dandre expands 120w of power in moving a couch 15 meters in 5 seconds how much force does he exert ?

Answers

Answer 1

Answer:

The answer is 40 N for APX

Explanation:


Related Questions

Which scientist proved experimentally that a shadow of the circular object illuminated 18. with coherent light would have a central bright spot?
A. Young
B. Fresnel
C. Poisson
D. Arago

Answers

Answer:

Your answer is( D) - Arago

A 18.0 kg electric motor is mounted on four vertical springs, each having a spring constant of 24.0 N/cm. Find the period with which the motor vibrates vertically.

Answers

Answer:

Explanation:

Total mass m = 18 kg .

Spring are parallel to each other so total spring constant

= 4 x 24 = 96 N/cm = 9600 N/m

Time period of vibration

[tex]T=2\pi\sqrt{\frac{m}{k} }[/tex]

Putting the given  values

[tex]T=2\pi\sqrt{\frac{18}{9600} }[/tex]

= .27 s .

Two point charges of +2.0 μC and -6.0 μC are located on the x-axis at x = -1.0 cm and x 12) = +2.0 cm respectively. Where should a third charge of +3.0-μC be placed on the +x-axis so that the potential at the origin is equal to zero?

Answers

Answer:

 x = 0.006 m

Explanation:

The potential at one point is given by

          V = k ∑ [tex]q_{i} / r_{i}[/tex]

remember that the potential is to scale, let's apply to our case

          V = k (q₁ / x₁ + q₂ / x₂ + q₃ / x)

in this case they indicate that the potential is zero

          0 = k (2 10⁻⁶ / (- 1 10⁻²) + (-6 10⁻⁶) / 2 10⁻² + ​​3 10⁻⁶ / x)

         3 / x = + 2 / 10⁻² + ​​3 / 10⁻²

         3 / x = 500

          x = 3/500

          x = 0.006 m

select the example that best describes a renewable resource.
A.after a shuttle launch, you can smell the jet fuel for hours.
B.solar panels generate electricity that keeps the satellites running.
C.tractor trailers are large trucks that run on diesel fuel.
D. we use our barbeque every night; it cooks with propane.

Answers

Answer:

B.solar panels generate electricity that keeps the satellites running.

Explanation:

Solar panels are a renewable resource because they take energy from the sun.

A 5.00-kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of 1.60 s. Find the force constant of the spring.

Answers

Answer:A7.50kg object is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations having a period of2.30s. Find the force constant of the spring.

N/m

Explanation:

Two identical wooden barrels are fitted with long pipes extending out their tops. The pipe on the first barrel is 1 foot in diameter, and the pipe on the second barrel is only 1/2 inch in diameter. When the larger pipe is filled with water to a height of 20 feet, the barrel bursts. To burst the second barrel, will water have to be added to a height less than, equal to, or greater than 20 feet? Explain.

Answers

Answer:

The 1/2 inch barrel will burst at the same height of 20 ft

Explanation:

The pressure on a column of fluid increases with depth, and decreases with height. This means that if you increase the height of the fluid in the column, the pressure at the bottom will increase.

From the equation of fluid pressure,

P = ρgh

where

P is the pressure at the bottom of the fluid due to its height

ρ is the density of the fluid in question

h is the height to which the water stand.

You notice how apart from the height 'h' in the equation, all the other parts of the right hand side of the equation cannot be varied; they are a fixed property of the fluid and gravity. And there is no consideration for the horizontal diameter of the water's cross section area.

We can also think of the pressure at the bottom of the fluid to be as a result of an incremental weight of an infinitesimally small vertical section of the water down.

That been said, we can then say that if the barrel with the 1 ft diameter dimension bursts when filled with water up to 20 ft, then, the barrel with the reduced diameter will still burst at the same height as the former pipe.

NB: The only way to stop the pipe from bursting is to increase the thickness of the barrel wall to counteract the pressure forces due to the height.

What are the approximate dimensions of the smallest object on Earth that astronauts can resolve by eye when they are orbiting 275 km above the Earth

Answers

Answer:

   s_400 = 16.5 m , s_700 = 29.4 m

Explanation:

The limit of the human eye's solution is determined by the diffraction limit that is given by the expression

                   θ = 1.22 λ / D

where you lick the wavelength and D the mediator of the circular aperture.

In our case, the dilated pupil has a diameter of approximately 8 mm = 8 10-3 m and the eye responds to a wavelength between 400 nm and 700 nm.

by introducing these values ​​into the formula

                 

λ = 400 nm      θ = 1.22 400 10⁻⁹ / 8 10⁻³ = 6 10⁻⁵ rad

λ = 700 nm     θ = 1.22 700 10⁻⁹ / 8 10⁻³-3 = 1.07 10⁻⁴ rad

Now we can use the definition radians

          θ= s / R

where s is the supported arc and R is the radius. Let's find the sarcos for each case

λ = 400 nm       s_400 = θ R

                         S_400 = 6 10⁻⁵ 275 10³

                         s_400 = 16.5 m

λ = 700 nm s_ 700 = 1.07 10⁻⁴ 275 10³

                          s_700 = 29.4 m

A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100 mm and a screen placed 2.0 m away. (a)How wide on the screen is the central bright fringe

Answers

Answer:

0.0127m

Explanation:

Using

Ym= (1)(633x10^-9m)(2m) / (0.1x10^-3m) = 0.0127m

collision occurs betweena 2 kg particle traveling with velocity and a 4 kg particle traveling with velocity. what is the magnitude of their velocity

Answers

Answer:

metre per seconds

Explanation:

because velocity = distance ÷ time

Which has more mass electron or ion?

Answers

an ion has more mass than an electron

The tune-up specifications of a car call for the spark plugs to be tightened to a torque of 38N⋅m38N⋅m. You plan to tighten the plugs by pulling on the end of a 25-cm-long wrench. Because of the cramped space under the hood, you'll need to put at an angle of 120∘with respect to the wrench shaft. With what force must you pull?

Answers

Answer:

F= 175.5N

Explanation:

Given:

Torque which can also be called moment is defined as rotational equivalent of linear force. It is the product of the external force and perpendicular distance

torque of 38N⋅m

angle of 120∘

Torque(τ): 38Nm

position r relative to its axis of rotation: 25cm , if we convert to metre for consistency we have 0.25m

Angle: 120°

To find the Force, the torque equation will be required which is expressed below

τ = Frsinθ

We need to solve for F, if we rearrange the equation, we have the expression below

F= τ/rsinθ

Note: the torque is maximum when the angle is 90 degrees

But θ= 180-120=60

F= 38/0.25( sin(60) )

F= 175.5N

Suppose a particle moves back and forth along a straight line with velocity v(t), measured in feet per second, and acceleration a(t). What is the meaning of ^120∫60 |v(t)| dt?

Answers

Answer:

The meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds

Explanation:

We are told that the particle moves back and forth along a straight line with velocity v(t).

Now, velocity is the rate of change of distance with time. Thus, the integral of velocity of a particle with respect to time will simply be the distance covered by the particle.

Thus, the meaning of the integral (120, 60)∫ |v(t)| dt is simply the distance covered by the particle from time t = 60 seconds to time t = 120 seconds

An electron moves to the left along the plane of the page, while a uniform magnetic field points into the page. What direction does the force act on the moving electron

Answers

Answer:

acting force is the answer

The direction of the magnetic force on the moving electron is upward.

The direction of the magnetic force on the electron can be determined by applying right hand rule.

This rule states that when the thumb is held perpendicular to the fingers, the thumb will point in the direction of the speed while the fingers will point in the direction of the field and the magnetic force will be perpendicular to the field.

Thus, we can conclude that, the direction of the magnetic force on the moving electron is upward.

Learn more here:https://brainly.com/question/14434299

A 3.15-kg object is moving in a plane, with its x and y coordinates given by x = 6t2 − 4 and y = 5t3 + 6, where x and y are in meters and t is in seconds. Find the magnitude of the net force acting on this object at t = 2.15 s.

Answers

Answer:

206.67N

Explanation:

The sum of force along both components x and y is expressed as;

[tex]\sum Fx = ma_x \ and \ \sum Fy = ma_y[/tex]

The magnitude of the net force which is also known as the resultant will be expressed as [tex]R =\sqrt{(\sum Fx)^2 + (\sum Fx )^2}[/tex]

To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.

Given the position of the object along the x-component to be x = 6t² − 4;

[tex]a_x = \frac{d^2 x }{dt^2}[/tex]

[tex]a_x = \frac{d}{dt}(\frac{dx}{dt} )\\ \\a_x = \frac{d}{dt}(6t^{2}-4 )\\\\a_x = \frac{d}{dt}(12t )\\\\a_x = 12m/s^{2}[/tex]

Similarly,

[tex]a_y = \frac{d}{dt}(\frac{dy}{dt} )\\ \\a_y = \frac{d}{dt}(5t^{3} +6 )\\\\a_y = \frac{d}{dt}(15t^{2} )\\\\a_y = 30t\\a_y \ at \ t= 2.15s; a_y = 30(2.15)\\a_y = 64.5m/s^2[/tex]

[tex]\sum F_x = 3.15 * 12 = 37.8N\\\sum F_y = 3.15 * 64.5 = 203.18N[/tex]

[tex]R = \sqrt{37.8^2+203.18^2}\\ \\R = \sqrt{1428.84+41,282.11}\\ \\R = \sqrt{42.710.95}\\ \\R = 206.67N[/tex]

Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N

soaring birds and glider pilots can remain aloft for hours without expending power. Discuss why this is so.

Answers

Answer:

Since their wings and body develop the drag. When there is warm air then they expand their wings. Since,soaring birds and glider pilots have no engine, they always maintain their high speed to lift their weight in air for hours without expending power by convection

Explanation:

A Huge water tank is 2m above the ground if the water level on it is 4.9m high and a small opening is there at the bottom then the speed of efflux of non viscous water through the opening will be

Answers

Answer:

The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.

Explanation:

Let assume the existence of a line of current between the water tank and the ground and, hence, the absence of heat and work interactions throughout the system. If water is approximately at rest at water tank and at atmospheric pressure ([tex]P_{atm}[/tex]), then speed of efflux of the non-viscous water is modelled after the Bernoulli's Principle:

[tex]P_{1} + \rho\cdot \frac{v_{1}^{2}}{2} + \rho\cdot g \cdot z_{1} = P_{2} + \rho\cdot \frac{v_{2}^{2}}{2} + \rho\cdot g \cdot z_{2}[/tex]

Where:

[tex]P_{1}[/tex], [tex]P_{2}[/tex] - Water total pressures inside the tank and at ground level, measured in pascals.

[tex]\rho[/tex] - Water density, measured in kilograms per cubic meter.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Water speeds inside the tank and at the ground level, measured in meters per second.

[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Heights of the tank and ground level, measured in meters.

Given that [tex]P_{1} = P_{2} = P_{atm}[/tex], [tex]\rho = 1000\,\frac{kg}{m^{3}}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{1} = 0\,\frac{m}{s}[/tex], [tex]z_{1} = 6.9\,m[/tex] and [tex]z_{2} = 4.9\,m[/tex], the expression is reduced to this:

[tex]\left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m) = \frac{v_{2}^{2}}{2} + \left(9.807\,\frac{m}{s^{2}} \right)\cdot (4.9\,m)[/tex]

And final speed is now calculated after clearing it:

[tex]v_{2} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (6.9\,m-4.9\,m)}[/tex]

[tex]v_{2} \approx 6.263\,\frac{m}{s}[/tex]

The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.

A small branch is wedged under a 200 kg rock and rests on a smaller object. The smaller object is 2.0 m from the large rock and the branch is 12.0 m long.
(a) If the mass of the branch is negligible, what force must be exerted on the free end to just barely lift the rock?
(b) What is the mechanical advantage of this lever system?

Answers

Answer:

a

  [tex]F =326.7 \ N[/tex]

b

  [tex]M = 6[/tex]

Explanation:

From the question we are told that

          The mass of the rock is  [tex]m_r = 200 \ kg[/tex]

          The  length of the small object from the rock is  [tex]d = 2 \ m[/tex]

          The  length of the small object from the branch [tex]l = 12 \ m[/tex]

An image representing this lever set-up is shown on the first uploaded image

Here the small object acts as a fulcrum

The  force exerted by the weight of the rock is mathematically evaluated as

      [tex]W = m_r * g[/tex]

substituting values

     [tex]W = 200 * 9.8[/tex]

     [tex]W = 1960 \ N[/tex]

 So  at  equilibrium the sum  of the moment about the fulcrum is mathematically represented as

         [tex]\sum M_f = F * cos \theta * l - W cos\theta * d = 0[/tex]

Here  [tex]\theta[/tex] is very small so  [tex]cos\theta * l = l[/tex]

                               and  [tex]cos\theta * d = d[/tex]

Hence

       [tex]F * l - W * d = 0[/tex]

=>    [tex]F = \frac{W * d}{l}[/tex]

substituting values

        [tex]F = \frac{1960 * 2}{12}[/tex]

       [tex]F =326.7 \ N[/tex]

The  mechanical advantage is mathematically evaluated as

          [tex]M = \frac{W}{F}[/tex]

substituting values

        [tex]M = \frac{1960}{326.7}[/tex]

       [tex]M = 6[/tex]

A device called an insolation meter is used to measure the intensity of sunlight. It has an area of 100 cm2 and registers 6.50 W. What is the intensity in W/m2

Answers

Answer:

650W/m²

Explanation:

Intensity of the sunlight is expressed as I  = Power/cross sectional area. It is measured in W/m²

Given parameters

Power rating = 6.50Watts

Cross sectional area = 100cm²

Before we calculate the intensity, we need to convert the area to m² first.

100cm² = 10cm * 10cm

SInce 100cm = 1m

10cm = (10/100)m

10cm = 0.1m

100cm² = 0.1m * 0.1m = 0.01m²

Area (in m²) = 0.01m²

Required

Intensity of the sunlight I

I = P/A

I = 6.5/0.01

I = 650W/m²

Hence, the intensity of the sunlight in W/m² is 650W/m²

A solenoid 26.0 cm long and with a cross-sectional area of 0.580 cm^2 contains 490 turns of wire and carries a current of 90.0 A.
Calculate:
(a) the magnetic field in the solenoid;
(b) the energy density in the magnetic field if the solenoid is filled with air;
(c) the total energy contained in the coil’s magnetic field (assume the field is uniform);
(d) the inductance of the solenoid.

Answers

Answer:

A.21.3T

B.1.8x 10^6J/m^3

C.0.27x10^2J

D.6.6x10^-3H

Explanation:

Pls see attached file

A segment of wire of total length 3.0 m carries a 15-A current and is formed into a semicircle. Determine the magnitude of the magnetic field at the center of the circle along which the wire is placed.

Answers

Answer:

4.9x10^-6T

Explanation:

See attached file

Suppose your 50.0 mm-focal length camera lens is 51.0 mm away from the film in the camera. (a) How far away is an object that is in focus

Answers

Answer:

2.55m

Explanation:

Using 1/do+1/di= 1/f

di= (1/f-1/do)^-1

( 1/0.0500-1/0.0510)^-1

= 2.55m

A 600-turn solenoid, 25 cm long, has a diameter of 2.5 cm. A 14-turn coil is wound tightly around the center of the solenoid. If the current in the solenoid increases uniformly from 0 to 5.0 A in 0.60 s, what will be the induced emf in the short coil during this time

Answers

Answer:

The induced emf in the short coil during this time is 1.728 x 10⁻⁴ V

Explanation:

The magnetic field at the center of the solenoid is given by;

B = μ(N/L)I

Where;

μ is permeability of free space

N is the number of turn

L is the length of the solenoid

I is the current in the solenoid

The rate of change of the field is given by;

[tex]\frac{\delta B}{\delta t} = \frac{\mu N \frac{\delta i}{\delta t} }{L} \\\\\frac{\delta B}{\delta t} = \frac{4\pi *10^{-7} *600* \frac{5}{0.6} }{0.25}\\\\\frac{\delta B}{\delta t} =0.02514 \ T/s[/tex]

The induced emf in the shorter coil is calculated as;

[tex]E = NA\frac{\delta B}{\delta t}[/tex]

where;

N is the number of turns in the shorter coil

A is the area of the shorter coil

Area of the shorter coil = πr²

The radius of the coil = 2.5cm / 2 = 1.25 cm = 0.0125 m

Area of the shorter coil = πr² = π(0.0125)² = 0.000491 m²

[tex]E = NA\frac{\delta B}{\delta t}[/tex]

E = 14 x 0.000491 x 0.02514

E = 1.728 x 10⁻⁴ V

Therefore, the induced emf in the short coil during this time is 1.728 x 10⁻⁴ V

The induced emf in the coil at the center of the longer solenoid is [tex]1.725\times10^{-4}V[/tex]

Induced EMF:

The induced emf is produced in a coil when the magnetic flux through the coil is changing. It opposes the change of magnetic flux. Mathematically it is represented as the negative rate of change of magnetic flux at follows:

[tex]E=-\frac{\delta\phi}{\delta t}[/tex]

where E is the induced emf,

[tex]\phi[/tex] is the magnetic flux through the coil.

The changing current varies the magnetic flux through the coil at the center of the long solenoid, which is given by:

[tex]\phi = \frac{\mu_oNIA}{L}[/tex]

so;

[tex]\frac{\delta\phi}{\delta t}=\frac{\mu_oNA}{L} \frac{\delta I}{\delta t}[/tex]

where N is the number of turns of longer solenoid, A is the cross sectional area, I is the current and L is the length of the coil.

[tex]\frac{\delta\phi}{\delta t}=\frac{4\pi \times10^{-7} \times600 \times \pi \times(1.25\times10^{-2})^2}{25\times10^{-2}} \frac{5}{60}\\\\\frac{\delta\phi}{\delta t}=1.23\times10^{-7}Wb/s[/tex]

The emf produced in the coil at the center of the solenoid which has 14 turns will be:

[tex]E=N\frac{\delta \phi}{\delta t}\\\\E=14\times1.23\times10^{-7}V\\\\E=1.725\times10^{-4}V[/tex]

Learn more about induced emf:

https://brainly.com/question/16765199?referrer=searchResults

•• A metal sphere carrying an evenly distributed charge will have spherical equipotential surfaces surrounding it. Suppose the sphere’s radius is 50.0 cm and it carries a total charge of (a) Calculate the potential of the sphere’s surface. (b)You want to draw equipotential surfaces at intervals of 500 V outside the sphere’s surface. Calculate the distance between the first and the second equipotential surfaces, and between the 20th and 21st equipotential surfaces. (c) What does the changing spacing of the surfaces tell you about the electric field?

Answers

Answer:

Explanation:

For this exercise we will use that the potential is created by the charge inside the equinoctial surface and just like in Gauss's law we can consider all the charge concentrated in the center.

Therefore the potential on the ferric surface is

        V = k Q / r

where k is the Coulomb constant, Q the charge of the sphere and r the distance from the center to the point of interest

a) On the surface the potential

        V = 9 10⁹ Q / 0.5

        V = 18 10⁹ Q

Unfortunately you did not write the value of the load, suppose a value to complete the calculations Q = 1 10⁻⁷ C, with this value the potential on the surfaces V = 1800 V

b) The equipotential surfaces are concentric spheres, let's look for the radii for some potentials

for V = 1300V let's find the radius

             r = k Q / V

             r = 9 109 1 10-7 / 1300

             r = 0.69 m

other values ​​are shown in the following table

V (V)      r (m)

1800     0.5

1300     0.69

 800      1,125

 300     3.0

In other words, we draw concentric spheres with these radii and each one has a potential difference of 500V

C) The spacing of the spheres corresponds to lines of radii of the electric field that have the shape

         E = k Q / r²

The index of refraction of a sugar solution in water is about 1.5, while the index of refraction of air is about 1. What is the critical angle for the total internal reflection of light traveling in a sugar solution surrounded by air

Answers

Answer:

The critical angle is  [tex]i = 41.84 ^o[/tex]

Explanation:

From the  question we are told that

    The index of refraction of the sugar solution is  [tex]n_s = 1.5[/tex]

   The  index of refraction of air is  [tex]n_a = 1[/tex]

Generally from Snell's  law

      [tex]\frac{sin i }{sin r } = \frac{n_a }{n_s }[/tex]

Note that the angle of incidence in this case is equal to the critical angle

Now for total internal reflection the angle of reflection is [tex]r = 90^o[/tex]

So  

      [tex]\frac{sin i }{sin (90) } = \frac{1 }{1.5 }[/tex]

      [tex]i = sin ^{-1} [\frac{ (sin (90)) * 1 }{1.5} ][/tex]

      [tex]i = 41.84 ^o[/tex]

A 1000-turn toroid has a central radius of 4.2 cm and is carrying a current of 1.7 A. The magnitude of the magnetic field along the central radius is

Answers

Answer:

0.0081T

Explanation:

The magnetic field B in the toroid is proportional to the applied current I and the number of turns N per unit length L of the toroid. i.e

B ∝ I [tex]\frac{N}{L}[/tex]

B = μ₀ I [tex]\frac{N}{L}[/tex]                   ----------------(i)

Where;

μ₀ = constant of proportionality called the magnetic constant = 4π x 10⁻⁷N/A²

Since the radius (r = 4.2cm = 0.042m) of the toroid is given, the length L is the circumference of the toroid given by

L = 2π r

L = 2π (0.042)

L = 0.084π

The number of turns N = 1000

The current in the toroid = 1.7A

Substitute these values into equation (i) to get the magnetic field as follows;

B = 4π x 10⁻⁷ x  1.7 x  [tex]\frac{1000}{0.084\pi }[/tex]        [cancel out the πs and solve]

B = 0.0081T

The magnetic field along the central radius is 0.0081T

Estimate the volume of a human heart (in mL) using the following measurements/assumptions:_______.
1. Blood flow through the aorta is approximately 11.2 cm/s
2. The diameter of the aorta is approximately 3.0 cm
3. Assume the heart pumps its own volume with each beat
4. Assume a pulse rate of 67 beats per minute.

Answers

Answer:

Explanation:

radius of aorta = 1.5 cm

cross sectional area = π r²

= 3.14 x 1.5²

= 7.065 cm²

volume of blood flowing out per second out of heart

= a x v , a is cross sectional area , v is velocity of flow

= 7.065 x 11.2

= 79.128 cm³

heart beat per second = 67 / 60

= 1.116666

If V be the volume of heart

1.116666 V = 79.128

V = 70.86 cm³.

A variable force of 6x−2 pounds moves an object along a straight line when it is x feet from the origin. Calculate the work done in moving the object from x = 1 ft to x = 18 ft. (Round your answer to two decimal places.) ft-lb

Answers

Answer:

931.00ft-lb

Explanation:

Pls see attached file

The work done in moving the object from x = 1 ft to x = 18 ft is 935  ft-lb.

What is work?

Work is the product of the displacement's magnitude and the component of force acting in that direction. It is a scalar quantity having only magnitude and Si unit of work is Joule.

Given that force = 6x - 2 pounds.

So, work done in moving the object from x = 1 ft to x = 18 ft is = [tex]\int\limits^{18}_1 {(6x-2)} \, dx[/tex]

= [ 3x² - 2x]¹⁸₁

= 3(18² - 1² ) - 2(18-1) ft-lb

= 935  ft-lb.

Hence, the work done is  935  ft-lb.

Learn more about work here:

https://brainly.com/question/18094932

#SPJ2

A dentist using a dental drill brings it from rest to maximum operating speed of 391,000 rpm in 2.8 s. Assume that the drill accelerates at a constant rate during this time.
(a) What is the angular acceleration of the drill in rev/s2?
rev/s2
(b) Find the number of revolutions the drill bit makes during the 2.8 s time interval.
rev

Answers

Answer:

a

    [tex]\alpha = 2327.7 \ rev/s^2[/tex]

b

   [tex]\theta = 9124.5 \ rev[/tex]

Explanation:

From the question we are told that

    The maximum  angular   speed is  [tex]w_{max} = 391000 \ rpm = \frac{2 \pi * 391000}{60} = 40950.73 \ rad/s[/tex]

     The  time  taken is  [tex]t = 2.8 \ s[/tex]

     The  minimum angular speed is  [tex]w_{min}= 0 \ rad/s[/tex] this is because it started from rest

     

Apply the first equation of motion to solve for acceleration we have that

       [tex]w_{max} = w_{mini} + \alpha * t[/tex]

=>     [tex]\alpha = \frac{ w_{max}}{t}[/tex]

substituting values

       [tex]\alpha = \frac{40950.73}{2.8}[/tex]

       [tex]\alpha = 14625 .3 \ rad/s^2[/tex]

converting to [tex]rev/s^2[/tex]

  We have

           [tex]\alpha = 14625 .3 * 0.159155 \ rev/s^2[/tex]

           [tex]\alpha = 2327.7 \ rev/s^2[/tex]

According to the first equation of motion the angular displacement is  mathematically represented as

       [tex]\theta = w_{min} * t + \frac{1}{2} * \alpha * t^2[/tex]

substituting values

      [tex]\theta = 0 * 2.8 + 0.5 * 14625.3 * 2.8^2[/tex]

      [tex]\theta = 57331.2 \ radian[/tex]

converting to revolutions  

        [tex]revolution = 57331.2 * 0.159155[/tex]

        [tex]\theta = 9124.5 \ rev[/tex]

A boat floating in fresh water displaces 16,000 N of water. How many newtons of salt water would it displace if it floats in salt water of specific gravity 1.10

Answers

Answer:

It will displace the same weight of fresh water i.e.16000N. The point is the body 'floats'- which is the underlying assumption here, and by Archimedes Principle, for this body or vessel or whatever it may be, to float it should displace an equal weight of water

Explanation:

An electron initially at rest is accelerated over a distance of 0.210 m in 33.3 ns. Assuming its acceleration is constant, what voltage was used to accelerate it

Answers

Answer:

V = 451.47 volts

Explanation:

Given that,

Distance, d = 0.21 m

Initial speed, u = 0

Time, t = 33.3 ns

Let v is the final velocity. Using second equation of motion as :

[tex]d=ut+\dfrac{1}{2}at^2[/tex]

a is acceleration, [tex]a=\dfrac{v-u}{t}[/tex] and u = 0

So,

[tex]d=\dfrac{1}{2}(v-u)t[/tex]

[tex]v=\dfrac{2d}{t}\\\\v=\dfrac{2\times 0.21}{33.3\times 10^{-9}}\\\\v=1.26\times 10^7\ m/s[/tex]

Now applying the conservation of energy i.e.

[tex]\dfrac{1}{2}mv^2=qV[/tex]

V is voltage

[tex]V=\dfrac{mv^2}{2q}\\\\V=\dfrac{9.1\times 10^{-31}\times (1.26\times 10^7)^2}{2\times 1.6\times 10^{-19}}\\\\V=451.47\ V[/tex]

So, the voltage is 451.47 V.

Other Questions
Triangle RST was dilated with the origin as the center of dilation to create triangle R'S'T'. The triangle was dilated using a scale factor of 34. The coordinates of the vertices of triangle RST are given. You can use the scale factor to find the coordinates of the dilated image. Enter the coordinates of the vertices of triangle R'S'T' below. (Decimal values may be used.) 1. Methanol is a high-octane fuel used in high performance racing engines. 2 CH3OH(l) + 3O2(g) 2CO2(g) + 4 H20(g) a) Calculate H and S using thermodynamic data, and then G Solid sodium oxide and gaseous water are formed by the decomposition of solid sodium hydroxide (NaOH) .Write a balanced chemical equation for this reaction. A sports car moving at constant velocity travels 120m in 5.0s. If it then brakes and comes to a stop in 4.0s,what is the magnitude of it's acceleration? How I to turn this ''loop while'' in ''loop for''?var i = 0;while (i < 20) { var lineY = 20 + (i * 20); line(0, lineY, 400, lineY); i++;} help please thank you Marco was a furniture buyer for Wellart Department Stores. Marco was authorized to enter into contracts worth up to $50,000. Marco entered into a contract with Frank's Furniture to purchase $100,000 worth of dining room furniture. If Wellart refuses to honor the contract and Frank's sues: what were the consequences of the War of 1898. The volume of a cylinder is approximately 72 feet cubed. Which is the best approximation of the volume of a cone with the same base and height as the cylinder? 24 feet cubed 216 feet cubed 24 pi feet cubed 216 pi feet cubed What is asset allocation? Why is this used? In triangle $ABC$, $AB = BC = 25$ and $AC = 40$. What is $\sin \angle ACB$? Find: a b c Plaese help A large population of ALOHA users manages to generate 50 requests/sec, including both originals and retransmissions. Time is slotted in units of 40 msec.Required:a. What is the chance of success on the first attempt? b. What is the probability of exactly k collisions and then a success? c. What is the expected number of transmission attempts needed? Which of the following South American religions combines West African religions with Roman Catholicism?Question 15 options:Eastern OrthodoxyBuddhismHinduismMacumba A climbing structure needs to be built in the shape of a square-based pyramid. Look at the diagram below. What is the perimeter of the flat, orange shape? PLEASE HELP A GIRL OUT What are some possible reasons for writing an arrangement? Pick all that apply - adding an introduction - embellishing music so it's more difficult - changing the key so it's easier to sing - combining several songs into one piece, called a medley Determine the solution to the following set of linear equations by using the graph belowa) 2x + y = 5 2x - 2y = 2 29 point plus brainiest The function f(x) = x2 7x + 30 shows the relationship between the vertical distance of a diver from a pool's surface f(x), in feet, and the horizontal distance x, in feet, of a diver from the diving board. What is a zero of f(x), and what does it represent? x = 10; the diver hits the water 10 feet away horizontally from the board. x = 3; the diver hits the water 3 feet away horizontally from the board. x = 10; the diver jumps in the pool at 10 feet per second. x = 3; the diver jumps in the pool at 3 feet per second. 15x - 30 x 0 + 40 = 89 Suppose that a company based in Dallas, Texas, initially confronts only four other rival firms. Its own market share is percent, which ties it with the other largest producer and seller in the industry. The market share of each of the other three firms is percent. Then a sixth firm, located in Cleveland, Ohio, enters the same industry. The new firm captures percent market share, and the market share of one of the smallest three original incumbents declines to percent as well. After the Cleveland firm's entry into the industry, what are the values of the four-firm concentration ratio and of the Herfindahl-Hirschman index?