Answer:
10%
Step-by-step explanation:
Using the given formula with the given data, we have ...
efficiency = output work / input work
= (10 J)/(100 J) = 0.10 = 10%
Answer:
A) 10%
Step-by-step explanation:
10/100=10
Evaluate the expression 23^0-15^1+18^0+(43-12)
Answer:
18
Step-by-step explanation:
23^0 - 15^1 + 18^0 + (43 - 12) =
= 1 - 15 + 1 + 31
= -14 + 1 + 31
= -13 + 31
= 18
Eighty percent of the light aircraft that disappear while in flight in a certain country are subsequently discovered. Of the aircraft that are discovered, 63% have an emergency locator, whereas 89% of the aircraft not discovered do not have such a locator. Suppose a light aircraft has disappeared. (Round your answers to three decimal places.) (a) If it has an emergency locator, what is the probability that it will not be discovered? (b) If it does not have an emergency locator, what is the probability that it will be discovered?
Answer:
a) P(B'|A) = 0.042
b) P(B|A') = 0.625
Step-by-step explanation:
Given that:
80% of the light aircraft that disappear while in flight in a certain country are subsequently discovered
Of the aircraft that are discovered, 63% have an emergency locator,
whereas 89% of the aircraft not discovered do not have such a locator.
From the given information; it is suitable we define the events in order to calculate the probabilities.
So, Let :
A = Locator
B = Discovered
A' = No Locator
B' = No Discovered
So; P(B) = 0.8
P(B') = 1 - P(B)
P(B') = 1- 0.8
P(B') = 0.2
P(A|B) = 0.63
P(A'|B) = 1 - P(A|B)
P(A'|B) = 1- 0.63
P(A'|B) = 0.37
P(A'|B') = 0.89
P(A|B') = 1 - P(A'|B')
P(A|B') = 1 - 0.89
P(A|B') = 0.11
Also;
P(B ∩ A) = P(A|B) P(B)
P(B ∩ A) = 0.63 × 0.8
P(B ∩ A) = 0.504
P(B ∩ A') = P(A'|B) P(B)
P(B ∩ A') = 0.37 × 0.8
P(B ∩ A') = 0.296
P(B' ∩ A) = P(A|B') P(B')
P(B' ∩ A) = 0.11 × 0.2
P(B' ∩ A) = 0.022
P(B' ∩ A') = P(A'|B') P(B')
P(B' ∩ A') = 0.89 × 0.2
P(B' ∩ A') = 0.178
Similarly:
P(A) = P(B ∩ A ) + P(B' ∩ A)
P(A) = 0.504 + 0.022
P(A) = 0.526
P(A') = 1 - P(A)
P(A') = 1 - 0.526
P(A') = 0.474
The probability that it will not be discovered given that it has an emergency locator is,
P(B'|A) = P(B' ∩ A)/P(A)
P(B'|A) = 0.022/0.526
P(B'|A) = 0.042
(b) If it does not have an emergency locator, what is the probability that it will be discovered?
The probability that it will be discovered given that it does not have an emergency locator is:
P(B|A') = P(B ∩ A')/P(A')
P(B|A') = 0.296/0.474
P(B|A') = 0.625
A particle is moving with the given data. Find the position of the particle. a(t) = 2t + 5, s(0) = 6, v(0) = −5
Answer:
The position of the particle is described by [tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + 6,\forall t \geq 0[/tex]
Step-by-step explanation:
The position function is obtained after integrating twice on acceleration function, which is:
[tex]a(t) = 2\cdot t + 5[/tex], [tex]\forall t \geq 0[/tex]
Velocity
[tex]v(t) = \int\limits^{t}_{0} {a(t)} \, dt[/tex]
[tex]v(t) = \int\limits^{t}_{0} {(2\cdot t + 5)} \, dt[/tex]
[tex]v(t) = 2\int\limits^{t}_{0} {t} \, dt + 5\int\limits^{t}_{0}\, dt[/tex]
[tex]v(t) = t^{2}+5\cdot t + v(0)[/tex]
Where [tex]v(0)[/tex] is the initial velocity.
If [tex]v(0) = -5[/tex], the particular solution of the velocity function is:
[tex]v(t) = t^{2} + 5\cdot t -5, \forall t \geq 0[/tex]
Position
[tex]s(t) = \int\limits^{t}_{0} {v(t)} \, dt[/tex]
[tex]s(t) = \int\limits^{t}_{0} {(t^{2}+5\cdot t -5)} \, dt[/tex]
[tex]s(t) = \int\limits^{t}_0 {t^{2}} \, dt + 5\int\limits^{t}_0 {t} \, dt - 5\int\limits^{t}_0\, dt[/tex]
[tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + s(0)[/tex]
Where [tex]s(0)[/tex] is the initial position.
If [tex]s(0) = 6[/tex], the particular solution of the position function is:
[tex]s(t) = \frac{1}{3}\cdot t^{3} + \frac{5}{2}\cdot t^{2} - 5\cdot t + 6,\forall t \geq 0[/tex]
Answer:
Position of the particle is :
[tex]S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+6[/tex]
Step-by-step explanation:
Given information:
The particle is moving with an acceleration that is function of:
[tex]a(t)=2t+5[/tex]
To find the expression for the position of the particle first integrate for the velocity expression:
AS:
[tex]V(t)=\int\limits^0_t {a(t)} \, dt\\v(t)= \int\limits^0_t {(2.t+5)} \, dt\\\\v(t)=t^2+5.t+v(0)\\[/tex]
Where, [tex]v(0)[/tex] is the initial velocity.
Noe, if we tale the [tex]v(0) =-5[/tex] ,
So, the velocity equation can be written as:
[tex]v(t)=t^2+5.t-5[/tex]
Now , For the position of the particle we need to integrate the velocity equation :
As,
Position:
[tex]S(t)=\int\limits^0_t {v(t)} \, dt \\S(t)=\int\limits^0_t {(t^2+5.t-5)} \, dt\\S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+s(0)[/tex]
Where, [tex]S(0)[/tex] is the initial position of the particle.
So, we put the value [tex]s(0)=6[/tex] and get the position of the particle.
Hence, Position of the particle is :
[tex]S(t)=\frac{1}{3}.t^3+\frac{5}{2}.t^2-5.t+6[/tex].
For more information visit:
https://brainly.com/question/22008756?referrer=searchResults
here is the picture pls answer another for my lil friend lol
Answer:
Hey there!
The perimeter can be expressed as 140+140+68[tex]\pi[/tex]
This is equal to 493.52 m
Hope this helps :)
PLEASE ANSWER FAST PLEASE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! The point (1, −1) is on the terminal side of angle θ, in standard position. What are the values of sine, cosine, and tangent of θ? Make sure to show all work.
Answer:
sin = -√2 / 2
cos = √2 / 2
tan = -1
Step-by-step explanation:
Θ is in quad IV
sin = -√2 / 2
cos = √2 / 2
tan = -1
In order to determine the average price of hotel rooms in Atlanta, a sample of 64 hotels was selected. It was determined that the average price of the rooms in the sample was $112 with a standard deviation of $16. Use a 0.05 level of significance and determine whether or not the average room price is significantly different from $108.50.
Which form of the hypotheses should be used to test whether or not the average room price is significantly different from $108.50?
H0:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50
c. mu is less than $108.50mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Ha:
a. mu is greater than or equal to $108.50
b. mu is greater than $108.50mu is less than $108.50
c. mu is less than or equal to $108.50
d. mu is equal to $108.50mu is not equal to $108.50
Answer:
H0 :
a. mu is greater than or equal to $108.50
Ha:
c. mu is less than or equal to $108.50
Step-by-step explanation:
The correct order of the steps of a hypothesis test is given following
1. Determine the null and alternative hypothesis.
2. Select a sample and compute the z - score for the sample mean.
3. Determine the probability at which you will conclude that the sample outcome is very unlikely.
4. Make a decision about the unknown population.
These steps are performed in the given sequence
In the given scenario the test is to identify whether the average room price significantly different from $108.50. We take null hypothesis as mu is greater or equal to $108.50.
Explain how to write an equivalent expression using the
associative property.
2+(11 + y)
Answer:
2+(11+y)=(2+11)+y=11+(2+y)
Answer:
Sample Response: The associative property allows you to keep the order of the terms and change the position of the parentheses. So you can rewrite the terms in the same order and then move the parentheses so that the 2 + 11 is now inside. The equivalent expression is (2 + 11) + y.
Step-by-step explanation:
E d g e n u i t y
Enter a range of values of x
Answer:
[tex]-5<x<26[/tex].
Step-by-step explanation:
We know that if two corresponding sides of two triangles are equal, then third sides of the triangles depend on angle between equal sides.
Angle opposite to larger side is larger.
Since, 14 < 15, therefore
[tex]2x+10<62[/tex]
[tex]2x<62-10[/tex]
[tex]2x<52[/tex]
[tex]x<26[/tex] ...(1)
We know that, angle can not not negative.
[tex]2x+10>0[/tex]
[tex]2x>-10[/tex]
[tex]x>-5[/tex] ...(2)
From (1) and (2), we get
[tex]-5<x<26[/tex]
Therefore, the range of values of x is [tex]-5<x<26[/tex].
Which parent function is represented by the graph?
A. The quadratic parent function
B. The absolute value parent function
C. An exponential parent function
D. The linear parent function
Answer:
D. The linear parent function
Step-by-step explanation:
Linear functions are always characterized by a straight line graph with or without an intercept on the vertical or horizontal axis. A linear function usually has an independent variable and a dependent variable. The independent variable is commonly depicted as x while the dependent variable is y.
Thus a linear equation is an equation of the type y=ax where a is a constant term. The equation of a straight line graph his y=mx +c, where;
m= gradient of the straight line graph
x= the independent variable
y= the dependent variable
c= the vertical intercept
Answer:
The linear parent function :)
Step-by-step explanation:
How does the frequency of f(x) = cos(2x) relate to the frequency of the parent function cos x?
Answer:
The frequency of f(x) is two times the frequency of the parent function.
Step-by-step explanation:
We can say that the number that is beside the x is equal to [tex]2\pi *f[/tex], where f is the frequency.
Then, for the parent function, we get:
[tex]1 = 2\pi f_1[/tex]
or solving for [tex]f_1[/tex]:
[tex]f_1=\frac{1}{2\pi }[/tex]
At the same way, for f(x), we get:
[tex]2=2\pi f_2\\f_2=2(\frac{1}{2\pi })[/tex]
But [tex]\frac{1}{2\pi }[/tex] is equal to [tex]f_1[/tex], so we can write the last equation as:
[tex]f_2=2f_1[/tex]
It means that the frequency of f(x) is two times the frequency of the parent function.
What is 25÷5what is 25 / 5
Answer:
5
Step-by-step explanation:
25/5
=5✖️5=25
=5/1
Answer:
25÷5 = 5 and 25/5 = 125
Step-by-step explanation:
hope this helps!
Write an expression for each statement and then simplify it, if possible.
g
There are two numbers, that sum up to 53. Three times the smaller number is equal to 19 more than the larger number. What are the numbers ?
Answer:
If the smaller number is x, then the equation is
. The numbers are
,
.
Answer:
x = 18; y = 35
Step-by-step explanation:
This gives us the equation:
1. x+y=53
2. 3x=y+19
3. 3x-y=19
Add the first and last line together: x+y+3x-y=53+19
Simplifies to: 4x=72
Divide by 4 to get: x = 18
Plug your numbers into the first equation to get 18+y=53; y = 35.
Answer:
The numbers are 18 and 35.
Step-by-step explanation:
The smaller number is x.
Let the other number by y.
Three times the smaller number is equal to 19 more than the larger number.
3x = y + 19
The larger number is
y = 3x - 19
the numbers add up to 53
x + y = 53
x + 3x - 19 = 53
4x = 72
x = 18
y = 3x - 19 = 3(18) - 19 = 54 - 19 = 35
The numbers are 18 and 35.
The probability of a potential employee passing a drug test is 91%. If you selected 15 potential employees and gave them a drug test, how many would you expect to pass the test
Answer:
The number expected to pass that test is [tex]k = 14 \ employees[/tex]
Step-by-step explanation:
From the question we are told that
The probability of success is p = 0.91
The sample size is n = 15
The number of employee that will pass the test is mathematically represented as
[tex]k = n * p[/tex]
substituting values
[tex]k = 15 * 0.91[/tex]
[tex]k = 14 \ employees[/tex]
If y varies directly as x, and y is 6 when x is 72, what is the value of y when x is 8?
NO
54
оо
96
Answer:
2/3
Step-by-step explanation:
The equation for direct variation is: y = kx, where k is a constant.
Here, we see that y varies directly with x when y = 6 and x = 72, so let's plug these values into the formula to find k:
y = kx
6 = k * 72
k = 6/72 = 1/12
So, k = 1/12. Now our formula is y = (1/12)x. Plug in 8 for x to find y:
y = (1/12)x
y = (1/12) * 8 = 8/12 = 2/3
Thus, y = 2/3.
~ an aesthetics lover
Answer:
Step-by-step explanation: I hope i'm right
[tex]y \alpha x\\y=kx....(1)\\6=72k\\\frac{6}{72} =\frac{72k}{72} \\\\1/12 =k\\y = 1/12x=relationship-between;x-and;y\\x =8 , y =?\\y = \frac{8}{12} \\Cross-Multiply\\12y =8\\12y/12 = 8/12\\\\y = 2/3[/tex]
According to the histogram below, how many people took the test? 39 9 16 23
The correct answer is D. 23
Explanation:
Histograms similar to other graphs represent numerical information, usually by using bars, as well as ranges. For example, in the case presented the information presented belongs to the scores obtained in a test, which are shown using ranges. Moreover, it is possible to know the total of people that took the test by adding each of the frequencies, as the frequency in the y-axis shows the number of times the range repeated and it is expected each grade registered belongs to 1 person. This means the total of people is equal to 2 (score from 60-69) + 9 (score from 70-79) + 7 (score from 80-89) + 5 (score from 90-99) = 23 people.
Answer:
the answer is 23
Step-by-step explanation:
hopes this helps:)
Identify the P-VALUE used in a hypothesis test of the following claim and sample data:
Claim: "The proportion of defective tablets manufactured in this factory is less than 6%."
A random sample of 500 tablets from this factory is selected, and it is found that 20 of them were defective. Test the claim at the 0.05 significance level.
Answer:
The calculated value Z = 2 > 1.96 at 0.05 level of significance
Alternative Hypothesis is accepted
The proportion of defective tablets manufactured in this factory is less than 6%."
Step-by-step explanation:
Step(i):-
Given Population proportion P = 0.06
Sample size 'n' = 500
A random sample of 500 tablets from this factory is selected, and it is found that 20 of them were defective.
Sample proportion
[tex]p^{-} = \frac{x}{n} = \frac{20}{500} =0.04[/tex]
Null hypothesis :H₀: P = 0.06
Alternative Hypothesis :H₁:P<0.06
Level of significance = 0.05
Z₀.₀₅ = 1.96
Step(ii):-
Test statistic
[tex]Z = \frac{p^{-} -P}{\sqrt{\frac{P Q}{n} } }[/tex]
[tex]Z = \frac{0.04 -0.06}{\sqrt{\frac{0.06 X 0.94}{500} } }[/tex]
Z = - 2
|Z|= |-2| = 2
Step(iii):-
The calculated value Z = 2 > 1.96 at 0.05 level of significance
Null hypothesis is rejected
Alternative Hypothesis is accepted
The proportion of defective tablets manufactured in this factory is less than 6%."
Help please!! Thank you
Answer:
D. 6
Step-by-step explanation:
here, as given set Q consists { 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36}
and set Z contains {3, 6, 9, 12, 15, 18, 21,24, 27, 30, 33, 36, .... }
so be comparing both, we can see that the numbers 6, 12, 18, 24, 30 and 36 is repeated.
What are some key words used to note addition operations?
Answer:
The correct answer is
For addition, Caulleen used the words total, sum, altogether, and increase. But we could also have used the words combine, plus, more than, or even just the word "and". For subtraction, Caulleen used the words, fewer than, decrease, take away, and subtract. We also could have used less than, minus, and difference.
Step-by-step explanation:
hope this helps u!!!
In Sparrowtown, the use of landlines has been declining at a rate of 5% every year. If there are 20,000 landlines this year, how many will there be in 15 years? If necessary, round your answer to the nearest whole number.
Answer:
5,000
Step-by-step explanation:
If it decreases by 5% a year, it'll decrease by 75% in 15 years
i.e 1 year = 5%
15 years = x
Cross multiply
x = 75%
Therefore, since it decreases by 75%
100 - 75 x 20,000 = 5,000
100
Zoey wants to use her iPad throughout a 6-hour flight. Upon takeoff, she uses the iPad for 2 hoursand notices that the battery dropped by 25%, from 100% to 75%. How many total hours can Zoeyexpect from the iPad on a full battery charge?
Answer:
8 hours
Step-by-step explanation:
25%= 2 hrs
100%=8 hrs
brainliest plsssssssssssssssssssss
-zylynn
Solve the equation for X. 2(2x-4)=3(x+4) A -4 B 4 C 20 D 6
Answer:
X=20
Step-by-step explanation:
The answer is C
Solve the simultaneous equations 2x-y=7 3x+y=3
Answer:
( 2 , - 3 )Step-by-step explanation:
Using elimination method:
2x - y = 7
3x + y = 3
--------------
5x = 10
Divide both sides of the equation by 5
[tex] \frac{5x}{5} = \frac{10}{5} [/tex]
Calculate
[tex]x = 2[/tex]
Now, substitute the given value of X in the equation
3x + y = 3
[tex]3 \times 2 + y = 3[/tex]
Multiply the numbers
[tex]6 + y = 3[/tex]
Move constant to R.H.S and change it's sign
[tex]y = 3 - 6[/tex]
Calculate
[tex]y = - 3[/tex]
The possible solution of this system is the ordered pair ( x , y )
( x , y ) = ( 2 , -3 )---------------------------------------------------------------------
Check if the given ordered pair is the solution of the system of equation
[tex]2 \times 2 - ( - 3) = 7[/tex]
[tex]3 \times 2 - 3 = 3[/tex]
Simplify the equalities
[tex]7 = 7[/tex]
[tex]3 = 3[/tex]
Since all of the equalities are true, the ordered pair is the solution of the system
( x , y ) = ( 2 , - 3 )Hope this helps..
Best regards!!
7987.1569 to the nearest thousandth
Answer:
7987.1569 to the nearest thousandths is 7987.157
Step-by-step explanation:
PLEASE HELP!!! Select the three statements that give benefits of having a savings account. A. When I withdraw money from my savings account too many times, I can be charged a fee. B. When I put money in a savings account, the bank will pay me interest. C. If there were an emergency, I would have the money to cover expenses. D.When I use a savings account, my money is insured by the FDIC up to $250,000.
Answer:
answer is B
Step-by-step explanation:
please answer me question 3 solving part
Answer:
1. D
2. B
3. A
Step-by-step explanation:
Question 1:
The pair of <JKL and <LKM can be referred to as linear pairs. They are two adjacent angles that are formed from the intersecting of two lines.
Question 2:
Given that <KLM = x°
<KML = 50°
<JKL = (2x - 15)°
According to the exterior angle theorem, exterior ∠ JKL = <KLM + KML.
2x - 15 = x + 50
Solve for x
2x - x = 15 + 50
x = 65
Therefore, <KLM = 65°
QUESTION 3:
<JKL = 2x - 15
Plug in the value of x
<JKL = 2(65) - 15
= 130 - 15
<JKL = 115°
What value of x is I the solution set of 3(x-4)>5x+2
Answer:
-7 > x
Step-by-step explanation:
3(x-4)>5x+2
Distribute
3x-12>5x+2
Subtract 3x from each side
3x-12-3x>5x-3x+2
-12 > 2x+2
Subtract 2 from each side
-12-2>2x+2-2
-14 > 2x
Divide by 2
-14/2 > 2x/2
-7 > x
Answer:
[tex]\boxed{x<-7}[/tex]
Step-by-step explanation:
3(x-4)>5x+2
Expand brackets.
3x - 12 > 5x+2
Subtract 3x and 2 on both sides.
-12 - 2 > 5x - 3x
-14 > 2x
Divide both sides by 2.
-7 > x
Switch sides.
x < -7
The value of x that will make L and M
Greetings from Brasil...
Here we have internal collateral angles. Its sum results in 180, so:
(6X + 8) + (4X + 2) = 180
6X + 4X + 8 + 2 = 180
10X + 10 = 180
10X = 180 - 10
10X = 170
X = 170/10
X = 17heLpPppPPpppPPpppppPPpppPPpppPPpppPPPpppPPPpppPPPPppppp
Answer:
Triangle D is your answer.
Answer:
Hey there!
Triangle C is unique, as one side and two angles determine a unique triangle.
Hope this helps :)
Translate the phrase into a variable expression. Use the letter sto name the
variable. If necessary, use the asterisk (*) for multiplication and the slash
(1) for division.
the product of 60 and the number of seconds...
Answer:
The statement
the product of 60 and the number of seconds is written as
60 * s
Hope this helps you
Find the solution(s) of the quadratic equation 2x2 – 3x – 35 = 0
Answer: x = 5, x = -7/2
Step-by-step explanation:
2x² - 3x - 35 = 0
Step 1: Find two values whose product = 2(-35) and sum = -3: -10 & 7
Step 2: Replace the b-value of -3x with -10x + 7x:
2x² - 10x + 7x - 35 = 0
Step 3: Factor the first two terms and the second two terms:
2x(x - 5) +7(x - 5) = 0
Step 4: Write the factored form:
Notice that the parenthesis are identical. This is one of the factors. The outside values are the other factor:
Parenthesis: (x - 5)
Outside: (2x + 7)
Factored form: (x - 5)(2x + 7) = 0
Step 5: Set each factor each to zero and solve for x:
x - 5 = 0 2x + 7 = 0
x - 5 [tex]x=-\dfrac{7}{2}[/tex]
The solutions of the quadratic equation given as 2x² - 3x - 35 = 0 are x=5 and x =-3.5.
Given that:
2x² - 3x - 35 = 0
This is a quadratic equation.
It is required to find the solutions of this equation.
The solution of the quadratic equation of the form ax² + bx + c = 0 can be found using the quadratic formula:
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
From the given equation:
a = 2
b = -3
c = -35
Substitute to the quadratic formula.
[tex]x=\frac{-(-3)\pm \sqrt{(-3)^2-4(2)(-35)}}{2(2)}[/tex]
[tex]=\frac{3\pm \sqrt{9+280}}{4}[/tex]
[tex]=\frac{3\pm \sqrt{289}}{4}[/tex]
[tex]=\frac{3\pm 17}{4}[/tex]
So, the solutions are:
[tex]x=\frac{3+ 17}{4}=5[/tex], and [tex]x=\frac{3-17}{4}=-3.5[/tex]
Hence, the solutions are x =5, -3.5.
Learn more about Quadratic Formula here :
https://brainly.com/question/22364785
#SPJ6