

lim (n->∞) |(a_(n+1) * x^(n+1)) / (a_n * x^n)| < 1

Simplifying, we have:

lim (n->∞) |a_(n+1) / a_n * x| < 1

We need to find the conditions for which this limit holds. If the limit is less than 1, the series converges.

Next, we will work on simplifying the expression inside the limit:

|a_(n+1) / a_n * x| = |a_(n+1) / a_n| * |x|

For convergence, we need the absolute value of the ratio of consecutive terms, |a_(n+1) / a_n|, to be less than 1. Let's denote this ratio as R:

R = lim (n->∞) |a_(n+1) / a_n| < 1

From this, we can determine the conditions for convergence. If R is less than 1, the series converges. The interval of convergence can be determined by finding the values of x for which R < 1 holds.

To summarize, we will use the ratio test to find the conditions for convergence of the power series. Then, we can determine the interval of convergence by finding the values of x that satisfy the condition R < 1.

Learn more about interval of convergence here:

brainly.com/question/32443084

#SPJ11

Find the derivative of f(x, y) = x² + xy + y2 at the point ( – 1, 2) in the direction towards the point (3, – 3).

Answers

To find the derivative of f(x, y) = x² + xy + y² at the point (-1, 2) in the direction towards the point (3, -3), we need to compute the directional derivative.

The directional derivative of a function f(x, y) in the direction of a vector v = <a, b> is given by the dot product of the gradient of f and the unit vector in the direction of v.

First, let's compute the gradient of f(x, y):

∇f(x, y) = <∂f/∂x, ∂f/∂y> = <2x + y, x + 2y>

Next, we need to find the unit vector in the direction from (-1, 2) to (3, -3). The direction vector is given by v = <3 - (-1), -3 - 2> = <4, -5>.

To find the unit vector, we divide v by its magnitude:

|v| = √(4² + (-5)²) = √(16 + 25) = √41

So, the unit vector in the direction of v is u = <4/√41, -5/√41>.

Now, we can compute the directional derivative:

D_v f(-1, 2) = ∇f(-1, 2) · u = <2(-1) + 2, (-1) + 2(2)> · <4/√41, -5/√41> = (-2 + 2, -1 + 4) · <4/√41, -5/√41> = (0, 3) · <4/√41, -5/√41> = 0 + 3(4/√41) = 12/√41.

Therefore, the derivative of f(x, y) at the point (-1, 2) in the direction towards the point (3, -3) is 12/√41.

To learn more about derivatives click here:  brainly.com/question/25324584

#SPJ11

Suppose that f(t)=t^2+3t-7. What is the average rate of change off(t) over the interval 5 to 6? What is the instantaneous rate ofchange of f(t) when t=5?

Answers

The average rate of change of f(t) over the interval 5 to 6 is 14.

to find the average rate of change of f(t) over the interval 5 to 6, we can use the formula:

average rate of change = (f(b) - f(a)) / (b - a)

where a and b are the endpoints of the interval.

given f(t) = t² + 3t - 7, and the interval is from 5 to 6, we have:

a = 5b = 6

substituting these values into the formula, we get:

average rate of change = (f(6) - f(5)) / (6 - 5)

calculating f(6):f(6) = (6)² + 3(6) - 7

     = 36 + 18 - 7      = 47

calculating f(5):

f(5) = (5)² + 3(5) - 7      = 25 + 15 - 7

     = 33

substituting these values into the formula:average rate of change = (47 - 33) / (6 - 5)

                     = 14 / 1                      = 14 to find the instantaneous rate of change of f(t) when t = 5, we can calculate the derivative of f(t) with respect to t, and then evaluate it at t = 5.

given f(t) = t² + 3t - 7, we can find the derivative f'(t) as follows:

f'(t) = 2t + 3

to find the instantaneous rate of change at t = 5, we substitute t = 5 into f'(t):

f'(5) = 2(5) + 3

     = 10 + 3      = 13

, the instantaneous rate of change of f(t) when t = 5 is 13.

Learn more about Derivative here:

https://brainly.com/question/29020856

#SPJ11

6. Set up, but do not evaluate an integral representing the arc length of the curve r(t) = (cost, e". Int), where 2 <<<3. (5 pts.) 7. Find the curvature of the curve given by r(t) = (6,2 sint, 2 cost). (5 pts.)

Answers

6. The integral representing the arc length of the curve r(t) = (cos(t), e^t) for 2 ≤ t ≤ 3 is ∫[2 to 3] √(sin^2(t) + (e^t)^2) dt.

7. The curvature of the curve given by r(t) = (6, 2sin(t), 2cos(t)) is κ(t) = |r'(t) x r''(t)| / |r'(t)|^3.

6. To set up the integral for the arc length, we use the formula for arc length: L = ∫[a to b] √(dx/dt)^2 + (dy/dt)^2 dt. In this case, we substitute the parametric equations x = cos(t) and y = e^t, and the limits of integration are 2 and 3, which correspond to the given range of t.

7. To find the curvature, we first differentiate the vector function r(t) twice to obtain r'(t) and r''(t). Then, we calculate the cross product of r'(t) and r''(t) to get the numerator of the curvature formula. Next, we find the magnitude of r'(t) and raise it to the power of 3 to get the denominator. Finally, we divide the magnitude of the cross product by the cube of the magnitude of r'(t) to obtain the curvature κ(t).

Learn more about arc length of the curve:

https://brainly.com/question/31031267

#SPJ11

9. The lim h→0 (A) 0 tan 3(x+h)-tan 3x is h (B) 3 sec² (3x) (C) sec² (3x) (D) 3 cot(3x) (E) nonexistent

Answers

The answer is (B) 3 sec² (3x). Using limit definition of the derivative it is checked that the correct answer is (B) 3 sec² (3x).

To find the limit of the given expression, we can apply the limit definition of the derivative. The derivative of the tangent function is the secant squared function. Therefore, as h approaches 0, the expression can be simplified using the trigonometric identity:

[tex]lim h→0 [tan(3(x + h)) - tan(3x)] / h[/tex]

Using the identity[tex]tan(a) - tan(b) = (tan(a) - tan(b)) / (1 + tan(a) * tan(b))[/tex], we have:

[tex]lim h→0 [tan(3(x + h)) - tan(3x)] / h= lim h→0 [(tan(3(x + h)) - tan(3x)) / h] * [(1 + tan(3(x + h)) * tan(3x)) / (1 + tan(3(x + h)) * tan(3x))][/tex]

Simplifying further, we have:

[tex]= lim h→0 [3sec²(3(x + h)) * (h)] * [(1 + tan(3(x + h)) * tan(3x)) / (1 + tan(3(x + h)) * tan(3x))][/tex]

Taking the limit as h approaches 0, the term 3sec²(3(x + h)) becomes 3sec²(3x), and the term (h) approaches 0. The resulting expression is:

= 3sec²(3x) * 1

= 3sec²(3x)

Therefore, the correct answer is (B) 3 sec² (3x).

learn more about limit here:
https://brainly.com/question/12211820

#SPJ11

Solve: y'"' + 4y'' – 1ly' – 30y = 0 ' y(0) = 1, y'(0) = – 16, y''(0) = 62 = y(t) =

Answers

To solve the given third-order linear homogeneous differential equation y''' + 4y'' - 11y' - 30y = 0 with initial conditions y(0) = 1, y'(0) = -16, and y''(0) = 62, we can find the roots of the characteristic equation and use them to determine the general solution. The specific values of the coefficients can then be obtained by substituting the initial conditions.

We start by finding the roots of the characteristic equation associated with the differential equation. The characteristic equation is obtained by substituting y(t) = e^(rt) into the differential equation, resulting in the equation r^3 + 4r^2 - 11r - 30 = 0.

By solving this cubic equation, we find that the roots are r = -3, r = -5, and r = 2.

The general solution of the differential equation is given by y(t) = C1 * e^(-3t) + C2 * e^(-5t) + C3 * e^(2t), where C1, C2, and C3 are arbitrary constants.

Next, we use the initial conditions to determine the specific values of the coefficients. Substituting y(0) = 1, y'(0) = -16, and y''(0) = 62 into the general solution, we get a system of equations:

C1 + C2 + C3 = 1,

-3C1 - 5C2 + 2C3 = -16,

9C1 + 25C2 + 4C3 = 62.

By solving this system of equations, we find C1 = 1, C2 = -2, and C3 = 2.

Therefore, the solution to the given differential equation with the initial conditions y(0) = 1, y'(0) = -16, and y''(0) = 62 is:

y(t) = e^(-3t) - 2e^(-5t) + 2e^(2t).

Learn more about coefficients here:

https://brainly.com/question/13431100

#SPJ11

how many integers less than 500 are relatively prime to 500?

Answers

There are 200 integers less than 500 that are relatively prime to 500.

In order to determine the number of integers less than 500 that are relatively prime to 500, we need to find the count of positive integers less than 500 that do not share any common factors with 500 except for 1.

To find this count, we can use Euler's totient function (φ-function), which calculates the number of positive integers less than a given number n that are relatively prime to n. For any number n that can be expressed as a product of distinct prime factors, the φ-function can be calculated using the formula φ(n) = n × (1 - 1/p1) × (1 - 1/p2) ×... × (1 - 1/pk), where p1, p2, ..., pk are the prime factors of n.

In the case of 500, its prime factorization is 4 × 125 Using the φ-function formula, we can calculate φ(500) = 500 × (1 - 1/2) × (1 - 1/5) = 500 × 1/2 × 4/5 = 200.

Learn more about Euler's totient here:

https://brainly.com/question/31821033

#SPJ11

eventually the banners had to be taken down. a banner in the shape of an isosceles triangle is hung from the roof over the side of the building. the banner has a base of 25 ft ant height of 20 ft. the banner is made from the material with a uniform density of 5 pounds per square foot. set up an integral to compute the work required to lift the banner onto the roof of the building. evaluate the integral to find the work.

Answers

The integral to compute the work required to lift the banner onto the roof of the building is ∫(0 to h) 1250 dh, and the work itself is given by 1250h.

What is Integral?

In mathematics, an integral assigns numbers to functions in a way that can describe displacement, area, volume, and other concepts that arise from the combination of infinitesimal data. Integration is one of the two main operations of calculus; its inverse operation, differentiation, is the second.

To compute the work required to lift the banner onto the roof of the building, we can use the concept of work as the integral of force over distance. In this case, the force required to lift a small element of the banner is equal to its weight, which is determined by its area and the density of the material.

Given that the banner is in the shape of an isosceles triangle with a base of 25 ft and a height of 20 ft, the area of the banner can be calculated as follows:

Area = (1/2) * base * height

Area = (1/2) * 25 ft * 20 ft

Area = 250 ft²

Since the density of the material is 5 pounds per square foot, the weight of the banner can be determined by multiplying the area by the density:

Weight = density * Area

Weight = 5 pounds/ft² * 250 ft²

Weight = 1250 pounds

Now, let's consider the vertical distance over which the banner needs to be lifted. Assuming the building's roof is at a height of h feet above the ground, the distance over which the banner is lifted is h feet.

The work required to lift the banner can be expressed as the integral of the force (weight) over the distance (h):

Work = ∫(0 to h) Weight * dh

Substituting the value for Weight, we have:

Work = ∫(0 to h) 1250 pounds * dh

Integrating, we get:

Work = [1250h] evaluated from 0 to h

Work = 1250h - 1250(0)

Work = 1250h

So, the integral to compute the work required to lift the banner onto the roof of the building is ∫(0 to h) 1250 dh, and the work itself is given by 1250h.

To learn more about Integral from the given link

https://brainly.com/question/12231722

#SPJ4

Which of the following statements is INCORRECT regarding the disadvantages of simulation?
a. The summary of the simulation data only provides estimates about the real system.
b. The process of developing a simulation model of a complex system can be time-consuming.
c. The larger the number of probabilistic inputs a system has, the less likely a simulation will provide the best approach for studying the system.
d. Each simulation run only provides a sample of how t
he real system will operate.

Answers

(d.) Each run of the simulation only provides a sample of the actual system's operation.

This assertion is right, not mistaken. Indeed, each simulation run is a sample of the actual system's operation. A single simulation run cannot account for all possible outcomes and variations in the real system because simulations are based on mathematical models and involve random variations.

In order to take into consideration various scenarios and variations, multiple simulation runs are typically carried out. By running numerous reenactments, specialists can assemble a scope of results and measurable data to acquire a superior comprehension of the framework's way of behaving and go with informed choices.

The analysis and confidence in the simulation study's conclusions increase with the number of simulation runs performed.

To know more about real system  refer to

https://brainly.com/question/30728412

#SPJ11

Among all the points on the graph of z=11-x^2-y^2 that lie above the plane x + 3y + 4z = 0: find the point farthest from the plane. What are the values of x, y, and z for the point? x= y= z=

Answers

The value of point farthest from the plane is {Mod-(x + 3y + 4(11 - x² - y²))} / √26 units and the values of x, y, and z for the point is 1/8, 3/8, and 347/32.

What is the distance from a point to a plane?

The length of the perpendicular that is dropped from a point to touch a plane is actually the smallest distance between them.

Distance between point and plane:

The distance from (x₀, y₀, z₀) to the plane Ax +By + Cz + D = 0 is

Distance = {Mod-(Ax₀ +By₀ + Cz₀ + D)} / √(A² + B² + C²)

As given,

Z = 11 - x² - y² and plane x + 3y + 4z = 0.

From formula:

D(x, y, z) = {Mod-(Ax₀ +By₀ + Cz₀ + D)} / √(A² + B² + C²)

Substitute values respectively,

D(x, y, z) = {Mod-(x + 3y + 4z)} / √(1² + 3² + 4²)

D(x, y, z) = {Mod-(x + 3y + 4z)} / √(1 + 9 + 16)

D(x, y, z) = {Mod-(x + 3y + 4z)} / √26

Substitute value of z,

D(x, y, z) = {Mod-(x + 3y + 4(11 - x² - y²))} / √26

For farthest point: Dₓ = 0;

1 - 8x = 0

   8x = 1

    x = 1/8

Similarly, for farthest point: Dy = 0;

3 - 8y = 0

    8y = 3

      y = 3/8

Substitute obtained values of x and y respectively,

z = 11 - x² - y²

z = 11 - (1/8)² - (3/8)²

z = 347/32

So, the farthest points are,

x = 1/8, y = 3/8, and z = 347/32.

Hence, the value of point farthest from the plane is Mod-(x + 3y + 4z)/√26 units and the values of x, y, and z for the point is 1/8, 3/8, and 347/32.

To learn more about distance from a point to a plane from the given link.

https://brainly.com/question/30680018

#SPJ4

the instructor of a discrete mathematics class gave two tests. forty percent of the students received an a on the first test and 32% of the students received a's on both tests. what percent of the students who received a's on the first test also received a's on the second test?

Answers

Based on the information provided, 32% of the students received A's on both the first and second tests.

Let's assume there are 100 students in the class for simplicity. According to the given information, 40% of the students received an A on the first test. This means that 40 students got an A on the first test. Out of these 40 students, 32% also received an A on the second test. To calculate the number of students who received A's on both tests, we take 32% of the 40 students who got an A on the first test.

This gives us (32/100) * 40 = 12.8 students. Since we can't have a fraction of a student, we round down to the nearest whole number. Therefore, approximately 12 students received A's on both the first and second tests, out of the 40 students who received an A on the first test. To express this as a percentage, we divide the number of students who received A's on both tests (12) by the total number of students who received an A on the first test (40) and multiply by 100.

This gives us (12/40) * 100 = 30%. Hence, approximately 30% of the students who received A's on the first test also received A's on the second test.

Learn more about whole number here:

https://brainly.com/question/29766862

#SPJ11

Sorry I know it’s long but I need help Jackie is selling smoothies at a school fair. She starts the day with $15 in her cash box to provide change to her customers. If each smoothie costs $3.75, which graph represents the balance of the cash box, y, after Jackie sells x smoothies?
A.
A graph plots the number of smoothies sold versus the balance of the cash box. A diagonal curve rises through (0, 0), (1, 15), (2, 30) and (4, 60) on the x y coordinate plane.
B.
A graph plots the number of smoothies sold versus the balance of the cash box. A diagonal curve rises through (0, 15), (2, 22 point 5), (4, 30), (6, 37 point 5), (8, 45), (10, 52 point 5), (12, 60), (14, 67 point 5) and (16, 75).
C.
A graph plots the number of smoothies sold versus the balance of the cash box. A diagonal curve rises through (0, 15), (2, 30), (4, 45), (6, 60), (8, 75) on the x y coordinate plane.
D.
A graph plots the number of smoothies sold versus the balance of the cash box. A diagonal curve rises through (0, 7 point 5), (2, 15), (4, 22 point 5), (6, 30), (8, 37 point 5), (10, 45), (12, 52 point 5), (14, 60) and (16, 67 point 5).

Answers

option B accurately represents the relationship between the number of smoothies sold and the balance of the cash box, demonstrating the gradual increase in the cash box balance as Jackie sells more smoothies.

Option B is the correct answer.

We have,

The graph plots the number of smoothies sold (x) on the x-axis and the balance of the cash box (y) on the y-axis.

The points on the graph indicate specific values of x and y.

For example, at the starting point (0, 15), which represents zero smoothies sold, the cash box balance is $15.

As Jackie sells more smoothies, the balance increases gradually.

The diagonal curve in the graph indicates a linear relationship between the number of smoothies sold and the balance of the cash box.

Each time two smoothies are sold (x increases by 2), the balance of the cash box increases by $7.5 (y increases by 7.5).

This linear relationship is consistent throughout the graph, showing that as more smoothies are sold, the cash box balance increases in a predictable and proportional manner.

Therefore,

option B accurately represents the relationship between the number of smoothies sold and the balance of the cash box, demonstrating the gradual increase in the cash box balance as Jackie sells more smoothies.

Learn more about graphs here:

https://brainly.com/question/13118993

#SPJ1

2. Evaluate the line integral R = Icy?dx + xdy, where C is the arc of the parabola r = 4 - y from (-5.-3) to (0.2).

Answers

The line integral R is equal to -22.5. to evaluate the line integral, we parameterize the parabola as x = t and y = 4 - t^2, where t ranges from -3 to 2. We then substitute these expressions into the integrand and integrate with respect to t.

After simplifying, we find R = -22.5. This indicates that the line integral along the given arc of the parabola is -22.5.

To evaluate the line integral R, we first need to parameterize the given arc of the parabola. We can do this by expressing x and y in terms of a parameter, let's say t. For the given parabola, we have x = t and y = 4 - t^2.

Next, we substitute these parameterizations into the integrand, which is Icy?dx + xdy. This gives us the expression (4 - t^2)(dt) + t(2tdt).

[tex]Simplifying the expression, we have 4dt - t^2dt + 2t^2dt.[/tex]

Now, we integrate this expression with respect to t, considering the given limits of t from -3 to 2.

[tex]Integrating term by term, we get 4t - (t^3/3) + (2t^3/3).[/tex]

Evaluating this expression at the upper limit t = 2 and subtracting the value at the lower limit t = -3, we find R = (8 - 8/3 + 16/3) - (-12 + 27/3 - 54/3) = -22.5. therefore, the line integral R is equal to -22.5 along the given arc of the parabola.

Learn more about evaluate here:

https://brainly.com/question/14677373

#SPJ11

the marks of a class test are 28, 26, 17, 12, 14, 19, 27, 26 , 21, 16, 15

find the median

Answers

Answer:

19

Step-by-step explanation:

First, you should arrange the data in ascending to descending to find the median.

12, 14, 15, 16, 17, 19, 21, 26, 26, 27, 28

Now let us use the given formula to find the median.

[tex]\sf \dfrac{n+1}{2} =--^t^h data[/tex]

Here,

n → the number of elements

Let us find it now.

[tex]\sf Median= \dfrac{n+1}{2}\\\\\sf Median=\dfrac{11+1}{2} =6^t^h data\\\\Median=19[/tex]

(1 point) Use the Shell Method to find the volume of the solid obtained by rotating the region under the graph of f(x) = x² + 2 and above the x-axis for 0 ≤ x ≤ 5 about the line = 5. 28 V 5,0 1,0

Answers

The volume of the solid obtained by rotating the region under the graph of f(x) = x² + 2 and above the x-axis for 0 ≤ x ≤ 5 about the line x = 5 is 28 cubic units.

To find the volume using the Shell Method, we divide the region into infinitesimally thin vertical strips and rotate each strip around the given axis. The volume of each strip is then calculated as the product of its height, circumference, and thickness.

In this case, the axis of rotation is x = 5, so the distance between the axis and each strip is given by r = 5 - x. The height of each strip is f(x) = x² + 2. The circumference of each strip is 2πr, and the thickness is dx.

The volume of each strip is then dV = 2πr * f(x) * dx. Integrating this expression over the interval 0 ≤ x ≤ 5 will give us the total volume of the solid.

∫[0,5] 2π(5 - x)(x² + 2) dx = 2π ∫[0,5] (10x² - x³ + 20 - 2x) dx.

Evaluating the integral, we get:

= 2π [(10/3)x³ - (1/4)x⁴ + 20x - x²] from 0 to 5

= 2π [(10/3)(5)³ - (1/4)(5)⁴ + 20(5) - (5)² - 0]

= 28π.

Learn more about  Shell Method here:

https://brainly.com/question/30401636

#SPJ11

a skier skis ccw along a circular ski trail that has a radius of 1.6 km. she starts at the northernmost point of the trail and travels at a constant speed, sweeping out 3.4 radians per hour. let t represent the number of hours since she started skiing. write an expression in terms of t to represent the number of radians that would need to be swept out from the east side of the ski trail to reach the skier's current position.

Answers

The total number of radians swept out from the east side of the trail to the skier's current position as 3.4t - π/2.

To represent the number of radians that would need to be swept out from the east side of the ski trail to reach the skier's current position, we can use the expression 3.4t - π/2, where t represents the number of hours since the skier started skiing.

The skier starts at the northernmost point of the circular ski trail, which can be considered as the 12 o'clock position. We can imagine the east side of the ski trail as the 3 o'clock position. As the skier skis counterclockwise (CCW) along the trail, she sweeps out 3.4 radians per hour.

Since the skier starts at the northernmost point, she needs to cover an additional π/2 radians to reach the east side of the trail. This is because the angle between the northernmost point and the east side is π/2 radians.

Therefore, we can express the total number of radians swept out from the east side of the trail to the skier's current position as 3.4t - π/2. The term 3.4t represents the number of radians swept out by the skier in t hours, and subtracting π/2 accounts for the initial π/2 radians needed to reach the east side of the trail from the northernmost point.

Learn more about angle here:

https://brainly.com/question/13954458

#SPJ11

(10 points) Evaluate the surface integral SS f(x, y, z) dS : 2 S 12 f(x, y, z) = = Siz=4-y, 0 < x < 2, 0 < y < 4 = x2 – 9+2

Answers

To evaluate the surface integral, we first need to calculate the surface normal vector of the given surface S.

The surface S is defined as z = 4 - y, with 0 < x < 2 and 0 < y < 4. The surface integral is then evaluated using the formula ∬S f(x, y, z) dS.To calculate the surface integral, we need to find the unit normal vector to the surface S. Taking the partial derivatives of the surface equation, we get the normal vector as N = (-∂z/∂x, -∂z/∂y, 1) = (0, -1, 1).

Next, we evaluate the surface integral by integrating the function f(x, y, z) = x^2 - 9z + 2 over the surface S, multiplied by the dot product of the function and the unit normal vector. The integral becomes ∬S (x^2 - 9z + 2) (-1) dS. Finally, we compute the value of the surface integral using the given limits of integration for x and y.

Learn more about surface integral: brainly.in/question/31941798

1 If y = tan - (x), then y' d da (tan- ?(x)] 1 + x2 This problem will walk you through the steps of calculating the derivative. y (a) Use the definition of inverse to rewrite the given equation with x

Answers

The given equation is [tex]y = tan^(-1)(x)[/tex]. To find the derivative, we need to use the chain rule. Let's break down the steps:

Rewrite the equation using the definition of inverse:[tex]tan^(-1)(x) = arctan(x).[/tex]

Apply the chain rule:[tex]d/dx [arctan(x)] = 1/(1 + x^2).[/tex]

Simplify the expression:[tex]y' = 1/(1 + x^2).[/tex]

So, the derivative of [tex]y = tan^(-1)(x) is y' = 1/(1 + x^2).[/tex]

learn more about:- inverse here

https://brainly.com/question/30339780

#SPJ11

Evaluate the line integral ſvø• dr for the following function and oriented curve C (a) using a parametric description of C and evaluating the integral directly, and (b) с using the Fundamental Theorem for line integrals. x² + y² + z² Q(x,y,z) = C: r(t) = cost, sint, 2 1111 for sts 6 Sve•dr=[. Using either method, с (Type an exact answer.)

Answers

The line integral ſvø• dr for the function [tex]Q(x, y, z) = x^2 + y^2 + z^2[/tex] along the oriented curve C can be evaluated using both a parametric description of C and by applying the Fundamental Theorem for line integrals.

(a) To evaluate the line integral using a parametric description, we substitute the parametric equations of the curve C, r(t) = (cost, sint, 2t), into the function Q(x, y, z). We have [tex]Q(r(t)) = (cost)^2 + (sint)^2 + (2t)^2 = 1 + 4t^2[/tex]. Next, we calculate the derivative of r(t) with respect to t, which gives dr/dt = (-sint, cost, 2). Taking the dot product of Q(r(t)) and dr/dt, we get [tex](-sint)(-sint) + (cost)(cost) + (2t)(2) = 1 + 4t^2[/tex]. Finally, we integrate this expression over the interval [s, t] of curve C to obtain the value of the line integral.

(b) Using the Fundamental Theorem for line integrals, we find the potential function F(x, y, z) by taking the gradient of Q(x, y, z), which is ∇Q = (2x, 2y, 2z). We then substitute the initial and terminal points of the curve C, r(s), and r(t), into F(x, y, z) and subtract the results to obtain the line integral ∫[r(s), r(t)] ∇Q • dr = F(r(t)) - F(r(s)).

Learn more about Fundamental Theorem for line integrals here:

https://brainly.com/question/32250032

#SPJ11

Other Questions
identify which principle applies to each scenario and place the appropriate terms in the corresponding spaces.a. after spending hours researching his choices, mark decides on a laptop that will cost him $799. as he walks into his local retailer, a salesman presents him a laptop with marginally better features at the same price. however, mark would have to do further research to verify that the new alternative is in fact better. as a result, he decides that the laptop he previously decided on is good enough and buys it. Mark's decision is an example of__ a) bounded rationality. b) fairness. c) risk aversion (1 point) Evaluate the integral using an appropriate substitution. | -5.2*e** dx = s * +C (1 point) Evaluate the indefinite integral using substitution. (Use C for the constant of integration.) dc 2 how did education generally affect the use of electronic payments E pleaseWe want to build 13 letter "words" using only the first n = 6 letters of the alphabet. For example, if n = 5 we can use the first 5 letters, {a,b,c,d, e} (Recall, words are just strings of letters two arteries formed by the division of the brachiocephalic artery Evaluate the iterated integral by converting to polar coordinates. ./2 - y2 5(x + y) dx dy 12- 2v2 3 x 1) The power series E=(2x)" is a convergent geometric series if x is in the interval, (-). What function, f(x), does the power series Eno(2x)" equal on the interval? (10 points) An airplane ties horizontally from east to west at 272 mi/hr relative to the arties in a steady 46 mi/h Wind that blows horizontally toward the southwest (45* south of west), find the speed and direction of the airplane relative to the ground The system of interconnected tubes involved in protein production is called the cytoskeleton rough endoplasmic reticulum. the lysosome basal bodies arthur's blood pressure measurement of 148/94 mmhg indicates hypertension. canyou please please help answer A, B, C, and D thank you so muchSuppose that the total profit in hundreds of dollars from selling x items is given by Px)=3x2 - 4x + 6. Completo parts a through d below. a. Find the average rate of change of profit as x changes from The demand for a particular item is given by the function D(x) = 2,000 - 3x? Find the consumer's surplus if the equilibrium price of a unit $125. The consumer's surplus is $| TIP Enter your answer as an integer or decimal number Find the area of the shaded region. 3 x=y-2 -1 -3 y -2 y = 1 1 y = -1 X=e2 3 4 X according to the following reaction, how many grams of oxygen gas are required for the complete reaction of 32.4 grams of carbon (graphite)? carbon (graphite) (s) oxygen (g) carbon dioxide (g) Read the excerpt from Blanca Flor.[THE DUENDE points to a path in the forest. JUANITO stands up and looks down the path.]Which dramatic element is reflected in this excerpt?propsstage directionsdialoguecharacters How does crowdsourcing enable managers to expand their talent pool? o Amateurs work together in an online environment to solve a problem. o It is routinely used during the hiring process. o Experts in the field provide their insight into the problem at hand. o They hire experts in several fields to help run the company. Type the correct answer in the box. Spell all words correctly.Mention the term__ refers to having a generalized (and biased) belief about a particular group of people. Ineed 11,12,13 with detailed explanation pleaseFor each function, evaluate the stated partials. f(x,y) = 5x3 + 4x2y2 3y2 - 11. fx(-1,2), fy(-1,2) g(x,y) = ex2 + y2 12 9x(0,1), gy(0,1) f(x,y) = ln(x - y) + x3y2 13 fx(2,1), fy(2,1) Given that your sin wave has a period of 3, what is the valueof b? True / FalseAn arrector pili muscle is composed of skeletal muscle tissue Steam Workshop Downloader