determine the strongest intermolecular force present between the molecules in a bulk sample of the described molecules.

Answers

Answer 1

The strongest intermolecular force present between molecules in a bulk sample depends on the types of molecules and their structures.

Generally, the three types of intermolecular forces are:

London dispersion forces: These are present in all molecules and result from temporary fluctuations in electron density that can induce a dipole moment in a neighboring molecule.

Dipole-dipole forces: These arise from the attraction between permanent dipoles in polar molecules.

Hydrogen bonding: This is a specific type of dipole-dipole force that occurs when a hydrogen atom is covalently bonded to a highly electronegative atom such as nitrogen, oxygen, or fluorine.

The relative strength of these forces depends on factors such as molecular size, shape, and polarity. In general, hydrogen bonding is the strongest intermolecular force, followed by dipole-dipole forces, and then London dispersion forces.

Therefore, to determine the strongest intermolecular force present between molecules in a bulk sample, we need to know the molecular structures and polarities of the molecules.

Learn more about intermolecular force here:

https://brainly.com/question/9007693

#SPJ11


Related Questions

which is more stable: 16 protons, 20 neutrons, and 16 electrons when they are combined as two 18 o atoms or as one 36 s atom?

Answers

In terms of stability, it is more favorable for 16 protons, 20 neutrons, and 16 electrons to combine as two 18O atoms rather than as one 36S atom.

In terms of stability, it is important to consider the nucleus of an atom as it contains the protons and neutrons. The stability of a nucleus depends on the ratio of protons to neutrons, as well as the total number of particles in the nucleus. When the ratio of protons to neutrons is around 1:1, the nucleus tends to be more stable.
In the case of 16 protons and 20 neutrons, the ratio is not 1:1, which makes the nucleus less stable. However, when these particles combine to form two 18O atoms, the ratio of protons to neutrons is more balanced, making the resulting structure more stable.
On the other hand, when the 16 protons, 20 neutrons, and 16 electrons combine to form one 36S atom, the ratio of protons to neutrons is not balanced, and the resulting nucleus is less stable than the two 18O atoms.
Therefore, in terms of stability, it is more favorable for 16 protons, 20 neutrons, and 16 electrons to combine as two 18O atoms rather than as one 36S atom.

learn more about protons

https://brainly.com/question/30438606

#SPJ11

which ions would form a precipitate when hcl is added to a solution containing ag , pb2 , hg22 , ca2 , mg2 , and nh4 ?

Answers

When HCl is added to a solution containing Ag, Pb2, Hg22, Ca2, Mg2, and NH4 ions, some of these ions would form a precipitate. A precipitate is a solid substance that forms when two solutions are mixed.

The ions that would form a precipitate are those that have low solubility in water. Ag, Pb2, and Hg22 ions would form a precipitate when HCl is added to the solution. This is because these ions have low solubility in water and can combine with chloride ions to form insoluble compounds. Ag would form silver chloride (AgCl), Pb2 would form lead chloride (PbCl2), and Hg22 would form mercury (I) chloride (Hg2Cl2). On the other hand, Ca2, Mg2, and NH4 ions would not form a precipitate when HCl is added to the solution. This is because these ions are highly soluble in water and would not react with the chloride ions in HCl to form insoluble compounds.

To know more about HCl

https://brainly.com/question/24586675

#SPJ11

the half life of a radioactive substance is 1497 1497 years. what is the annual decay rate? express the percent to 4 significant digits.

Answers

The annual decay rate of the radioactive substance is approximately 0.0463% per year.

The half-life of a radioactive substance is the time it takes for half of the radioactive atoms in a sample to decay. In this case, the half-life is given as 1497 years. To determine the annual decay rate, we need to calculate the fraction of the substance that decays in one year.

The decay rate can be calculated using the formula:

Decay rate = 0.693 / Half-life

Substituting the given value:

Decay rate = 0.693 / 1497 years

Calculating the value:

Decay rate ≈ 4.633 x 10^-4 per year

To express the decay rate as a percentage, we can multiply it by 100:

Decay rate ≈ 0.0463% per year

Rounding to four significant digits, the annual decay rate is approximately 0.0463%.

Therefore, the annual decay rate of the radioactive substance is approximately 0.0463% per year, indicating the fraction of the substance that undergoes radioactive decay annually.

Know more about Half-life here:

https://brainly.com/question/24710827

#SPJ11

what is the molality of a 4.99 m cacl2 solution with a density of 1.55 g/ml? enter answer to 3 decimal places.

Answers

The molality of a 4.99 m cacl2 solution with a density of 1.55 g/ml is 3.230 mol/kg.

Molality is defined as the number of moles of solute per kilogram of solvent. To calculate molality, we first need to calculate the number of moles of [tex]CaCl_{2}[/tex]  present in the solution.
Given:
Molarity of [tex]CaCl_{2}[/tex] solution (M) = 4.99 m
Density of [tex]CaCl_{2}[/tex]  solution (ρ) = 1.55 g/ml
To calculate the number of moles of [tex]CaCl_{2}[/tex] , we need to use the formula:
moles = M × volume
The volume of solution can be calculated using the density and mass of the solution. Let's assume we have 1 kg of solution. Then, the mass of the solution will be 1.55 kg (since density = mass/volume).
Mass of [tex]CaCl_{2}[/tex]  = molar mass × moles
where molar mass of [tex]CaCl_{2}[/tex]  = 111 g/mol
Rearranging the above formula, we get:
moles = (mass of solution × molarity of [tex]CaCl_{2}[/tex] ) ÷ molar mass of [tex]CaCl_{2}[/tex]  
moles = (1.55 kg × 4.99 mol/kg) ÷ 111 g/mol = 0.0695 mol
Now, we can calculate the molality of the solution:
molality = moles of [tex]CaCl_{2}[/tex]  ÷ mass of solvent (in kg)

In this case, the mass of solvent is also 1 kg, since we assumed that the mass of solution is 1 kg.
molality = 0.0695 mol ÷ 1 kg = 0.0695 mol/kg
Finally, we need to convert this value to 3 decimal places:
molality = 3.230 mol/kg
The molality of a 4.99 m [tex]CaCl_{2}[/tex]  solution with a density of 1.55 g/ml is 3.230 mol/kg.

For more information on molality kindly visit to

https://brainly.com/question/14650749

#SPJ11

write the chemical equation describing the complete combustion of liquid octane, c8h18.

Answers

[tex]C_{8} H_{18} + 12.5O_{2}[/tex] → [tex]8CO_{2} + 9H_{2} O[/tex] is the balanced chemical equation for the complete combustion of liquid octane.

The complete start of liquid octane ([tex]C_{8} H_{18}[/tex]) incorporates answering it with oxygen ([tex]O_{2}[/tex]) to make carbon dioxide ([tex]CO_{2}[/tex]) and water ([tex]H_{2} O[/tex]). The sensible engineered condition for this reaction is:

[tex]C_{8} H_{18} + 12.5O_{2}[/tex] → [tex]8CO_{2} + 9H_{2} O[/tex]

This condition shows that one molecule of liquid octane answers with 12.5 particles of oxygen to make eight particles of carbon dioxide and nine iotas of water. The coefficient of 12.5 before the [tex]O_{2}[/tex] shows that the extent of octane to oxygen is 1:12.5, and that suggests that a ton of oxygen is supposed for complete consuming to occur.

The start of octane is an exothermic reaction, inferring that it releases force and energy. This reaction is similarly responsible for filling internal combustion engines in vehicles, where liquid octane is singed in a controlled environment to convey energy for the engine to run.

In frame, the complete start of liquid octane achieves the production of carbon dioxide and water, as shown in the fair substance condition [tex]C_{8} H_{18} + 12.5O_{2}[/tex] → [tex]8CO_{2} + 9H_{2} O[/tex].

To learn more about combustion of octane, refer:

https://brainly.com/question/30934906

#SPJ1

how much heat is needed to change 24.0 gg of mercury at 20∘c20∘c into mercury vapor at the boiling point?

Answers

8205 Joules of heat is needed to change 24.0 g of mercury at 20°C into mercury vapor at the boiling point.

To determine the heat needed to change 24.0 g of mercury at 20°C into mercury vapor at its boiling point, we need to consider two steps: heating the mercury to its boiling point, and then changing it from liquid to vapor.

First, we need to calculate the heat required to raise the temperature of the mercury to its boiling point (356.73°C).

We'll use the formula:

Q = mcΔT

where Q is heat, m is mass, c is specific heat capacity (0.139 J/g°C for mercury), and ΔT is the temperature change (356.73 - 20 = 336.73°C).

Q1 = 24.0 g × 0.139 J/g°C × 336.73°C ≈ 1125 J

Next, we'll calculate the heat required for the phase change using Q = mL, where L is the enthalpy of vaporization (295 kJ/kg or 295 J/g for mercury).

Q2 = 24.0 g × 295 J/g ≈ 7080 J

Finally, we'll add the heat needed for both steps:

Total heat = Q1 + Q2 ≈ 1125 J + 7080 J = 8205 J

Learn more about the heat at https://brainly.com/question/13306730

#SPJ11

Why is NaI in acetone used as a solvent for SN2 reactions and AgNO3 for SN1 reactions?

Answers

NaI in acetone is often used as a solvent for SN₂ reactions, while AgNO₃ is used for SN₁ reactions. This is because these solvents have different properties that make them more suitable for specific types of reactions.


In SN₂ reactions, the solvent plays a crucial role in facilitating the reaction by providing a medium for the reactants to interact with each other. Acetone is a polar aprotic solvent that can dissolve both the nucleophile and the substrate, making it an ideal solvent for SN₂ reactions. It is also a good solvent for NaI, which acts as a source of iodide ions, which are excellent nucleophiles for SN₂ reactions. When NaI is added to acetone, it dissociates to form iodide ions, which can then react with the substrate in a concerted manner to form the product.

On the other hand, in SN₁ reactions, the solvent plays a less critical role in the reaction mechanism as it is a two-step process involving the formation of a carbocation intermediate. AgNO₃ is often used as a solvent for SN₁ reactions because it is a good source of silver ions, which can help stabilize the carbocation intermediate. This is because silver ions have a high affinity for electrons and can interact with the carbocation to form a complex that is more stable than the free carbocation.

In summary, the choice of solvent for SN₂ and SN₁ reactions depends on the specific properties of the reaction and the reactants involved. NaI in acetone is used for SN₂ reactions because it provides a medium for the reactants to interact with each other, while AgNO₃ is used for SN₁ reactions because it helps stabilize the carbocation intermediate.

To know more about solvent, refer

https://brainly.com/question/25326161

#SPJ11

between br and bi , the element with the higher first ionization energy is

Answers

Bromine (Br) has a lower first ionization energy compared to bismuth (Bi). The first ionization energy is the energy required to remove one electron from an atom in its gaseous state.

The ionization energy increases across a period from left to right and decreases down a group from top to bottom of the periodic table.

Bromine is located in group 17, also known as the halogen group. It has 7 valence electrons and requires only one more electron to achieve a stable octet electron configuration. Hence, the valence electrons of bromine are held relatively weakly by the nucleus, making it easier to remove an electron and achieve a stable octet configuration.

On the other hand, bismuth is located in group 15, also known as the pnictogen group. It has 5 valence electrons and requires three more electrons to achieve a stable octet electron configuration. Hence, the valence electrons of bismuth are held more tightly by the nucleus, making it more difficult to remove an electron and achieve a stable octet configuration. This results in bismuth having a higher first ionization energy compared to bromine.

Learn more about ionization energy  here:

https://brainly.com/question/28385102

#SPJ11

How much area does the rio grande take up

Answers

Answer:

The Rio Grande drainage basin (watershed) has an area of 182,200 square miles (472,000 km2)

The entire rio grande/rio bravo watershed covers approximately 924,300 square kilometers (335,000)square miles

What happens if you touch the front of a TLC plate with your finger(s)? .Nothing will happen .The chemicals on your finger will alter the acidic alumina and turn it into silica .Oils and grease from your finger will transfer to the TLC and will interfere with functioning of TLC .the TLC powder will all fall off leaving a blank TLC plate

Answers

If you touch the front of a TLC plate with your finger(s), several things can happen depending on the type of contamination present on your fingers. First, if your fingers are clean and free of any contaminants, nothing significant will happen. However, if your fingers are contaminated with chemicals or oils, the TLC plate may be affected.

One potential outcome is that the chemicals on your finger(s) can alter the acidic alumina that is present on the TLC plate and turn it into silica. This can significantly impact the effectiveness of the TLC plate and make it unusable. Another possibility is that oils and grease from your finger(s) will transfer to the TLC plate, interfering with its functioning. This can result in uneven separation and poor resolution, making it difficult to analyze the compounds in your sample.

In some cases, touching the front of a TLC plate with your finger(s) can cause the TLC powder to fall off the plate, leaving a blank TLC plate. This can occur if the pressure exerted by your finger(s) is too high, causing the TLC powder to become dislodged.

In summary, it is best to avoid touching the front of a TLC plate with your finger(s) to prevent contamination and ensure accurate analysis. If it is necessary to handle the TLC plate, it is recommended to use gloves or a clean tool to avoid any potential contamination.

To know more about chemicals

https://brainly.com/question/29886197

#SPJ11

balance the following redox equation, for a reaction which takes place in acidic solution. cr2o72-(aq) fe2 (aq) → cr3 (aq) fe3 (aq)

Answers

The reaction is: 2Cr₂O₇²⁻(aq) + 6Fe²⁺(aq) → 2Cr³⁺(aq) + 6Fe³⁺(aq)

To balance the given redox equation in acidic solution, we need to ensure that the number of atoms and charges on both sides of the equation are equal.

Start by balancing the atoms other than oxygen and hydrogen. In this case, we have Cr and Fe atoms. There are 2 Cr atoms on the left side and 2 Cr atoms on the right side, so Cr is already balanced. For Fe, there are 6 Fe atoms on the left side and 6 Fe atoms on the right side, so Fe is also balanced.

Next, balance the oxygen atoms by adding H₂O molecules. On the left side, there are 7 oxygen atoms from Cr₂O₇²⁻. To balance this, add 7 H₂O molecules on the right side.

Cr₂O₇²⁻(aq) + 6Fe²⁺(aq) → 2Cr³⁺(aq) + 6Fe³⁺(aq) + 7H₂O(l)

Now, balance the hydrogen atoms by adding H+ ions. On the left side, there are no hydrogen atoms, while on the right side, there are 14 hydrogen atoms from the added water molecules. To balance this, add 14 H⁺ ions on the left side.

Cr₂O₇²⁻(aq) + 6Fe²⁺(aq) + 14H⁺(aq) → 2Cr³⁺(aq) + 6Fe³⁺(aq) + 7H₂O(l)

Finally, balance the charges by adjusting the electrons. On the left side, the total charge is -2 from Cr₂O₇²⁻. On the right side, each Fe²⁺ ion is oxidized to Fe³⁺ and gains 1 electron. Therefore, 6 electrons are needed on the left side to balance the charges.

Cr₂O₇²⁻(aq) + 6Fe²⁺(aq) + 14H⁺(aq) → 2Cr³⁺(aq) + 6Fe³⁺(aq) + 7H2O(l) + 6e⁻

The balanced redox equation in acidic solution is:

2Cr₂O₇²⁻(aq) + 6Fe²⁺(aq) + 14H⁺(aq) → 2Cr³⁺(aq) + 6Fe³⁺(aq) + 7H₂O(l) + 6e⁻

To learn more about redox equation, here

https://brainly.com/question/31048013

#SPJ4

when the ag concentration is 1.45 m, the observed cell potential at 298k for an electrochemical cell with the following reaction is 1.673v. what is the zn2 concentration?

Answers

The concentration of Zn2+ is 1.91 × 10^-20 M.  We can use the Nernst equation to solve for the concentration of Zn2+.

First, let's write the balanced equation for the electrochemical cell:

Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)

The cell potential at standard conditions is:

E°cell = E°reduction (Cu2+) - E°oxidation (Zn)

We can look up the standard reduction potentials for Cu2+ and Zn in a table, and find:

E°cell = 0.34 V - (-0.76 V) = 1.10 V

Now, let's use the Nernst equation to calculate the cell potential at non-standard conditions:

Ecell = E°cell - (RT/nF) ln Q

where:

R = 8.31 J/mol·K (gas constant)

T = 298 K (temperature)

n = number of electrons transferred (2 in this case)

F = Faraday constant = 96,485 C/mol

Q = reaction quotient = [Zn2+]/[Cu2+]

We can rearrange the equation to solve for Q:

Q = exp[(E°cell - Ecell) nF/RT]

Plugging in the given values, we get:

Q = exp[(1.10 V - 1.673 V) × 2 × 96,485 C/mol / (8.31 J/mol·K × 298 K)] = 0.061

Since we know the concentration of Ag+ is 1.45 M, we can write the equation for the reaction that occurs at the Ag electrode:

Ag+ + e- → Ag(s)

The concentration of electrons in the solution is equal to the concentration of Ag+ ions, so [e-] = [Ag+] = 1.45 M.

Now we can write the equation for the cell reaction:

Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)

Using the oxidation numbers, we can see that Zn is oxidized and Cu2+ is reduced. The half-reactions are:

Zn(s) → Zn2+(aq) + 2e- (oxidation)

Cu2+(aq) + 2e- → Cu(s) (reduction)

We can write the expression for the reaction quotient Q:

Q = [Zn2+]/[Cu2+]

At equilibrium, the cell potential is zero, so:

0 = 1.10 V - (RT/nF) ln Q

Solving for Q, we get:

Q = exp(-1.10 V × 2 × 96,485 C/mol / (8.31 J/mol·K × 298 K)) = 1.32 × 10^-20

Now we can set up the equilibrium expression for the cell reaction:

K = [Zn2+]/[Cu2+]

At equilibrium, Q = K, so:

K = 1.32 × 10^-20 = [Zn2+]/1.45 M

Solving for [Zn2+], we get:

[Zn2+] = K × [Ag+] = (1.32 × 10^-20) × (1.45 M) = 1.91 × 10^-20 M

Therefore, the concentration of Zn2+ is 1.91 × 10^-20 M.

Learn more about concentration here:

https://brainly.com/question/10725862

#SPJ11

In the Bohr model of the atom, what must electrons do to move up, or down, between the various orbitals? Pick any/all correct answers, please. emit radiation balance oxidation number increase charge emit a phonon absorb radiation decrease charge

Answers

Electrons in the Bohr model of the atom must absorb or emit radiation in order to move up or down between the various orbitals.

In the Bohr model, electrons are arranged in discrete energy levels or orbitals around the nucleus. The energy of an electron in a particular orbital is quantized, meaning it can only have certain specific values. When an electron absorbs energy from its surroundings, such as through the absorption of radiation, it can move to a higher energy level or orbital. Conversely, when an electron loses energy, it emits radiation and moves to a lower energy level or orbital.

The correct answer is that electrons in the Bohr model must absorb or emit radiation to move up or down between the various orbitals. Other options such as balancing oxidation number, increasing or decreasing charge, or emitting a phonon are not applicable to the Bohr model and the concept of electron transitions within it.

To know more about Bohr model, visit;

https://brainly.com/question/4138548

#SPJ11

nahco3(s) ⇌ naoh(s) co2(g)nahco3(s) ⇌ naoh(s) co2(g) what is the free-energy change for this reaction at 298 kk ?

Answers

The free - energy change for the reaction at the 298 k is  -94.7 kJ/mol.

The chemical equation is :

NaHCO₃(s)   ⇄   NaOH(s) + CO₂(g)

The free-energy change is expressed as :

ΔG = ΔH - TΔS

Where,

The ΔH is the enthalpy change,

The T is the temperature in the Kelvin,

The ΔS is the entropy change.

The enthalpy change of reaction = -52.3 kJ/mol,

The entropy change = 142.2 J/mol·K.

ΔG = -52.3 kJ/mol - (298 K)(0.1422 kJ/mol·K)

ΔG = -52.3 kJ/mol - 42.4 kJ/mol

ΔG = -94.7 kJ/mol

The free energy change for the reaction is  -94.7 kJ/mol.

To learn about free energy here

https://brainly.com/question/31170437

#SPJ4

This question is incomplete, the complete question is :

NaHCO₃(s)   ⇄   NaOH(s) + CO₂(g) what is the free-energy change for this reaction at 298 k? The entropy change is 142.2 J/mol·K. The enthalpy change is -52.3 kJ/mol.

what is the pka of an acid whose ka is 6.5 × 10-6 ? (3sf)

Answers

The pka of an acid whose ka is 6.5 × 10-6 can be calculated using the formula pka = -log(ka). Plugging in the given value for ka, we get pka = -log(6.5 × 10-6) which equals 5.19 (rounded to 3 significant figures). Therefore, the pka of the acid is 5.19.


The pKa of an acid whose Ka is 6.5 × 10^-6 can be determined using the formula pKa = -log10(Ka). In this case, the Ka value is 6.5 × 10^-6.

By applying the formula, pKa = -log10(6.5 × 10^-6), the calculated pKa value is approximately 5.19 (rounded to 3 significant figures). Therefore, the pKa of the acid in question is 5.19.

To know more about acid visit-

https://brainly.com/question/14072179

#SPJ11

which of the following molecules will use dipole-dipole attractions as an intermolecular attractive force? ash3, bh3, sih4

Answers

The molecules that will use dipole-dipole attractions as an intermolecular attractive force are ash3 and sih4. This is because both of these molecules have a polar covalent bond due to the difference in electronegativity between the atoms.

This results in a separation of charge within the molecule, with one end being slightly positive and the other end being slightly negative. This separation of charge allows for dipole-dipole attractions to occur between the molecules, as the positive end of one molecule is attracted to the negative end of another. On the other hand, bh3 does not have a polar covalent bond, as the three hydrogen atoms and boron atom all have similar electronegativities, resulting in a nonpolar molecule. Therefore, it does not have dipole-dipole attractions as an intermolecular attractive force. In conclusion, ash3 and sih4 use dipole-dipole attractions as an intermolecular attractive force due to their polar covalent bond.
Dipole-dipole attractions occur between polar molecules, which have an uneven distribution of charges due to differences in electronegativity between their constituent atoms. In the molecules given: ASH3, BH3, and SiH4, none of them exhibit dipole-dipole attractions as an intermolecular attractive force.
ASH3, BH3, and SiH4 are all nonpolar molecules. They have symmetrical molecular geometries and the electronegativity differences between their constituent atoms are not large enough to generate significant polarity. Since these molecules are nonpolar, they do not have the necessary charge distribution to engage in dipole-dipole attractions. Instead, they exhibit weaker London dispersion forces as their primary intermolecular attractive force.

To know more about Intermolecular visit:

https://brainly.com/question/9007693

#SPJ11

For the following reaction, 4.26 grams of iron(III) oxide are mixed with excess aluminum. The reaction yields 1.93 grams of aluminum oxide.iron(III) oxide (s) + aluminum (s) ----> aluminum oxide (s) + iron (s)What is the theoretical yield of aluminum oxide ? ____ gramsWhat is the percent yield of aluminum oxide ? ____ %

Answers

The theoretical yield of aluminum oxide is 2.724 grams.

The percent yield of aluminum oxide is 70.88%.

To calculate the theoretical yield of aluminum oxide, first determine the moles of iron(III) oxide and then use the stoichiometry of the reaction.

1. Convert grams of iron(III) oxide to moles: 4.26 g Fe₂O₃ * (1 mol Fe₂O₃ / 159.69 g Fe₂O₃) = 0.0267 mol Fe₂O₃

2. Use the balanced chemical equation to find the moles of aluminum oxide produced:

Fe₂O₃ (s) + 2Al (s) -> Al₂O₃ (s) + 2Fe (s) 0.0267 mol

Fe₂O₃ * (1 mol Al₂O₃ / 1 mol Fe₂O₃) = 0.0267 mol Al₂O₃

3. Convert moles of aluminum oxide to grams: 0.0267 mol Al₂O₃ * (101.96 g Al₂O₃ / 1 mol Al₂O₃) = 2.724 g Al₂O₃

To calculate the percent yield, use the following formula:

Percent Yield = (Actual Yield / Theoretical Yield) * 100

Percent Yield = (1.93 g Al₂O₃ / 2.724 g Al₂O₃) * 100 = 70.88%

Learn more about percent yield at https://brainly.com/question/14531883

#SPJ11

how many moles of oxygen are produced from 14 moles of potassium chlorate

Answers

21mole  of oxygen are produced from 14 moles of potassium chlorate n the given reaction 2KClO[tex]_3[/tex]→ 2KCl + 3O[tex]_2[/tex].

The mole notion is an easy way to express the amount of a substance. Any measurement is divided into two parts: the numerical magnitude and the units in which the magnitude is expressed. For example, if the mass of a ball is 2 kilogrammes, the magnitude is '2' and the unit is 'kilogramme'.

2KClO[tex]_3[/tex]→ 2KCl + 3O[tex]_2[/tex]

According to stoichiometry      

moles of oxygen =3/2×14= 21mole

To know more about mole, here:

https://brainly.com/question/30892840

#SPJ1

what is the structural formula of glutamic acid (pl=3.2) at ph=1

Answers

The structural formula of the glutamic acid at the pH value of 1 is the NH₃⁺ - (CO₂H)CH -(CH₂)₂ - COOH.

The value of the pH is 1, the amino group and the carboxyl groups in the glutamic acid compound are the protonated, which means they will be gain the hydrogen ion that is H⁺. The result of the zwitterion ion formation  form of the glutamic acid, with the charge that is the net charge of +1.

The pI (that is the isoelectric point for the glutamic acid is the 3.2, and it is  the pH where the molecule will have no net charge. The formula for the glutamic acid is NH₃⁺ - (CO₂H)CH -(CH₂)₂ - COOH.

To learn more about glutamic acid here

https://brainly.com/question/29807201

#SPJ4

what amperage is required to plate out 0.260 molcr from a cr3 solution in a period of 7.50 h ?

Answers

The amperage required to plate out 0.260 mol of Cr from a Cr3 solution in a period of 7.50 hours can be calculated using Faraday's Law of Electrolysis.

According to Faraday's Law, the amount of substance deposited on an electrode during electrolysis is directly proportional to the amount of electric charge passed through the electrolyte. The formula for this relationship is:

Amount of substance = (Current × Time × Atomic weight) / (Valency × 96500)

Here, the atomic weight of Cr is 52.00 g/mol, and its valency is +3. Substituting these values, we get:

Amount of Cr deposited = (I × 7.50 × 52.00) / (3 × 96500)

0.260 = (I × 390) / 289500

I = 0.387 A

Therefore, the amperage required to plate out 0.260 mol of Cr from a Cr3 solution in a period of 7.50 hours is 0.387 A.

The required amperage can be calculated using Faraday's Law of Electrolysis by substituting the appropriate values in the formula.

In this case, an amperage of 0.387 A is required to plate out 0.260 mol of Cr from a Cr3 solution in a period of 7.50 hours.

For more information on Faraday's law kindly visit to

https://brainly.com/question/9684397

#SPJ11

**NEED ASAP!!!!**

A. 1
B. 2
C. 3
D. 4

the picture is shown on the question top, asap!

Answers

Methylamine could be said to be a Brownstead Lowry base because of 3.

What is the Bronstead Lowry base?

A Brnsted-Lowry base is a type of organism or molecule with the capacity to bind to or take a proton from an acid. A base transforms into its conjugate acid when it takes a proton. This hypothesis is based on the notion that protons are transferred across species during an acid-base reaction.

In contrast to the Arrhenius theory, which defines bases as chemicals that create hydroxide ions, the Brnsted-Lowry base idea offers a broader and more encompassing definition of bases.

Learn more about Brownstead Lowry base:https://brainly.com/question/32276007

#SPJ1

what will be the major organic product from the dehydration of 2-propanol in the presence of a strong acid and high temperature?

Answers

The major organic product that is formed from the dehydration of 2-propanol in the presence of a strong acid and high temperature is 2-propene.

Generally dehydration is defined as the process that occurs when your body loses more fluid than you take in. Basically when the normal water content of your body is reduced, it upsets the balance of minerals (salts and sugar) in your body, which affects the way it functions. Basically water makes up over two-thirds of the healthy human body.

Therefore, dehydration of 2-butanol in the presence of a strong acid and high temperature results in 2-propene as the major organic product.

Learn more about dehydration from the link given below.

https://brainly.com/question/12261974

#SPJ4

Which peptide will be eluted first from an anion exchange column at pH 7.3? .YWAF .MALM .RKHA .WLIG .AELG

Answers

RKHA will be eluted first from an anion exchange column at pH 7.3.

The order of elution of peptides from an anion exchange column depends on their net charge at the pH of the mobile phase. At pH 7.3, the net charge on the peptides will depend on the pKa values of their ionizable groups.

Among the given peptides, the one with the lowest net charge at pH 7.3 will be eluted first from the column.

Analyzing the given peptides, we can see that:

- YWAF contains a tyrosine (pKa ~ 10) and an N-terminus (pKa ~ 9), which will both be deprotonated at pH 7.3. This will result in a net charge of -2 on the peptide.

- MALM contains a histidine (pKa ~ 6), which will be partially protonated at pH 7.3. This will result in a net charge of -1 on the peptide.

- RKHA contains a histidine (pKa ~ 6) and a C-terminus (pKa ~ 3), which will both be partially protonated at pH 7.3. This will result in a net charge of 0 on the peptide.

- WLIG contains an N-terminus (pKa ~ 9), which will be deprotonated at pH 7.3. This will result in a net charge of -1 on the peptide.

- AELG contains an N-terminus (pKa ~ 9), which will be deprotonated at pH 7.3. This will result in a net charge of -1 on the peptide.

Therefore, among the given peptides, RKHA will be eluted first from an anion exchange column at pH 7.3, since it has a net charge of 0 and is least attracted to the negatively charged resin.

The elution order of peptides from an anion exchange column depends on their net charge at the pH of the mobile phase. At pH 7.3, RKHA will be eluted first among the given peptides since it has a net charge of 0 and is least attracted to the negatively charged resin.

To know more about anion exchange, visit

https://brainly.com/question/28203551

#SPJ11

describe the relationship between energy, entropy, and temperature in an endothermic dissolution process

Answers

In an endothermic dissolution process, energy is absorbed from the surroundings, resulting in a decrease in temperature. Entropy, on the other hand, increases due to the increased disorder of the system as solute molecules become dispersed in the solvent.

Entropy is a fundamental concept in chemistry that describes the degree of disorder or randomness in a system. It is represented by the symbol S and is a measure of the number of ways in which a system can be arranged at a given energy level. The greater the number of ways in which a system can be arranged, the higher its entropy.

Entropy is related to the distribution of energy in a system. In a highly ordered system, the energy is concentrated in a small number of arrangements, whereas in a highly disordered system, the energy is distributed over a large number of arrangements. Entropy is important in many chemical processes, including reactions and phase changes. In general, chemical reactions tend to increase the entropy of the system, as the number of arrangements of the products is greater than that of the reactants.

To know more about Entropy refer to-

brainly.com/question/20166134

#SPJ4

Complete Question:

Describe the relationship between energy, entropy, and temperature in an endothermic dissolution process. How can such a process even occur?

When molten lithium chloride is electrolyzed, lithium metal is liberated at the cathode. How many grams of lithium are liberated when 5.00×103Cof charge passes through the cell?

Answers

When 5.00 × 10^3 C of charge passes through the cell, 0.360 g of lithium is produced at the cathode.

The amount of lithium liberated at the cathode during electrolysis can be calculated using Faraday's law of electrolysis, which relates the amount of substance produced at the electrode to the quantity of charge passed through the cell:

n = Q / (F × z)

where n is the number of moles of substance produced, Q is the quantity of charge passed through the cell, F is the Faraday constant (96,485 C/mol), and z is the number of electrons transferred per mole of substance.

In this case, lithium metal is being produced, and the balanced chemical equation for the reaction at the cathode during electrolysis is:

Li+ + e- → Li

From this equation, we can see that z = 1, since one electron is transferred per lithium ion reduced. Therefore, the equation for the amount of lithium produced becomes:

n(Li) = Q / (F × 1)

Substituting the given values, we have:

n(Li) = 5.00 × 10^3 C / (96,485 C/mol)

n(Li) = 0.0518 mol

Finally, we can calculate the mass of lithium produced using its molar mass:

m(Li) = n(Li) × M(Li)

m(Li) = 0.0518 mol × 6.941 g/mol

m(Li) = 0.360 g

Therefore, when 5.00 × 10^3 C of charge passes through the cell, 0.360 g of lithium is produced at the cathode.

Learn more about lithium here:

https://brainly.com/question/1439744

#SPJ11

Study the Atomic radius (nm) Ionic radius (nm) 0.114 0.195 0.072 0.136 0.133 0.216 Z 0.099 0.181 (a) Would these form part of a metallic or a non-metallic group? Explain (b) Suggest an element in the table above likely to be the most reactive. Explain Element W X Y​

Answers

By the comparing the atomic radii of all of the elements,  one can notice that they are very small. Hence it shows that they may be  non-metallic group.

Reactivity in components can be affected by different variables, such as electron setup and electronegativity and as such since all are low and there is no much information, it is hard to know which is  mostly reactive

What is the atomic radius?

Metallic elements for the most part have bigger nuclear radii compared to non-metallic components. since metallic elements tend to lose electrons and shape cations, coming about in a lower  form in successful atomic charge and a boast in nuclear form.

Note that from the question:

Element W  = atomic radius of 0.114 nm

                           an ionic radius of 0.195 nm.

Element X  =  atomic radius of 0.072 nm

                       an  ionic radius of 0.136 nm.

Element Y  =  atomic radius of 0.133 nm

                       an ionic radius of 0.216 nm.

Element Z   =  atomic radius of 0.099

                            an ionic radius of 0.181

Non-metallic components, on the other hand, tend to pick up electrons and shape anions, coming about in a littler nuclear estimate.

Learn more about  atomic radius from

https://brainly.com/question/15255548

#SPJ1

what is the qualitative relationship between bond polarity and electronegativity difference?

Answers

The polarity of a chemical bond is related to the electronegativity difference between the atoms forming the bond. Electronegativity is the ability of an atom to attract electrons towards itself in a covalent bond.

If the electronegativity difference between the two atoms forming the bond is small (less than 0.5), the bond is considered nonpolar covalent, meaning the shared electrons are equally shared between the two atoms. For example, the bond between two hydrogen atoms (H2) is nonpolar covalent because the electronegativity difference between the two atoms is very small (both have similar electronegativity values).

If the electronegativity difference is moderate (between 0.5 and 2.0), the bond is considered polar covalent. In a polar covalent bond, one atom attracts the shared electrons more than the other atom, creating a partial negative charge on one atom and a partial positive charge on the other atom. For example, the bond between hydrogen and oxygen in water (H2O) is polar covalent because oxygen is more electronegative than hydrogen, so it attracts the shared electrons more strongly.

If the electronegativity difference is large (greater than 2.0), the bond is considered ionic. In an ionic bond, one atom (typically a metal) completely transfers its electrons to the other atom (typically a nonmetal), creating a cation (positively charged ion) and an anion (negatively charged ion). For example, the bond between sodium (Na) and chlorine (Cl) in sodium chloride (NaCl) is ionic because sodium donates its electron to chlorine, creating a Na+ cation and a Cl- anion.

In summary, the greater the electronegativity difference between two atoms, the more polar the bond and the less equal the sharing of electrons.

Learn more about electronegativity  here:

https://brainly.com/question/17762711

#SPJ11

how many moles of oxygen gas react when 1 mole of 2,2-dimethylhexane undergoes complete combustion?

Answers

25 moles of oxygen gas react when 1 mole of 2,2-dimethylhexane undergoes complete combustion.

The balanced chemical equation for the complete combustion of 2,2-dimethylhexane is:
2 C₈H₁₈ + 25 O₂ → 16 CO₂ + 18 H₂O
This means that for every 1 mole of 2,2-dimethylhexane, we need 25 moles of oxygen gas to undergo complete combustion.

According to the law of conservation of mass, mass can only be converted from one form to another and cannot be generated or destroyed.

This implies that the total mass on the reactant side and the total mass on the product side must be identical.

Prior to balancing the atoms of oxygen, one must first balance the atoms of other elements in a chemical process.

This is referred to as a textual statement of a chemical process that includes the related reactants and products.

Additionally, it must be balanced, which calls for an equal amount of atoms from each element on the reactant and product sides. Therefore, to ensure that the equation is balanced, only the coefficients are changed. Superscripts and subscripts shouldn't be changed in this situation, either.

Learn more about chemical process here

https://brainly.com/question/28294176

#SPJ11

What coefficients would balance the following equation?

__C2H6 + __O2 __CO2 + __H2O
1C2H6 + 5O2 2CO2 + 3H2O
2C2H6 + 5O2 4CO2 + 6H2O
2C2H6 + 7O2 4CO2 + 6H2O
2C2H6 + 10O2 4CO2 + 6H2O

Answers

The balanced equation for the combustion of ethane ([tex]C_2H_6[/tex]) is:

[tex]2C_2H_6 + 7O_2= 4CO_2 + 6H_2O[/tex]

Therefore, the coefficients that would balance the equation are:

2 for [tex]C_2H_6[/tex]

7 for [tex]O_2[/tex]

4 for [tex]CO_2[/tex]

6 for [tex]H_2O[/tex]

Chemical equations represent the reactants and products of a chemical reaction. In order for the equation to accurately represent the chemical reaction, the law of conservation of mass must be obeyed.

This law states that matter cannot be created or destroyed, only transformed. Therefore, the total number of atoms of each element present in the reactants must be equal to the total number of atoms of each element present in the products.

In the given equation:

[tex]C_2H_6 + O_2 = CO_2 + H_2O[/tex]

There are 2 carbon atoms, 6 hydrogen atoms, and 2 oxygen atoms on the left-hand side (reactants), and 1 carbon atom, 2 hydrogen atoms, and 3 oxygen atoms on the right-hand side (products). This means that the equation is unbalanced as the total number of atoms of each element is not the same on both sides of the equation.

To balance the equation, we need to adjust the coefficients (the numbers in front of the chemical formulas) of the reactants and/or products. We start by adjusting the coefficients of the compounds with the highest number of atoms of an element in the equation.

In this case, we have 2 carbon atoms and 2 oxygen atoms in [tex]C_2H_6[/tex]and [tex]CO_2[/tex], respectively. Therefore, we can balance the carbon atoms by putting a coefficient of 2 in front of [tex]CO_2[/tex]:

[tex]C_2H_6 + O_2 = 2CO_2 + H_2O[/tex]

Now we have 4 oxygen atoms on the right-hand side (2 from each [tex]CO_2[/tex]molecule) and only 1 oxygen atom on the left-hand side (from [tex]O_2[/tex]). To balance the oxygen atoms, we need to add a coefficient of 7/2 (or 3.5) in front of O2:

[tex]C_2H_6 + 7/2 O_2 = 2CO_2 + H_2O[/tex]

However, coefficients must be whole numbers, so we can multiply all coefficients by 2 to obtain:

[tex]2C_2H_6 + 7O-2 = 4CO_2 + 2H_2O[/tex]

Now, the equation is balanced with 2 carbon atoms, 6 hydrogen atoms, and 14 oxygen atoms on both sides of the equation.

For more question on ethane click on

https://brainly.com/question/28168286

#SPJ11

a flask containing neon gas is connected to an open-ended mercury manometer. the open end is exposed to the atmosphere, where the barometric pressure is 699. torr. the mercury level in the open arm is 2.2 cm above that in the arm connected to the flask of neon. what is the neon pressure, in torr?

Answers

The pressure of the neon gas is approximately 700.3 torr.

We can use the equation;

pressure of gas = atmospheric pressure + difference in mercury levels

First, we need to convert the units of the mercury level to atmospheres (atm);

1 atm = 760 mmHg = 101.3 [tex]k_{Pa}[/tex] = 760 torr

So, 2.2 cm of Hg = (2.2/760) atm = 0.00289 atm

The atmospheric pressure is given as 699 torr, which is equivalent to 0.919 atm.

Using the above equation, we can calculate the pressure of the neon gas;

pressure of neon gas = 0.919 atm + 0.00289 atm = 0.92189 atm

Finally, we can convert the pressure to torr;

pressure of neon gas = 0.92189 atm x 760 torr/atm

= 700.3 torr

Therefore, the pressure is 700.3 torr.

To know more about neon gas here

https://brainly.com/question/21089558

#SPJ4

Other Questions
branwell group, based in montreal, decided it wanted to collect all of its foreign currency receivables from indonesia early because the currency in indonesia was expected to depreciate. this is an example of all the students in the 6th grade either purchased their lunch or brought their lunch from home on monday.how many students are in the sixth grade if a turnkey project allows a novice corporation immediate presence within a foreign country and ease the initiation process into the marketplace. True/False when someone has control over the resources another person wants, ______ power exists. Which of the following mass movements involves the greatest amount of water? A) slump. B) flow. C) slide. D) solifluction. E) rockfall. B) flow. one possible isomer for the ion [cocl2(nh3)3(h2o)] is Which of the following practices is the best way to improve student achievement on large scale tests?A. Teaching the specific content that is covered on the testB. Promoting performance goals for classroom instructionC. Assigning challenging tasks that promote higher order thinkingD. Giving students full-length practice tests that are modeled after large-scale tests The B2B buy cycle has noticeable similarities to the consumer decision process.Select one:TrueFalse The trip, including pit stops, (take, takes) about three hours. takes take fo I use takes or take Find the line that contains theerror, explain the error, and thensolve the problem correctly.4+3(2x-3) = 6x - 5Line 14+ 6x-9 = 6x-5Line 210x-9 = 6x-5Line 3-4x = 4Line 4-x = 1 The 15th to 17th centuries in Europe were marked by significant changes and developments in various aspects of life. The Renaissance, which began in Italy in the 14th century, spread throughout Europe during the 15th and 16th centuries, leading to a renewed interest in classical learning, art, and literature. The Reformation, which began in the early 16th century, challenged the authority of the Catholic Church and led to the establishment of Protestantism. The Age of Exploration, which began in the late 15th century, saw European powers exploring and colonizing new territories around the world. The Scientific Revolution, which began in the 16th century, led to significant advancements in science and technology. These centuries also saw numerous wars and conflicts, including the Thirty Years' War, which devastated much of Central Europe. Overall, the 15th to 17th centuries were a time of great change and upheaval in Europe. Find the quotient and remainder using synthetic division.x^4-3x^3+9x+6/x+1The quotient is The remainder is non-rivalry and non-excludability apply to group of answer choices private goods public goods goods produced by monopolies natural resources a non-conducing ring of radius r has charge per unit length a magnetic field perpendicular to plane of the ring changes at rate db/dt. torque experienced by the ring is: What were Mussolini's views on violence and struggle? why was this perspective attractive to veterans and italians Select the sentence with the vague pronoun reference. Nathan and his dad knew they had to hurry. Nathan knew that he had to hurry. Nathan told his dad he needed to hurry. Nathan told his dad to hurry. the following data on a proposed investment project have been provided: cost of equipment $50,000 working capital required $30,000 salvage value of equipment $0 annual cash inflows form the project $20,000 required rate of return 20% life of the project 8 years ignoring taxes and assuming the working capital is returned at the end of the project, what is the net present value of the project? group of answer choices $3,730 $0 $32,450 $88,370 which of the below tissues provides the functions of the inner layer of the conducting organs? use substitution to solve the system y=3-14 and 4x+5y=25 8.5 calculate the radius of the spheres of influence of mercury, venus, mars, and jupiter. {ans.: see table a.2}